Mechanobiology June 26th - June 2nd 2016

Mechanobiology: June 26th  - June 2nd 2016

Caspase-mediated cleavage of the chromosome-binding domain of lamina-associated polypeptide 2 alpha
J. Gotzmann, S. Vlcek, R. Foisner

Summary

Lamina-associated polypeptide 2 alpha (LAP2 alpha) is a non-membrane-bound isoform of the LAP2 family involved in nuclear structure organization. Using various cell systems, including Jurkat, HL-60, and HeLa cells, and different death-inducing agents, such as anti-Fas antibody, topoisomerase inhibitors, and staurosporine, we found that LAP2 alpha was cleaved during apoptosis as rapidly as lamin B in a caspase-dependent manner yielding stable N- and C-terminal fragments of approximately 50 and 28 kDa, respectively. Based on fragment size and localization of immunoreactive epitopes, four potential cleavage sites were mapped between amino acids 403–485. These sites were located within a domain that has previously been described to be essential and sufficient for association of LAP2 alpha with chromosomes, suggesting that LAP2 alpha cleavage impairs its chromatin-binding properties. Immunofluorescence microscopy demonstrated that, unlike full length protein, apoptotic fragments did not colocalize with condensed chromatin, but remained in the nuclear compartment as long as a single nucleus was visible. Subfractionation analyses showed that the N-terminal LAP2 alpha fragment was extracted from intranuclear structures in detergent/salt buffers, whereas the C-terminal fragment remained associated with a residual framework devoid of chromatin. Our data suggest that early cleavage of LAP2 alpha) is important for chromatin reorganization during apoptosis.