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Fast axonal transport of the proteasome complex depends on
membrane interaction and molecular motor function
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ABSTRACT

Protein degradation by the ubiquitin-proteasome system in neurons

depends on the correct delivery of the proteasome complex.

In neurodegenerative diseases, aggregation and accumulation of

proteins in axons link transport defects with degradation

impairments; however, the transport properties of proteasomes

remain unknown. Here, using in vivo experiments, we reveal

the fast anterograde transport of assembled and functional 26S

proteasome complexes. A high-resolution tracking system to follow

fluorescent proteasomes revealed three types of motion: actively

driven proteasome axonal transport, diffusive behavior in a

viscoelastic axonema and proteasome-confined motion.

We show that active proteasome transport depends on motor

function because knockdown of the KIF5B motor subunit resulted in

impairment of the anterograde proteasome flux and the density of

segmental velocities. Finally, we reveal that neuronal proteasomes

interact with intracellular membranes and identify the coordinated

transport of fluorescent proteasomes with synaptic precursor

vesicles, Golgi-derived vesicles, lysosomes and mitochondria.

Taken together, our results reveal fast axonal transport as a new

mechanism of proteasome delivery that depends on membrane

cargo ‘hitch-hiking’ and the function of molecular motors. We further

hypothesize that defects in proteasome transport could promote

abnormal protein clearance in neurodegenerative diseases.

KEY WORDS: Axonal transport, Membrane interaction, Molecular

motors, Proteasome, Vesicles, Kinesin-1

INTRODUCTION
Local protein homeostasis in highly polarized neurons is

supported by a regulated system of protein delivery by axonal

transport and a coordinated action of protein removal by selective

degradation (Bingol and Sheng, 2011; Stokin and Goldstein,

2006). The localization of the ubiquitin-proteasome system (UPS)

has emerged as an important regulator of synaptic function,

and local proteasome degradation defects have been implicated

during the progression of many neurodegenerative diseases

(Oddo, 2008; Yi and Ehlers, 2007). However, little is known

about the intracellular mechanisms of the distribution of the

proteasome and their axonal transport properties that assure the

proper delivery and positioning of the proteasome complex in

neurons.

Protein turnover by the UPS involves the identification of

targets and their tagging with a polyubiquitin chain as the signal

for specific degradation by the proteasome complex (Ciechanover

and Brundin, 2003). The 26S proteasome barrel is assembled

through the interaction of the 20S catalytic core, which comprises

four rings of a and b subunits, with the 19S regulatory particle

(Murata et al., 2009). Several synaptic proteins have been

shown to undergo local UPS-mediated turnover, suggesting a

compartment-specific function for the 26S complex (Ehlers,

2003; Patrick, 2006). In response to neuron depolarization,

proteasomes can be rapidly recruited to dendritic spines by a

mechanism that is not fully understood (Bingol and Schuman,

2006; Bingol et al., 2010), leading to a confined turnover of

polyubiquitinated proteins (Djakovic et al., 2009; Ehlers, 2003)

that supports a compartmentalized function of the proteasome at

synapses (Upadhya et al., 2006; Zhao et al., 2003). Proteasome-

mediated degradation is involved in the clearance of abnormal

protein aggregates and proteasome defects have been associated

with a number of neurodegenerative diseases (Ciechanover and

Brundin, 2003). Local dysfunction of proteasome-dependent

degradation is associated with the early phases of synaptic

defects in tauopathies, including the formation of inclusion bodies

that contain the ubiquitinated form of the microtubule-associated

protein tau (Tai et al., 2012).

Axonal transport, carried out by molecular motors, supports

neuronal function by the correct delivery and positioning of

proteins and organelles (Stokin and Goldstein, 2006). Kinesin

motors drive the anterograde axonal transport towards the

synapses by walking the microtubules to the plus end, whereas

dynein complexes support the retrograde transport to cell bodies

by walking to the minus end of microtubules (Hirokawa et al.,

2010). Fast axonal transport is mediated by membrane-associated

cargos that have been described as interacting specifically with

kinesin and dynein motors (Goldstein, 2003; Karki and Holzbaur,

1999). Cytosolic proteins undergo slow axonal transport, which

has also been shown to depend on an interaction with molecular

motors that is mediated by adaptor proteins (Terada et al., 2010).

This slow average speed of soluble proteins depends on a

probabilistic association with carriers that move under fast

transport (Lasek et al., 1984; Scott et al., 2011). In support of

this view, recent data has shown an axonal diffusion, with an

anterograde bias, of synapsin that was mediated by the flux of fast

moving vesicles (Tang et al., 2013). However, little is known
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about the transport modes that mediate the movement of large
cytoplasmic protein complexes, such as the proteasome, along

axons. Studies of fluorescently labeled proteasomes have
suggested that, in human fibrosarcoma cells, the distribution of
proteasomes occurs through cytoplasmic diffusion at a steady
state (Reits et al., 1997), whereas in vivo and in vitro analyses

have suggested that proteasomes associate with lipid membranes
(Kalies et al., 2005; Newman et al., 1996), and that this
interaction could support a mechanism for the long-range

movement of proteasomes in neurons.
Disruption of the microtubule-based transport system results in

organelle accumulation and axonal swellings, which can be

further increased by impairments in the protein clearance
pathways (Stokin and Goldstein, 2006). In neurodegenerative
diseases, impaired protein degradation has been suggested to

occur through specific proteasome inhibition that is exerted by
abnormal aggregated proteins (Tai et al., 2012; Tseng et al., 2008)
and by the proteasome defects that have been described in
different areas of the brains of patients with Alzheimer’s disease

(Keck et al., 2003; Keller et al., 2000). Interestingly, failures in
the UPS lead to the accumulation of aggregated proteins in axons
(Tai and Schuman, 2008), and protein accumulation is, in turn,

associated with defects in axonal transport (Stokin and Goldstein,
2006). Thus, the confined accumulation of polyubiquitinated
aggregates that is observed during neurodegeneration raises the

possibility that impairments in the distal axonal delivery of UPS
components play central roles in disease progression (Bence
et al., 2001; Oddo, 2008; Rubinsztein, 2006). Similar abnormal

function of the proteasome can be predicted during impairment
of axonal transport because kinesin-1 defects enhance protein
accumulation, axonopathies and neurodegeneration in mouse
models of Alzheimer’s disease (Falzone et al., 2009; Stokin et al.,

2005). Recently, a link between proteasomes and motors
in mammalian cells has been suggested to occur through the
proteasome-associated protein ECM29, which is involved in

proteasome assembly (Gorbea et al., 2010). This interaction
indicates a molecular mechanism for motor-protein-dependent
transport of the proteasome complex.

Here, using in vivo and live-cell imaging experiments, we test
the novel hypothesis that the proteasome complex is actively
transported along axons. By using short-term mouse sciatic nerve
ligations, we also show fast anterograde transport of the

functional 26S proteasome complex. We developed a high-
resolution time and space live-imaging setup to track and describe
the movement of fluorescent a4 core proteasome subunits in

axons, allowing characterization of three new and independent
modes of proteasome motion – (1) actively driven transport, (2)
diffusion in a viscoelastic axonema and (3) trapped proteasomes

with confined motion. We demonstrate that knockdown of the
KIF5B motor protein results in a reduction of the anterograde
proteasome flux on axons and a decrease in the density of

anterograde segmental velocities, which suggests that proteasome
transport partially depends on kinesin-1 cargos for their delivery
to distant sites. Finally, we show that fast and processive
axonal transport of proteasomes depends on the association of

proteasomes with intracellular membranes, and describe the
coordinated movement of proteasomes with different vesicles and
membrane organelles. Taken together, our results describe three

previously unknown modes of proteasome movement in axons
and, furthermore, uncover a novel mechanism of fast axonal
transport of this large and active complex that is dependent upon

membrane cargo ‘hitch-hiking’ and the function of molecular

motors. Therefore, we suggest that distant neuronal protein
degradation depends on a mechanism of proteasome delivery that,

when impaired, can have profound implications for the clearance
of local proteins, similar to that observed during the progression
of neurodegenerative diseases.

