Register for Mechanobiology 2016!

Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III β protects from dephosphorylation and stabilizes lipid kinase activity
Angelika Hausser, Gisela Link, Miriam Hoene, Chiara Russo, Olaf Selchow, Klaus Pfizenmaier


Phosphatidylinositol-4-kinase-IIIβ (PI4KIIIβ) is activated at the Golgi compartment by PKD-mediated phosphorylation. Subsequent mechanisms responsible for continuous PtdIns(4)P production at Golgi membranes and potential interaction partners of activated PI4KIIIβ are unknown. Here we identify phosphoserine/-threonine binding 14-3-3 proteins as novel regulators of PI4KIIIβ activity downstream of this phosphorylation. The PI4KIIIβ-14-3-3 interaction, evident from GST pulldowns, co-immunoprecipitations and bimolecular fluorescence complementation, was augmented by phosphatase inhibition with okadaic acid. Binding of 14-3-3 proteins to PI4KIIIβ involved the PKD phosphorylation site Ser294, evident from reduced 14-3-3 binding to a S294A PI4KIIIβ mutant. Expression of dominant negative 14-3-3 proteins resulted in decreased PI4KIIIβ Ser294 phosphorylation, whereas wildtype 14-3-3 proteins increased phospho-PI4KIIIβ levels. This was because of protection of PI4KIIIβ Ser294 phosphorylation from phosphatase-mediated dephosphorylation. The functional significance of the PI4KIIIβ-14-3-3 interaction was evident from a reduction of PI4KIIIβ activity upon dominant negative 14-3-3 protein expression. We propose that 14-3-3 proteins function as positive regulators of PI4KIIIβ activity by protecting the lipid kinase from active site dephosphorylation, thereby ensuring a continuous supply of PtdIns(4)P at the Golgi compartment.

  • Accepted June 16, 2006.
View Full Text