Journal of Cell Science partnership with Dryad

Journal of Cell Science makes data accessibility easy with Dryad

Mechanosensitive mechanisms in transcriptional regulation
Akiko Mammoto, Tadanori Mammoto, Donald E. Ingber


Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.


  • Funding

    This work was supported by the National Institutes of Health [grant numbers CA45548 and DE019023], the Department of Defense [grant number BC074986], AHA, the Hearst Foundation and ABTA. Deposited in PMC for release after 12 months.

  • This article is part of a Minifocus on Mechanotransduction. For further reading, please see related articles: ‘Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues’ by Brendon M. Baker and Christopher S. Chen (J. Cell Sci. 125, 3015-3024). ‘Finding the weakest link – exploring integrin-mediated mechanical molecular pathways’ by Pere Roca-Cusachs et al. (J. Cell Sci. 125, 3025-3038). ‘Signalling through mechanical inputs – a coordinated process’ by Huimin Zhang and Michel Labouesse (J. Cell Sci. 125, 3039-3049). ‘United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction’ by Ulrich S. Schwarz and Margaret L. Gardel (J. Cell Sci. 125, 3051-3060). ‘Molecular force transduction by ion channels – diversity and unifying principles’ by Sergei Sukharev and Frederick Sachs (J. Cell Sci. 125, 3075-3083).

View Full Text