RESULTS
In vivo fast axonal transport of active proteasomes in mouse
sciatic nerves
Local UPS-mediated degradation suggests that there are active
proteasomes at synapses (Bingol and Sheng, 2011; Yi and Ehlers,
2007), but how proteasome components arrive at neuronal termini

is unknown. To test whether neuronal proteasomes are
transported along axons in vivo, we performed staining of
short-term mouse sciatic nerve ligations to analyze representative

components of the complex. The accumulation of proteins at the
proximal or distal side of an obstructed nerve is indicative of
their anterograde or retrograde axonal transport, respectively
(Fig. 1A). After ligation, core (a and b) and regulatory (Mss1,

also known as PSMS2) subunits of the proteasome showed
significant accumulation at the proximal side of the ligation
compared with that in distal or unligated nerves (Fig. 1B,C).

Quantification of the accumulated integrated fluorescent
intensity, normalized to phosphorylated neurofilament staining,
revealed a twofold increase of proteasome subunits in proximal

ligated nerves compared with that in distal ligated nerves
(Fig. 1B,C). As a control for proximal accumulation, nerves
were stained for the transmembrane amyloid precursor

protein (APP), which moves in a net anterograde direction
(supplementary material Fig. S1). To determine further whether
proteasomes accumulate at the proximal side within axons, and
not through induced expression in glia, we examined nerve cross-

sections in ligated and unligated nerves. In unligated nerves, the
core b5 subunit of the proteasome was found in axons and
Schwan cells, as shown by co-staining for phosphorylated

neurofilament (an axonal marker) and the glial marker S100;
however, after ligation, a substantial accumulation of b5 was
observed within axons (Fig. 1D). Similar results were obtained

for the regulatory proteasome subunit Mss1 (Fig. 1E). To exclude
artifacts that can arise from glia-induced expression after nerve
trauma, two ligations were generated along the sciatic nerve.
Double-ligation experiments showed the proximal accumulation

of proteasome subunits only at the node closest to the cell body,
whereas proteasomes did not accumulate proximally to the
second node (Fig. 1H). This result confirms that axonal transport

mediates the increase of proteasome subunits and not the ligature
itself.

To gain insight about the functionality of accumulated

proteasome subunits in axons, we tested for the presence of
protein polyubiquitination as a canonical signal for degradation
after ligation (Bossy-Wetzel et al., 2004). Analysis by western

blotting of ligated nerve homogenates showed a large
accumulation of polyubiquitinated proteins at both proximal and
distal ligated nerves when compared with those from unligated
nerves (Fig. 1F). To determine whether the observed proximal

accumulation of proteasome subunits is associated with an increase
in protein degradation, we measured proteasome activity from
nerve homogenates using a fluorescence assay. Quantification of

the fluorescence released after proteasome-dependent peptide
hydrolysis revealed a significant increase in activity in the
proximal region compared with unligated nerve homogenates

(Fig. 1G). Taken together, these results suggest that proteasomes
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undergo fast axonal transport, and that this movement mediates the

accumulation of functional complexes that are involved in the
degradation of local polyubiquitinated proteins.

Fast and processive proteasome axonal transport in cultured
hippocampal neurons
Cargos transported along axons display unique distributions and
localizations that depend upon the motor molecules and their

dynamic properties. In agreement with previous studies (Mengual

et al., 1996), cultured murine hippocampal neurons showed a
diffuse distribution of the core proteasome subunits in cell bodies
(Fig. 2A), dendrites (Fig. 2B), axons (Fig. 2C) and growth cones
(Fig. 2D). To analyze their distribution and the axonal transport

properties of proteasomes in central neurons, we generated a
vector driving the expression of the mouse proteasome a4 core
subunit (PSMA4) fused to the yellow fluorescent protein (YFP)

Fig. 1. In vivo fast axonal transport of active proteasomes. (A) Proximal (PL), distal (DL) and unligated (UL) sides of the sciatic nerve used in staining and
western blots. (B,C) Confocal images of proximal ligated, distal ligated or unligated mouse sciatic nerves showing a-b or Mss1 proteasome subunits and
phosphorylated neurofilaments (p-NF). Scale bars: 50 mm. Quantification of a-b and Mss1 integrated fluorescent intensity from PL and DL nerves, normalized to
p-NF and taking UL as 1. **P,0.02, Student’s t-test, n54 experiments. (D,E) Cross-sections of UL and PL nerves showing b5 (D) and Mss1 (E) staining in axons
(p-nf) and Schwann cells (S-100). Arrows indicate accumulation of the b5 subunit and Mss1 at the PL in axons. Scale bars: 10 mm. (F) Western blotting of
homogenates from PL, DL and UL nerves showing polyubiquitylated proteins. Synuclein (Syn) was used as a loading control. APP and p-JNK were used as
proximal accumulation controls. (G) Proteasome activity in UL and PL nerve homogenates (40 mg) measured by the release of fluorescence (l380–460) after
peptide hydrolysis using a proteasome probe. **P,0.02, Student’s t-test, n53. (H) Images taken, by using a confocal microscope, of double-node experiments
on mouse sciatic nerves showing the staining of a-b proteasome subunits at locations proximal and distal from the first (I) and second (II) ligation nodes. Note the
accumulation of proteasome subunits only at the PLI side of the nerve.
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under the control of the cytomegalovirus promoter (CMV-a4-
YFP). The incorporation of fluorescently tagged a4 subunits
into assembled proteasome complexes was shown by co-

immunoprecipitation of a4–YFP with endogenous proteasomes
in transfected neuroblastoma (N2a) cells (Fig. 2E). To measure
axonal transport, we identified and selected axonal projections by

analyzing the localization of fluorescently tagged marker proteins
that had been transfected into the cells (Fig. 2F; supplementary
material Fig. S2A); polarized microtubule orientation in axons
was confirmed by expression of the microtubule cap protein EB3

(also known as Mapre3) tagged with red fluorescent protein
(EB3–RFP; supplementary material Fig. S2B,C). Continuous
live-imaging recordings at 125 mseconds (8 frames/second) in

hippocampal neurons that had been transfected with CMV-a4-
YFP allowed the generation of kymographs that revealed a
large amount of heterogeneous proteasome motion (Fig. 2G;

supplementary material Movie 1). Analysis of the kymographs
showed a4–YFP particles that had trajectories that resembled

random motion behavior with no overall movement; however, we
also observed clear processive trajectories that corresponded
to anterograde and retrograde axonal transport of a4–YFP

(Fig. 2H,I). Quantification of the a4–YFP processive puncta
revealed fast anterograde and retrograde average net velocities
that correlate with molecular motor-dependent axonal transport

(Fig. 2H,I).

High spatial- and temporal-resolution analyses identify three
different types of proteasome motion
To analyze further the heterogeneous motion of proteasomes in
the axon and to relate it to different distribution mechanisms, we
developed a high-resolution space- and temporal-tracking system.

