Mechanobiology June 26th - June 2nd 2016

Mechanobiology: June 26th  - June 2nd 2016


Cellubrevins are integral membrane proteins expressed in a wide variety of tissues and usually localized in recycling vesicles. Here, we investigated the cellular localization of a cellubrevin-related peptide, endobrevin, in pancreatic (beta) cells and its implication in the exo-endocytosis of insulin and (gamma)-amino butyric acid (GABA). Immunocytochemistry showed that endobrevin is associated with tubulo-vesicular structures, which are colocalized with early endosomes labeled by early endosome antigen (EEA)-1 in insulinoma MIN6 cells. To determine the cellular localization of endobrevin, we appended the green fluorescent protein (GFP) to endobrevin and the fusion protein was introduced into MIN6 cells. The subcellular localization of GFP-endobrevin was visualized by confocal laser microscopy. Colocalization study based on the expressed GFP-endobrevin and endocytosed Texas-Red(Tx-R) labeled transferrin receptor and immunocytochemistry with anti-EEA1 antibody revealed that endobrevin was preferentially localized in the early endosome. Then, we examined the functional role of endobrevin in the exocytosis of insulin and GABA from pancreatic (beta) cells. Endobrevin overexpression increased the amount of GABA released from MIN6 cells; in contrast, it decreased the glucose-stimulated insulin release from rat islets, MIN6 and INS1-D cells to approximately 50% of the control levels. Both in vitro and in vivo binding studies showed that endobrevin binds to syntaxin 1. Finally, using the fluorescent probe FM4-64, it was revealed that endobrevin overexpression accelerates vesicle recycling. We conclude that (1) endobrevin is localized in the early endosome in pancreatic (beta) cells and (2) endobrevin plays a physiological role in the exo-endocytosis of insulin and GABA from pancreatic (beta) cells, probably via an interaction between endocytic vesicles and the endosome.