Register for Mechanobiology 2016!

FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity
Xuan Li, Valerie G. Brunton, Helen R. Burgar, Lee M. Wheldon, John K. Heath


Activation of signalling by fibroblast growth factor receptor leads to phosphorylation of the signalling attenuator human Sprouty 2 (hSpry2) on residue Y55. This event requires the presence of the signalling adaptor fibroblast growth factor receptor substrate 2 (FRS2). The phosphorylation of hSpry2 is therefore mediated by an intermediate kinase. Using a SRC family kinase-specific inhibitor and mutant cells, we show that hSpry2 is a direct substrate for SRC family kinases, including SRC itself. Activation of SRC via fibroblast growth factor signalling is dependent upon FRS2 and fibroblast growth factor receptor kinase activity. SRC forms a complex with hSpry2 and this interaction is enhanced by hSpry2 phosphorylation. Phosphorylation of hSpry2 is required for hSpry2 to inhibit activation of the extracellular signal-regulated kinase pathway. These results show that recruitment of SRC to FRS2 leads to activation of signal attenuation pathways.

  • Accepted September 1, 2004.
View Full Text