We obtained highly detailed kymographs by increasing the
temporal resolution of the live-imaging recording to 20 mseconds
(50 frames/second) in hippocampal neurons that had been

transfected with CMV-a4-YFP (Fig. 3A; supplementary
material Movie 2). Single particles were tracked using an

Fig. 2. Axonal transport of a4–YFP proteasome subunits in axons. (A–D) Images of 10-day-old mature hippocampal neurons that show the distribution of a-
b proteasome subunits (yellow arrows) in cell bodies (A, map2), dendrites (B, map2), axons (C, p-nf) and growth cones (D, a5 subunit plus ubiquitin).
(E) Immunoprecipitation (IP) of the proteasome by using pan-antibody against a-b subunits from control (vector) or N2a cells that had been transfected with
CMV-a4-YFP. Control IPs were performed using nonspecific antibodies. IP eluates were probed using antibodies against YFP (a4–YFP) or the 20S proteasome.
(F) The setup used to record movies of anterograde and retrograde axonal transport in hippocampal neurons. To the right and left are plus- and minus-oriented
microtubules, respectively (see supplementary material Fig. S2). (G) Kymograph of time against distance obtained from a 30-second movie generated at 8
frames/second in an axon transfected with a4–YFP (supplementary material Movie 1). Scale bar: 20 mm. (H) Average proportion of a4–YFP particles moving in
an anterograde (ant), retrograde (ret) or random (ran) direction (left panel) and average net velocities for moving a4–YFP particles (right panel). n530 neurons,
638 particles. (I) Kymographs showing the heterogeneous behavior of moving a4–YFP puncta and examples of clear processive anterograde or retrograde
particles (arrows). Scale bars: 20 mm (A,G,I); 10 mm (B–D).
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algorithm developed to identify the position with a sub-pixel

resolution, and recovered trajectories were then cut into segments
of 100 data points (see Materials and Methods). The mean square
displacement (MSD) was computed for each segment using Eqn

1 and fitted to the empirical expression given by Eqn 2, as
described in Materials and Methods (Fig. 3B). Proteasome
trajectories were then classified as actively driven, diffusive or

confined according to the dependence of the MSD with time
(Fig. 3B). By using 500 MSDs obtained from more than 300
trajectories, we identified 20% of proteasome particles as

having an actively driven trajectory, 56% of particles exhibited
a diffusive-like motion and the remaining 24% of particles
displayed a confined proteasome motion (Fig. 3C).

To investigate further these three different types of proteasome

motion, we first determined the distributions of the segmental
velocities obtained for the actively driven anterograde and
retrograde proteasome trajectories. Each processive trajectory

was further divided into segments, and the mean velocity of the
segment was computed from the slope of the position against time
plot. We obtained a higher proportion of anterograde recovered

segmental velocities compared with retrograde ones (Fig. 3D). A
range of segmental velocities for anterograde and retrograde
proteasomes (Fig. 3E) were measured that are comparable to the
velocities reported for vesicles undergoing kinesin- and dynein-

mediated fast axonal transport (Reis et al., 2012). Diffusive-like
trajectories, characterized by a linear dependence of the
MSD with the time lag, allowed the calculation of a diffusion

coefficient of 0.058460.0056 mm2/second (mean6s.e.m.; Materials

and Methods) that is consistent with the molecular size of a

proteasome complex that diffuses in a viscous axonema (Bohn
et al., 2010; Popov and Poo, 1992). By contrast, confined
proteasome trajectories showed a plateau in the MSD plot

(Fig. 3B), which determines a confinement region of 0.726

0.03 mm in size (Materials and Methods). The density distribution
function obtained from confined single-particle trajectories showed

that the constraint exerted over the proteasome is less than that
exerted by elastic binding trapping (Jin et al., 2007), suggesting
that the movement of a confined proteasome is bound by a ‘cage’

(supplementary material Fig. S3A). Taken together, these results
reveal that there are three different modes of proteasome motion
and, more importantly, describe the processive movement of
particles that display distributions with high segmental velocities

that result from the fast axonal transport of proteasomes.

Knockdown of the kinesin-1 motor impairs fast axonal
transport of the proteasome
To test whether actively driven proteasomes depend on molecular
motor function, we knocked down kif5b, one of the three kinesin-

1 heavy chain subunits that has been shown previously to alter
certain cargos (Encalada et al., 2011), and analyzed proteasome
movement. Efficient knockdown of KIF5B was shown by western
blotting lysates from N2a cells transfected with an shRNA against

kif5b (shKif5b), when compared with control (Fig. 4A,B), and by
immunofluorescent staining of hippocampal neurons (Fig. 4C,D).
To study processive trajectories for a longer period of time,

we acquired movies at 8 frames/second. This rate allowed the

Fig. 3. High-resolution analysis of proteasome
trajectories revealed three patterns of proteasome
movement in axons. (A) Kymograph obtained from a
continuous movie (supplementary material Movie 2) recording
at 20 mseconds/frame (50 frames/second) showing detailed
trajectories of a4–YFP particles. Scale bar: 10 mm. (B) Upper
panel: image crops showing high-magnification kymographs
(100 data point sets) corresponding to proteasome particles
undergoing active transport, random diffusion and confined
motion, respectively. (Arrows indicate particle tracks.) Scale
bars: 2 mm. Lower panel: recovered trajectories from
kymographs shown in the upper panel with their
corresponding mean square displacement (MSD). MSD data
was fitted to an anomalous model MSDta. The corresponding
fittings are shown in red (a52, 1 and 0.4). Insets within each
graph show the recovered trajectories as a function of space
versus time. Horizontal and vertical scale bars in insets
represent 0.5 seconds and 2 mm, respectively. (C) Proportion
of active transport, diffusive movement and confined motion
obtained from 670 particle segments (100 data set points)
generated using 317 single proteasome tracked particles from
87 imaged neurons. Results taken from five transfection
experiments. (D) The proportion of anterograde versus
retrograde segmental velocities. n5259. (E) The distribution
of segmental velocities (%) obtained from proteasome
particles undergoing anterograde and retrograde active
axonal transport.
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recovery of long-range transport of the proteasome from neurons
that had been co-transfected with a4–YFP and shKif5b or a control
shRNA (Fig. 4E; supplementary material Movies 3, 4). Moving

proteasome particles were tracked by using the algorithm, and the
MSDs were calculated for the trajectories of particles in control or
shKif5b-transfected cells to discard segments without active

transport. Hippocampal neurons with reduced levels of KIF5B
exhibited a significant reduction in the proportion of proteasomes
that had anterograde segmental velocities, consequently the

proportion of proteasomes that showed retrograde velocities
increased compared with control (Fig. 4F). Interestingly, this
change in the segmental velocity flux was observed because of a

selective and significant reduction in the density of anterograde
proteasome segments, whereas the average retrograde number was
not significantly impaired (Fig. 4G). We observed a clear change in
the anterograde flux, but the average segmental velocity of

anterograde proteasomes was similar between control and
shKif5b-transfected cells; by contrast, a small increase in the
average retrograde segmental velocities was observed in

cells transfected with shKif5b (Fig. 4H). To test for an interaction
between axonal proteasomes and moving kinesin-1 cargos,
hippocampal neurons that had been transfected with a4–YFP were

stained with an antibody against KIF5B. Imaging of mature
axonal projections, by using confocal microscopy, showed a few
proteasome particles that consistently colocalized with KIF5B
staining (supplementary material Fig. S3B). Taken together, these

results reveal kinesin-1, and in particular KIF5B, as one of the
microtubule-associated molecular motors that contribute to the fast
anterograde axonal transport of the proteasome complex.

