Mechanobiology June 26th - June 2nd 2016

Mechanobiology: June 26th  - June 2nd 2016

Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP
Natalia Dolzhanskaya, George Merz, John M. Aletta, Robert B. Denman


FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with ∼4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating that methylation of FMRP affects its ability to bind to FXR1P and regulate the translation of FMRP target mRNAs. Additionally, using double-label fluorescence confocal microscopy, we identified a subpopulation of FMRP-containing small cytoplasmic granules that are distinguishable from larger stress granules. Using the oxidative-stress induced accumulation of abortive pre-initiation complexes as a measure of the association of FMRP with translational components, we have demonstrated that FMRP associates with ribosomes during initiation and, more importantly, that methylation regulates this process by influencing the ratio of FMRP-homodimer-containing mRNPs to FMRP-FXR1P-heterodimer-containing mRNPs. These data suggest a vital role for methylation in normal FMRP functioning.

  • Accepted January 11, 2006.
View Full Text