Register for Mechanobiology 2016!

Regulation of gene expression during M-G1-phase in fission yeast through Plo1p and forkhead transcription factors
Kyriaki Papadopoulou, Szu Shien Ng, Hiroyuki Ohkura, Marco Geymonat, Steven G. Sedgwick, Christopher J. McInerny


In fission yeast the expression of several genes during M-G1 phase is controlled by binding of the PCB binding factor (PBF) transcription factor complex to Pombe cell cycle box (PCB) promoter motifs. Three components of PBF have been identified, including two forkhead-like proteins Sep1p and Fkh2p, and a MADS-box-like protein, Mbx1p. Here, we examine how PBF is controlled and reveal a role for the Polo kinase Plo1p. plo1+ shows genetic interactions with sep1+, fkh2+ and mbx1+, and overexpression of a kinase-domain mutant of plo1 abolishes M-G1-phase transcription. Plo1p binds to and directly phosphorylates Mbx1p, the first time a Polo kinase has been shown to phosphorylate a MADS box protein in any organism. Fkh2p and Sep1p interact in vivo and in vitro, and Fkh2p, Sep1p and Plo1p contact PCB promoters in vivo. However, strikingly, both Fkh2p and Plo1p bind to PCB promoters only when PCB-controlled genes are not expressed during S- and G2-phase, whereas by contrast Sep1p contacts PCBs coincident with M-G1-phase transcription. Thus, Plo1p, Fkh2p and Sep1p control M-G1-phase gene transcription through a combination of phosphorylation and cell-cycle-specific DNA binding to PCBs.

  • Accepted October 16, 2007.
View Full Text