Neuronal proteasomes associate with membranes and
fractionate with synaptosome vesicles
Little is known about how the proteasome is shuttled within

neurons; however, we observed proteasome particles moving
with fast and processive velocities that were partially dependent
upon the function of kinesin-1, which is reminiscent of

intracellular-membrane-associated movement. To determine
whether proteasomes are associated with membranes in vivo, we
fractionated mouse brain homogenates by using bottom-loaded

continuous sucrose gradients to identify proteins associated with
membranes. Bona fide soluble proteins (ubiquitin) remained at the
bottom of the gradient, whereas transmembrane proteins [APP,

synaptotagmins and syntaxin 13 (STX12) fractionated at different
densities (Fig. 5A). The soluble and membrane-bound dynein
heavy chain (DYNC1H1) motor showed a wide distribution along
fractions (Fig. 5A). As expected, a proportion of core a5 (PSMA5),

b5 (PSMB5) and regulatory Mss1 proteasome subunits remained in
soluble fractions, whereas a substantial percentage (ranging
from 20% to 30%) separated within fractions 5 to 13, which are

enriched in membrane-associated proteins (Fig. 5B). The similar
fractionation pattern displayed for the different subunits suggests
that proteasomes are tightly assembled and associated with

membranous organelles.
As similar patterns of fractionation were displayed by

proteasome subunits and the synaptic marker synaptotagmin, we
tested whether proteasomes associate with synaptic membranes.

Synaptosomes that had been purified from adult mouse brains
showed the presence of a5 and b5 core proteasome subunits from
the 20S complex in the synaptosome-enriched fraction (LP2)

Fig. 4. Reduction of the KIF5B motor protein impairs
proteasome axonal transport. (A) Western blotting of the KIF5B
protein from N2a cells transfected with a control shRNA (shControl)
or shRNA against kif5b (shKif5b) for 48 hours. Tubulin was used as
a loading control. (B) Integrated optical density (OD) quantification
for normalized KIF5B protein levels in shControl- and shKif5b-
transfected cells from four independent experiments. *P,0.05,
Student’s t-test. (C) Staining with an antibody against KIF5B shows
the level of protein in untransfected (control) hippocampal neuron
(yellow arrow) compared with cells transfected with shKif5b (white
arrow). (D) Integrated intensity (AU, arbitrary units) quantification in
control neurons compared with those transfected with shKif5b.
n510 neurons. *P,0.05, Student’s t-test. (E) Kymographs
generated from 30-second movies (supplementary material Movies
3, 4) showing a4–YFP movement in control (a4–YFP/shControl)
and shKif5b-transfected cells (a4–YFP/shKif5b). Scale bars:
20 mm. (F) The proportion of anterograde versus retrograde
segmental velocities. *P,0.05, Mann–Whitney test, n5268
particles in control cells, 141 particles in shKif5b-transfected cells.
(G) The mean total (Tot.), anterograde (Ant.) and retrograde (Ret.)
density of actively transported proteasomes expressed as seg-
ments in 100 mm of axonal length. **P,0.02, Mann–Whitney test.
(H) Anterograde and retrograde mean segmental velocities for a4–
YFP and shControl, and a4–YFP and shKif5b cells. n55
experiments. Kymographs analyzed n551 segments from control
cells, 45 segments for shKif5b-transfected cells. *P,0.05.
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(Fig. 5C,D). As expected, we also observed enrichment in this

fraction of synaptic transmembrane proteins – synaptotagmin and
synaptophysin (SPH, also known as SYP) – as well as kinesin and
dynein motors (Abe et al., 2009) (Fig. 5C,D). The cytosolic protein

GDP dissociation inhibitor (GDI, also known as GDI1) and free
ubiquitin remained soluble and detected at very low levels in
LP2 (Fig. 5C,D). Interestingly, the Mss1 subunit from the 19S

regulatory particle was present in LP2, whereas the PA28a
(PSME1) subunit from the ubiquitin-independent proteasome was
not (Fig. 5C), suggesting that the 26S complex, which is associated
with polyubiquitin-dependent degradation, is localized to

synaptosomal domains. Taken together, these results indicate that
proteasomes associate with membranes that can mediate their
distribution throughout the neuron.

Proteasome processive particles ‘hitch-hike’ on multiple
membranous organelles for their coordinated fast axonal
transport
To test whether the profile of moving proteasomes depends on the
interaction with one or many subcellular organelles, we acquired
sequential movies that simultaneously monitored fluorescently

tagged a4 proteasome subunits and fluorescent vesicle markers
in neurons. Owing to the presence of proteasome subunits in
synaptosomes, and to test whether proteasomes are co-transported

with synaptic components, we co-transfected cells with vectors
encoding the a4 subunit tagged with mCherry (a4–Cherry) and
synaptophysin fused to GFP (SPH–GFP) (Fig. 6A; supplementary

material Movie 5). Movement of both tagged proteins was
monitored by recording double-color movies, recording sequentially
in the red (a4–Cherry) and then green (SPH–GFP) channel (back

and forth, 15 seconds in each channel). Clearly observable
processive trajectories that were common to both proteasomes
and synaptophysin were identified and quantified, revealing an

association between processive proteasomes and SPH-containing

vesicles (Fig. 6B,I). Because a small percentage of moving
proteasomes were associated with synaptophysin, we tested whether
proteasomes could also associate with other Golgi-derived mem-

branes, such as the APP vesicle (Fig. 6C; supplementary material
Movie 6). Similar to SPH vesicles, APP vesicles that were associated
with moving proteasomes were found to move in both an

anterograde and retrograde direction (Fig. 6D,I). To test further
whether other membranes, such as the endolysosome vesicles,
correlate with proteasome movement, we transfected neurons with
a4–YFP and stained lysosomes with a live-cell tracer (lysotracker-

red, Fig. 6E; supplementary material Movie 7). Interestingly, we
found a higher amount of a4–YFP moving with lysosomes in a
retrograde direction compared with a4–YFP and lysosomes

moving in an anterograde direction (Fig. 6F,I). Finally, proteasome
movement was analyzed together with a mitochondria tracer
(mitotracker-red, Fig. 6G; supplementary material Movie 8), which

showed a4–YFP and mitochondria with common trajectories
(‘shared particles’) in both an anterograde and retrograde direction
(Fig. 6H,I). Controls that were performed prior to movie acquisition
showed no bleed-through of the fluorescent labels in the red or

green channel, confirming that cargos moving within the tested
organelles contain proteasomes (supplementary material Fig. S4A).
Quantification of all proteasome movement events observed in the

sequential double-channel movies revealed that 49% of proteasomes
were associated with lysosome vesicles, synaptophysin-containing
vesicles, APP vesicles or mitochondria (Fig. 6J). Interestingly, 51%

of the processive movement of proteasomes is unaccounted for by
the membrane markers and organelles analyzed here, which suggests
that other organelle compartments are also involved in proteasome

transport (Fig. 6J). Potentially, a high association of a4–YFP
with lysosomes could be interpreted as the protein being
turned over by lysosomes. To exclude this possibility, we treated

Fig. 5. Neuronal proteasomes associate
with membrane and fractionate with
synaptic vesicles. (A) Bottom-loaded
sucrose density fractions of brain
homogenates. The separation of the
proteasome a5, b5 and Mss1 subunits
compared with soluble ubiquitin and
membrane-associated proteins [APP,
synaptotagmin (STG) and syn13]. (B) The
relative protein distribution plotted from the
sucrose density fractionation experiments
normalized to the total protein. Note the
proteasomes in the soluble (1–3) and low-
density (5–13) fractions. (C) Synaptosome
purification from mouse brain cortices loaded
as homogenate (H1), soluble (S1, S2),
plasma membrane (LP1) and synaptosome-
enriched (LP2) fractions. a5, b5, Mss1 and
PA28 subunits of the proteasome. Synaptic
proteins, STG and SPH; molecular motors,
KHC and DHC; and soluble proteins, GDI
and ubiquitin. (D) The proportion of b5, STG
and GDI protein enriched in the LP2 fraction
(blue) compared to other fractions.
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a4–YFP-transfected N2a cells with the lysosome inhibitor NH4Cl
(50 mM). As expected, full-length APP accumulated after treatment,
but a4–YFP did not (supplementary material Fig. S4B), suggesting
that a4–YFP is not being degraded by lysosomes under these test

conditions. Taken together, these results suggest that actively
transported proteasomes travel along the axon ‘hitch-hiking’ on
multiple intracellular membranes for their delivery to distant

neuronal locations.

