Register for Mechanobiology 2016!

Mechanosensitive systems at the cadherin–F-actin interface
Stephan Huveneers, Johan de Rooij


Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues, mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension transduce changes in physical force into cellular signaling, is very different, and the molecular mechanisms are only beginning to be elucidated. In this Commentary, we focus on mechanotransduction at cell–cell junctions, aiming to comprehend the molecular mechanisms involved. We describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of forces at cell–cell junctions. We discuss which cell–cell adhesion receptors have been shown to take part in mechanotransduction. Then we outline the force-induced molecular events that might occur within a key mechanosensitive system at cell–cell junctions; the cadherin–F-actin interface, at which α-catenin and vinculin form a central module. Mechanotransduction at cell–cell junctions emerges as an important signaling mechanism, and we present examples of its potential relevance for tissue development and disease.


  • This article is part of a Minifocus on Adhesion. For further reading, please see related articles: ‘Cadherin adhesome at a glance’ by Ronen Zaidel-Bar (J. Cell Sci. 126, 373-378). ‘Cycling around cell–cell adhesion with Rho GTPase regulators’ by Jessica McCormack et al. (J. Cell Sci. 126, 379-391). ‘E-cadherin–integrin crosstalk in cancer invasion and metastasis’ by Marta Canel et al. (J. Cell Sci. 126, 393-401).

  • Funding

    This work is supported by an NWO-Veni grant [grant number 863.10.003 to S.H.]; and an NWO-Vidi grant [grant number 864.07.006 to J.d.R.].

View Full Text