Mechanobiology June 26th - June 2nd 2016

Mechanobiology: June 26th  - June 2nd 2016

Src binds cortactin through an SH2 domain cystine-mediated linkage
Jason V. Evans, Amanda G. Ammer, John E. Jett, Chris A. Bolcato, Jason C. Breaux, Karen H. Martin, Mark V. Culp, Peter M. Gannett, Scott A. Weed


Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.


  • Funding

    This work was supported by National Institutes of Health [grant numbers DE014364, DE014578 and RR16440 to S.A.W.]; the Mary Babb Randolph Cancer Center; and by the West Virginia University Department of Neurobiology and Anatomy. Deposited in PMC for release after 12 months.

  • Supplementary material available online at

  • Accepted October 2, 2012.
View Full Text