DISCUSSION
Dysfunction of the UPS has been implicated in the abnormal
accumulation of proteins that is observed in many
neurodegenerative diseases (Bingol and Sheng, 2011;

Rubinsztein, 2006). Axonal transport by the regulated action of
molecular motors controls synaptic homeostasis through the
delivery of cargo to distant locations (Goldstein, 2003) and by

supporting the local protein clearance pathways. The experiments
presented here constitute the first evidence that a fraction
of neuronal proteasomes undergo fast microtubule- and
motor-dependent transport with dynamics that correspond to

membrane vesicle movement. Moreover, our results reveal three
independent modes of proteasome motion by which proteasomes
are widely distributed throughout neurons.

Cytoskeletal proteins are transported in axons by intracellular
mechanisms, which implies slow component velocities of 1–
10 mm/day (Lasek et al., 1984). The movement of these and

many cytosolic proteins has been suggested to depend on the
interaction with fast motors for their stochastic movement (Scott
et al., 2011). Recently, the fast movement of a carrier, now

identified as moving vesicles, has been suggested to drive the
anterograde slow axonal transport of the synapsin proteins,
suggesting that there are many modes for the movement for

Fig. 6. Neuronal proteasomes
associate with intracellular
membrane organelles for movement.
(A) Images from co-transfected neurons
showing axons containing a4–Cherry
(red) proteasome subunits and
synaptophysin–GFP vesicles (arrows,
SPH–GFP, green). Axons are oriented
with cell bodies to the left and the
synapse to the right. (B) Kymographs
obtained from 45-second (8 Hz) double-
color movies recorded in the red then
green, then red channel (15 seconds
each) corresponding to a4–Cherry (red)
and SPH–GFP (green). Black arrows
correspond to moving particles sharing
the same trajectory (shared particles).
(See supplementary material Movie 5.)
(C,D) Images and kymographs from
double-color movies recorded in similar
conditions to A and B showing the
shared processive movement of a4–
Cherry and APP–YFP vesicles (arrows)
(supplementary material Movie 6).
(E,F) Images and kymographs from
double-color movies recorded in the
green then red, then green channel
showing the shared movement of a4–
YFP (green) and lysosome vesicles
(arrows, lysotracker-red) (supplementary
material Movie 7). (G,H) Images and
kymograph from a double-color movie
recorded in the green then red then
green channel showing the shared
movement of a4–YFP (green) and
mitochondria (arrows, mitotracker-red).
Scale bars: 20 mm. (See supplementary
material Movie 8). (I) Quantification of
shared green and red particles moving in
an anterograde (Ant) or retrograde (Ret)
direction for a4–Cherry with SPH–GFP
(SPH), a4–Cherry with APP–YFP (APP),
a4–YFP with lysotracker (Lyso) and a4–
YFP with mitotracker (Mito). (J) The
proportion of moving proteasomes that
can be independently associated with
synaptic vesicles (SPH), APP,
lysosomes (Lyso) or mitochondria (Mito)
from the total proteasome processive
movement. Note the remaining 51% that
moves associated with unknown cargos.
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soluble proteins (Tang et al., 2013). In this study, we tested
whether the neuronal proteasome complex relies on different

axonal transport mechanisms for movement in axons. Mouse
sciatic nerve ligation experiments showed the accumulation of
core and regulatory proteasome subunits at proximal ligation
sites, indicating fast axonal transport of the 26S degradation

complex in vivo. Moreover, protein polyubiquitination was
increased after ligation, and enhancements in the proteasome
degradation activity were mediated by the specific transport of

the proteasome complex, and were not due to the ligation itself.
These results highlight the relevance of a proteasome delivery
system that, when impaired, can be implicated in the local

ubiquitin-dependent protein accumulation observed after axonal
injury or in pathological dystrophies (Hoopfer et al., 2006).

Previous experiments showing synaptic remodeling mediated

by polyubiquitinated protein tagging and degradation imply a
regulated mechanism of proteasome delivery in neurons (Bingol
et al., 2010; Djakovic et al., 2009; Ehlers, 2003). Through
fluorescent proteasome live-imaging experiments, we described

the axonal motion properties of fluorescently tagged a4
core subunits in neurons of the central nervous system.
Peripheral nerves showed a significant proximal accumulation

of proteasomes with almost no distal accumulation, whereas
central neurons displayed a similar proportion of a4 puncta
moving in a processive manner in both anterograde and

retrograde directions. This initial difference in proteasome
dynamics might be explained by the distinct transport
properties displayed between peripheral and central neurons,

and the methods that suggest long-range accumulation in vivo

during nerve ligation in mice compared with short high-resolution
detection by live imaging in culture. The development of a high-
resolution imaging setup and an accurate tracking system allowed

the identification of at least three modes of proteasome motion in
axons. We described a proportion of processive proteasome
trajectories that display a superdiffusive motion where MSD

dependence arises at values higher than 1.5 (Bruno et al., 2009;
Brunstein et al., 2009; Robert et al., 2012). The range of
velocities observed in this pattern of movement suggests that fast

axonal transport of proteasomes is associated with organelles or
vesicles that are transported by molecular motors. MSD analysis
also revealed a highly represented diffusive behavior for the
proteasome with a diffusion coefficient consistent with the

proteasome molecular size in a medium that is more viscous than
water, such as the axonema (Luby-Phelps, 2000; Popov and Poo,
1992). This important pattern of motion sustains the

homogeneous distribution of proteasomes along the axon;
however, it is insufficient to support the long-range transport of
proteasomes to distant neuronal locations. Confined trajectories

fitted well to a model where the constraint of particles is less than
that exerted by elastic trapping (Jin et al., 2007), suggesting that
this movement is limited in local cages of ,700 nm during the

confined movement pattern. Further analyses are required to
determine the origin of this trapping phenomenon and the linker
that mediates the ‘waiting time’ that proteasomes spend in this
non-transport mode.

In central neurons, fast activity-dependent recruitment of
proteasomes to dendritic spines has been suggested to be a
regulated process that is involved in protein degradation (Bingol

and Schuman, 2006). Recent experiments using yeast two-hybrid
assays and immunoprecipitations in cells have described an
association of proteasomes with the motor machinery that is

mediated by Ecm29 (Gorbea et al., 2010). To test the role of

kinesin-1 in the long-range movement of proteasomes in axons,
we knocked down expression of kif5b using a specific shRNA

