Journal of Cell Science partnership with Dryad

Journal of Cell Science makes data accessibility easy with Dryad

Illuminating the secretory pathway: when do we need vesicles?
D.J. Stephens, R. Pepperkok


Recent studies using GFP-tagged markers and time-lapse microscopy have allowed direct visualisation of membrane traffic in the secretory pathway in living mammalian cells. This work shows that larger membrane structures, 300–500 nm in size, are the vehicles responsible for long distance, microtubule-dependent ER-to-Golgi and trans-Golgi to plasma membrane transport of secretory markers. At least two retrograde transport pathways from the Golgi to the ER exist, both of which are proposed to involve a further class of long, tubular membrane carrier that forms from the Golgi and fuses with the ER. Together, this has challenged established transport models, raising the question of whether larger pleiomorphic structures, rather than small 60–80 nm transport vesicles, mediate long-range transport between the ER and Golgi and between the Golgi and plasma membrane.