Mechanobiology June 26th - June 2nd 2016

Mechanobiology: June 26th  - June 2nd 2016


The PACSINs are a family of cytoplasmic phosphoproteins that play a role in vesicle formation and transport. We report the cloning and cDNA sequencing of PACSIN 3 and the analysis of all three PACSIN isoforms with regard to tissue distribution, ligand binding properties and influence on endocytosis. PACSIN 3 differs from the other family members in having a short proline-rich region and lacking asparagine-proline-phenylalanine motifs. In contrast to the neurospecific PACSIN 1 and the ubiquitously expressed PACSIN 2, PACSIN 3 is mainly detected in lung and muscle tissues. All isoforms potentially oligomerize and bind to dynamin, synaptojanin 1 and N-WASP via their Src homology 3 domains. The PACSIN proteins colocalize with dynamin, but not with clathrin, implying a specific role with a distinct subpopulation of dynamin at defined cellular sites. Transferrin endocytosis is blocked in a dose-dependent manner in cells overexpressing the PACSIN variants, but the inhibitory effect can be abolished by mutating specific amino acid residues in the Src homology 3 domains. These characteristics of the PACSIN protein family suggest a general function in recruitment of the interacting proteins to sites of endocytosis.