(Encalada et al., 2011). The high-accuracy tracking of processive
trajectories allowed the determination of segmental velocities for
actively transported proteasomes. Interestingly, this analysis
yielded detailed information about the selective reduction in the

density of anterograde segmental velocities exerted by kinesin-1
defects, which suggests that the overall transport flux was
impaired, and not the properties of proteasome movement. This

can be explained by a reduction of the number of active kinesins
involved in transport upon treatment with shKif5b but that the
biophysical properties of active kinesins are not affected. The

mean retrograde velocity, which is driven by dynein, is enhanced
in cells treated with shKif5b and can be explained by a recent
report that showed that dyneins work collectively within cells and

that their velocity is sensitive to opposing load (Rai et al., 2013).
KIF5B knockdown showed that proteasome dynamics have a
partial dependency on kinesin-1 and are consistent with the idea
that the 26S proteasome is ‘hitch-hiking’ on different cargos in

order to move. Interestingly, our results fit a model in which
cytosolic proteins are transported by different types of movement
– including the contribution of vesicle carriers under fast axonal

transport (Scott et al., 2011; Tang et al., 2013). Furthermore,
by high-resolution imaging and single-particle tracking, we
identified and characterized diffusive modes of transport and

actively driven transport that mediate the distribution of
proteasomes within axons. We showed different types of fast
moving vesicles and membrane organelles that drive the active

transport of proteasomes. In addition, within our characterization,
we identified the presence of confined proteasomes that could be
interpreted as proteasomes that are trapped during a process that
might involve the specific degradation of polyubiquitinated

proteins.
Different lipid interaction experiments performed in yeast

and in vitro suggest that proteasome complexes can associate

with membranes (Kalies et al., 2005; Newman et al., 1996).
Indeed, our current findings of similar fractionation profiles for
different proteasome subunits in sucrose gradients suggest

that assembled complexes are associated with membranes. In
addition, synaptosome vesicle enrichment showed the presence of
subunits from the 20S core and the 19S regulatory lid, suggesting
that the ubiquitin-dependent 26S proteasome can associate

with synaptic vesicles. To characterize further the membrane
compartments in which proteasomes with processive trajectories
can take over the transport processes, we recorded sequential

movies in two fluorescent channels to find proteasome
trajectories that were shared with different moving cargos.
Despite the amount of diffusive proteasomes, interestingly, we

found that some processive proteasome movement was shared
with synaptic proteins, Golgi-derived APP-containing vesicles,
endolysosomal vesicles and mitochondria. From our data, we

conclude that lysosomes contribute primarily to the retrograde
transport of the proteasome from synapses to cell bodies, whereas
similar proportions of anterograde and retrograde movement
were observed during the association of proteasomes with APP,

synaptophysin or mitochondrial cargos. However, the cargo
interactions that correspond with the remaining 50% of moving
proteasomes still need to be identified to better explain the overall

proteasome flux. In contrast with the slow axonal transport rates
expected for large cytosolic protein complexes (Terada et al.,
2010), here we describe the novel and surprising finding that

the proteasome barrel is transported along axons by means of
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‘hitch-hiking’ the fast and membrane-associated axonal transport
mechanism. These results could also be interpreted as the

transport of some membranous cargos along axons requiring
co-transport with an assembled and functional proteasome
complex. The association between proteasomes and moving
cargos could be useful to degrade specific proteins during

transport or upon arrival at the destination and, therefore, be
distinct from cargos without proteasomes. The possibility that
proteasome–membrane interactions mediate fast axonal transport

of proteasomes in mobile vesicle units suggests that there is a
direct link between proteasomes and membranes that requires
further investigation. Modification of such a linker should change

the mobility and/or distribution of the proteasome complex in
polarized cells.

We have previously described that transport defects mediate

the early neuronal pathways that lead to abnormal protein
accumulation, protein deposition and enhanced axonopathies in
different mouse models of neurodegeneration (Falzone et al.,
2010; Falzone et al., 2009; Stokin et al., 2005). Similar transport

defects can be further increased by proteasome inhibition (Tai
et al., 2012; Tseng et al., 2008), which suggests that the neuronal
protein degradation pathway closely interacts with the transport

system. Taken together, our results reveal at least three different
modes of transport for the proteasome and further provide
evidence that assembled and functional proteasomes interact with

membrane cargos and molecular motors for fast axonal transport.
We propose a novel mechanism for the distribution and delivery
of the 26S proteasome to distant neuronal locations that, when

impaired, can lead to abnormal protein degradation phenotypes
that are observed in many neurodegenerative diseases. We
anticipate that these studies will facilitate our understanding of
the defects in protein degradation that might arise because of

impairments in proteasome mobilization.

MATERIALS AND METHODS
Mice
C57/BL6 mice were used to generate primary hippocampal cultures and

sciatic nerve ligations. The mice were housed in temperature- and light-

dark-controlled rooms under approved university protocols (UCSD-

IACUC; UBA-456/2010).

Vectors
To generate a4 proteasome subunit cDNA, mRNA from mouse brain

was obtained by RT-PCR using a first strand synthesis kit (Invitrogen).

The a4 subunit cDNA was amplified by using PCR with the primers

59-GCGCGATATCGCCACCATGAGCTACGACCGCGCCATCACC-39

(including EcoRV and Kozak sites) and 59-GCGCGCGGCCGCAGATG-

CTTTCTTTTGCTTCTTCTTTTC-39 (containing the NotI site). The a4

subunit sequence, without a stop codon, was subcloned in-frame with YFP

into the pcDNA3-CMV-YFP plasmid to obtain the vector pcDNA3-CMV-

a4-YFP. This vector was used to replace YFP with the mCherry

fluorescent marker fused to the a4 subunit by using a subcloning

strategy that utilized the NotI and ApaI restriction sites. pCDNA-CMV-

EB3-RFP was kindly provided by Shuo-Chien Ling (UCSD, La Jolla, CA).

pcDNA3-mCherry was provided by Nathan Shaner (UCSD, La Jolla, CA).

pSPH-GFP was a kind gift from Louis Reichardt (UCSF, San Francisco,

CA). Three shRNA–mCherry sequences against kif5b, from a kinesin

lentiviral mini-library, in a pLL3.7 GW lentiviral vector with gateway

entry modifications and an mCherry marker, were tested for reduction of

levels of the KIF5B protein (Encalada et al., 2011).

Antibodies
Monoclonal antibodies against the following proteins were used:

kinesin heavy chain (KHC-H2, Millipore), 20S proteasome subunit a5

(Biomol), tubulin (DM1a, Covance), ubiquitin (FK2, Biomol), ubiquitin

(Chemicon). Polyclonal antibodies against the following proteins were

used: proteasome a-b (pan-antibody recognizing subunits a5 or a7, and

b1, b5 and b7, Biomol), b5, Mss1, PA28a (Biomol); YFP (Molecular

Probes); APP, map2, tau, a-synuclein (Chemicon); KIF5B [provided by

Gorazd B. Stokin (UCSD, La Jolla, CA)]; GDI, SPH, synaptotagmin

(Synaptic System); dynein heavy chain, kinesin light chain 1 (Santa Cruz

Biotechnology), syntaxin 13 (Bioss) and pJNK (Cell Signaling

Technology). Secondary antibodies were: goat Alexa Fluor 568

and 488 anti-mouse or -rabbit IgG (Invitrogen). Horseradish-

peroxidase-conjugated antibodies (Jackson Laboratories) were used in

western blots.

Sciatic nerve ligation
Mouse sciatic nerves were ligated unilaterally at the hip, one or two

nodes apart, by using surgical suture under isofluorane anesthesia.

Mice were allowed to recover for 6 hours and then killed to obtain

ligated and unligated nerves. For immunohistochemistry, nerves were

embedded by using Tissue-Tek and then frozen by using a cryostat for

sectioning later. For biochemical analyses, equal lengths of proximal,

distal and unligated nerves were homogenized in sample buffer, and

equal protein amounts were analyzed by using SDS-PAGE. All

surgical procedures performed in adult C57/BL6 mice were approved

by the University of California at San Diego Animal Committee

(IACUC).

Immunofluorescent staining and quantification
Sciatic nerves were dissected and post-fixed 2 hours in 4%

paraformaldehyde in PBS. Nerves were incubated overnight in 20%

sucrose, embedded in Tissue-Tek Optimum Cutting Temperature (OCT)

medium and frozen in dry-ice-cooled methanol. Serial 15-mm cryostat

sections were cut and mounted onto coated slides (Fisher Scientific).

