Mechanobiology June 26th - June 2nd 2016

Mechanobiology: June 26th  - June 2nd 2016


The cellular landscape rapidly changes throughout the biological processes that transpire within a cell. For example, the cytoskeleton is remodeled within fractions of a second. Therefore, reliable structural analysis of the cell requires approaches that allow for instantaneous arrest of functional states of a given process while offering the best possible preservation of the delicate cellular structure. Electron tomography of vitrified but otherwise unaltered cells (cryo-ET) has proven to be the method of choice for three-dimensional (3D) reconstruction of cellular architecture at a resolution of 4-6 nm. Through the use of cryo-ET, the 3D organization of macromolecular complexes and organelles can be studied in their native environment in the cell. In this Commentary, we focus on the application of cryo-ET to study eukaryotic cells – in particular, the cytoskeletal-driven processes that are involved in cell movements, filopodia protrusion and viral entry. Finally, we demonstrate the potential of cryo-ET to determine structures of macromolecular complexes in situ, such as the nuclear pore complex.


  • This work was supported by a grant from the German-Israeli Cooperation Project (DIP) (H.2.2), by the Israel Science Foundation (grant 794/06) and by the German-Israel Foundation, to O.M. We thank Kay Grünewald and Ulrike Maurer for providing Fig. 3.

View Full Text