Sections were permeabilized and blocked with 10% goat serum, 0.1%

Triton X-100 in PBS for 30 minutes and incubated with the indicated

primary antibodies overnight at 4 C̊. Samples were then incubated

with Alexa-Fluor-conjugated secondary antibodies for 3 hours at room

temperature. Low-resolution images were acquired by using a 206 lens

(NA: 0.75) on a Nikon TE2000 microscope. Integrated fluorescence

intensity measurements were extracted from images obtained under

similar imaging conditions comparing equal areas of proximal, distal and

unligated nerves, and normalized to the staining for phosphorylated

neurofilaments. Normalized proteasome fluorescence intensity was

plotted relative to the unligated condition. High-resolution cross-section

images were observed by using a 606 or 1006 lens (NA: 1.40) on an

Olympus FV1000 confocal microscope.

Proteasome activity assay
Quantification of proteasome activity from extracts was measured by

fluorogenic peptide hydrolysis (N-succinyl–Leu-Leu-Val-Tyr–7-amino-

4-methylcoumarin, Biomol). Fluorescence measurements corresponding

to proteasome activity (l380–460) were calibrated using a range of 5

to 80 mg of total protein. Protein homogenate (40 mg) from proximal

or unligated nerves was used to evaluate proteasome-dependent

hydrolysis.

Immunoprecipitations
Controls or N2a cells transfected with pcDNA3-CMV-a4-YFP were

homogenized in binding buffer (Tris-HCl 150 mM, NaCl 50 mM, NP40

0.1%, pH 7.5 and protease inhibitors) on ice and centrifuged for

10 minutes at 12,000 g at 4 C̊. Protein content was quantified by using

2 ml of supernatant in a bicinchoninic acid assay (BCA, Pierce). 500 mg

of protein was pre-cleared with agarose beads and then incubated with

the antibody against the a-b proteasome subunits overnight at 4 C̊.

Protein-G–agarose beads that had been pre-washed overnight were

incubated with the homogenate fraction plus primary antibody in binding

buffer for 3 hours at 4 C̊. Beads were pelleted down and washed three

times for 20 minutes with binding buffer and four times with PBS. Bound

material was eluted by boiling beads in 1.56 sample buffer for

10 minutes and loaded in SDS-PAGE gel.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 1537–1549 doi:10.1242/jcs.140780

1546



Jo
ur

na
l o

f C
el

l S
ci

en
ce

Primary hippocampal cultures and N2a cells
Culture of hippocampal cells was as described previously (Falzone and

Stokin, 2012). Briefly, newborn hippocampal brain regions from C57/

BL6 mice were dissected on postnatal day 1. Hippocampi were incubated

in a 0.22-mm-filtered mixture of 45 U of papain in PBS enriched with

0.05% of DNase for 20 minutes at 37 C̊ and then triturated by gentle

pipetting in 10% fetal bovine serum (FBS) in Dulbecco’s modified

Eagle’s medium. Cells were grown in 500 mM L-glutamine and

Neurobasal medium supplemented with B27 on poly-D-lysine-coated

coverslips at 37 C̊ under 5% CO2. Neurons transfected using

Lipofectamine 2000 (Invitrogen) between days 7–10 for 16–20 hours

were used for movie acquisition. Mouse neuroblastoma N2a cells

(American Type Culture Collection) were propagated using 0.25%

trypsin and grown at 37 C̊ under 5% CO2 in Dulbecco’s minimal

essential media supplemented with 10% FBS, 1% penicillin and

streptomycin, and 1% glutamax. N2a cells were transfected using

polyethylenimine using a 2:1 ratio PEI:DNA following standard

protocols.

Movie acquisition and kymograph analysis
Imaging and kymograph analysis was as described previously (Falzone

and Stokin, 2012). Briefly, a4–YFP movement in neurons was recorded

by using an inverted epifluorescent microscope (Olympus IX81)

connected to a CCD camera (Olympus DP71/12.5 megapixels) and

driven by a dynamic positioning. Cultures were kept under a 606 lens

(NA: 1.40) at 37 C̊ using a heating stage and under 5% CO2 by using a

CO2 chamber (Olympus). At 16–20 hours after transfection, cells were

recorded. Directionality was determined by tracking axons at distance (2

fields) from cell bodies and imaging was performed away from cell

bodies and projection tips. The pCMV-EB3-RFP vector was used to

confirm plus-end-directed polymerization of the microtubules in axons

(supplementary material Fig. S2). Continuous 30-second stacks (224

frames) at 125 mseconds/frame rate (8 Hz) were collected for a4–YFP.

Sequential double-color movies were generated under green and red

filters for 15 seconds each for a4–YFP with mitotracker (Invitrogen) and

a4–YFP with lysotracker (Invitrogen), or a4–Cherry with APP–YFP and

a4–Cherry with SPH–GFP. Shared particles were identified as those

particles that moved in the green channel and continued in the red

channel and then appeared back in the green channel with the same

direction and speed. These particles were then quantified. Pixel size was

adjusted to 0.13 mm. Kymographs were plotted with Image J using the

multiple kymograph plug-in, and average net velocities, distance and

directionality were extracted for analyses. High-resolution movies were

recorded using a 1006 lens (NA: 1.40) and a CMOS camera (Hamamatsu

ORCA/Flash 2.8 megapixels) driven by HCImage controller (Hamamatsu

Photonics, Japan). Continuous 10-second stacks (500 frames) at a rate of

20 mseconds/frame (50 Hz) were collected for a4–YFP. Pixel size was

adjusted to 0.143 mm. Kymographs were plotted with ImageJ using the

multiple kymograph plug-in and processed using MATLAB routines

(The Mathworks, Natick, MA).

High spatio-temporal tracking and analysis of trajectories
A tracking algorithm was developed to recover trajectories of fluorescent

proteasomes with a robust signal-to-noise ratio of .4 from kymographs

with an error ,20 nm. A rectangular region of interest (ROI) was

selected, which could contain more than one particle. After that, the

algorithm analyzes the first line of ROI within the kymograph,

corresponding to the intensity profile along the axon, and searches for

the maximum of intensity of the profile using a neural network

smoothing procedure. The algorithm then goes to the next line of the

ROI and searches the for the new maximum nearby. This procedure

continues until the entire ROI is analyzed. The coordinates of the particle

are recovered with subpixel resolution. In cases where the tracking was

lost owing to crowding or enhanced background noise, the tracking was

discarded. For each recovered trajectory, the mean square displacement

(MSD) was calculated as follows:

MSD tð Þ~S x tð Þ{x tztð Þð Þ2T, ð1Þ

where x is the coordinate of the proteasome along the axon, t and t are the

absolute and lag times, respectively, and the brackets represent the time

average. This calculation was performed for t ,10% of the total time of

the trajectory (Saxton and Jacobson, 1997). The MSD data were fitted

with an anomalous diffusion model:

MSD~AtazB, ð2Þ

where A depends on the motion properties of the particle and B is the

residual MSD (Brunstein et al., 2009; Nelson et al., 2009). The

exponent a can take values between 0 and 2 (Brangwynne et al., 2009;

Bruno et al., 2009). Trajectories were classified as actively driven

(a.1.5), diffusive (0.9,a,1.1) or confined (a,0.5) depending on the

value of the exponent obtained from the fitting of Eqn 2 to the MSD

data. Trajectories with a values that did not fulfill these criteria were

discarded. Segmental velocities were determined from actively driven

trajectories that were further divided into segments of 20 points. A

linear regression of the position versus time plot was performed, and

the segmental velocity was computed from the slope and included

if the value r2.0.75 (Levi et al., 2006). The diffusion coefficient (D)

for the proteasome was obtained from diffusive trajectories with

MSDs scaling to a lineal regression considering the slope equal

to 2DC. Theoretical D in water was calculated by: D5kT/6phr,

considering the proteasome radius as 14.72 nm (Bohn et al., 2010).

The size of the region of confinement (Rc) was determined as:

Rc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SMSD(tp)T{MSD(0)

p
where SMSD(tp)T is the value of the

MSD averaged for all times tp belonging to the plateau and MSD(0) is

the value of the MSD for t?0.

Synaptosomes
Purification of synaptosomes has been described previously (Abe et al.,

2009). Briefly, homogenized mouse brain cortices treated at 4 C̊

(0.3 M sucrose, 4 mM HEPES pH 7.5 and protease inhibitors) were

centrifuged for 10 minutes, 800 g, to obtain a P1 pellet and S1

supernatant. P2 and S2 were obtained by centrifuging S1 for

15 minutes at 9200 g. A similar procedure was repeated to obtain

P29 which was then subjected to hypotonic shock with nine volumes of

cold water. The solution was exchanged into 4 mM HEPES pH 7.5.

Synaptic vesicle (LS1) and plasma membrane (LP1) fractions were

obtained by centrifugation, 20 minutes at 25,000 g. The synaptosome

fraction (LP2) was obtained by sedimenting LS1 on a 38% sucrose

cushion, 2 hours at 165,000 g.

Sucrose density gradient
Briefly, cells harvested in cold PBS with protease inhibitor were

centrifuged for 5 minutes at 2000 g at 4 C̊. The pellets were re-suspended

with a Teflon glass potter in sucrose buffer (8% sucrose, 4 mM

HEPES, EDTA 2 mM, EGTA 2 mM pH 7.5 and protease inhibitors) and

centrifuged for 10 minutes at 12,000 g. The supernatant was mixed with

an equal volume of 62% sucrose buffer and was then bottom loaded, and

2.5 ml of 35%, 25% and 8% sucrose were sequentially added.

Continuous gradients were generated by centrifugation for 16 hours at

100,000 g at 4 C̊. Fractions of 1 ml were methanol and chloroform

precipitated and re-suspended in sample buffer.

Particle density distribution function analysis for confined
trajectories
Particle density distribution function (PDDF) distinguished three different

models of confinement: (1) a harmonic potential U(r)5Uo r2, where

particles are bound by a spring-like force-producing mechanism;

(2) a cone potential U(r)5Uo r, where particles are trapped by a

softer potential than that of the harmonic one; and (3) a r4 potential

U(r)5Uo r4, which is harder than the spring potential where U(r) is

the potential function, r the radius from the potential origin and Uo

the potential strength. Thus, the normalized PDDF is given by:

PDDF(r)/PDDF(0)5e2U(r)/KBt where KB is the Boltzmann constant

and t is the absolute temperature. The PDDF was calculated for the

position data as: PDDF(x)5N(x)/Dx where Dx is the distribution

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 1537–1549 doi:10.1242/jcs.140780

1547

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.140780/-/DC1


Jo
ur

na
l o

f C
el

l S
ci

en
ce

resolution and N(xo) is the number of events. Distribution was

normalized by PDDF(0) for nonlinear least squares regression of

Boltzmann distribution functions.

Statistical analysis
Values are expressed as means6standard error of the mean (s.e.m.) for

the indicated number of independent experiments or corresponding

particles (n). The normal distribution of the samples was assessed prior

to analysis of significance. A two-tailed Student’s t-test was used to

compare differences between groups. A nonparametric Mann–Witney

test was used when samples did not reach normality. Statistical analyses

were performed using Graph-pad or MATLAB software.

Acknowledgements
We thank Fernanda Ledda (IBCN, Buenos Aires, Argentina), Gustavo Paratcha
(IBCN, Buenos Aires, Argentina) and Gorazd Stokin for helpful discussion on data
interpretation and presentation; Elizabeth Roberts and Andrea Pecile for their
excellent technical assistance, Shuo-Chien Ling for providing the CMV-EB3-RFP
plasmid (UCSD, La Jolla, CA). We thank Roux-Ocefa (Buenos Aires, Argentina)
for kindly contributing basic reagents.

Competing interests
The authors declare no competing interests.

Author contributions
T.L.F., L.B. and L.S.G. conceived and designed the experiments; M.G.O., M.A.,
A.A., L.E.C., V.P.D. and T.L.F. performed the experiments. M.G.O., M.A. and T.L.F.
analyzed the data. S.E. and V.P.D. contributed reagents, materials and analysis.
The paper was written by T.L.F., L.B. and L.S.G.

Funding
This work was supported by grants from Alzheimer Association [grant number
NIRG10-172840 to T.L.F]; and from Agencia Nacional de Promoción Cientı́fica y
Tecnológica, Argentina [grant number PICT 2011-0293 to T.L.F.]. M.G.O. is the
recipient of the Lanari’s fellowship from Universidad de Buenos Aires. L.E.C. and
V.P.D. are recipients of fellowships from The Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET).

Supplementary material
Supplementary material available online at
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.140780/-/DC1

References
Abe, N., Almenar-Queralt, A., Lillo, C., Shen, Z., Lozach, J., Briggs, S. P.,
Williams, D. S., Goldstein, L. S. and Cavalli, V. (2009). Sunday driver interacts
with two distinct classes of axonal organelles. J. Biol. Chem. 284, 34628-34639.

Bence, N. F., Sampat, R. M. and Kopito, R. R. (2001). Impairment of the
ubiquitin-proteasome system by protein aggregation. Science 292, 1552-1555.

Bingol, B. and Schuman, E. M. (2006). Activity-dependent dynamics and
sequestration of proteasomes in dendritic spines. Nature 441, 1144-1148.

Bingol, B. and Sheng, M. (2011). Deconstruction for reconstruction: the role of
proteolysis in neural plasticity and disease. Neuron 69, 22-32.

Bingol, B., Wang, C. F., Arnott, D., Cheng, D., Peng, J. and Sheng, M. (2010).
Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to
dendritic spines. Cell 140, 567-578.

Bohn, S., Beck, F., Sakata, E., Walzthoeni, T., Beck, M., Aebersold, R., Förster,
F., Baumeister, W. and Nickell, S. (2010). Structure of the 26S proteasome
from Schizosaccharomyces pombe at subnanometer resolution. Proc. Natl.
Acad. Sci. USA 107, 20992-20997.

Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S. A. (2004). Molecular
pathways to neurodegeneration. Nat. Med. 10 Suppl., S2-S9.

Brangwynne, C. P., Koenderink, G. H., MacKintosh, F. C. and Weitz, D. A.
(2009). Intracellular transport by active diffusion. Trends Cell Biol. 19, 423-427.

Bruno, L., Levi, V., Brunstein, M. and Despósito, M. A. (2009). Transition to
superdiffusive behavior in intracellular actin-based transport mediated by
molecular motors. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 011912.

Brunstein, M., Bruno, L., Desposito, M. and Levi, V. (2009). Anomalous dynamics
of melanosomes driven by myosin-V in Xenopus laevis melanophores. Biophys.
J. 97, 1548-1557.

Ciechanover, A. and Brundin, P. (2003). The ubiquitin proteasome system in
neurodegenerative diseases: sometimes the chicken, sometimes the egg.
Neuron 40, 427-446.

Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N. and Patrick,
G. N. (2009). Regulation of the proteasome by neuronal activity and calcium/
calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655-26665.

Ehlers, M. D. (2003). Activity level controls postsynaptic composition and
signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231-242.

Encalada, S. E., Szpankowski, L., Xia, C. H. and Goldstein, L. S. (2011). Stable
kinesin and dynein assemblies drive the axonal transport of mammalian prion
protein vesicles. Cell 144, 551-565.

Falzone, T. L. and Stokin, G. B. (2012). Imaging amyloid precursor protein in vivo:
an axonal transport assay. Methods Mol. Biol. 846, 295-303.

Falzone, T. L., Stokin, G. B., Lillo, C., Rodrigues, E. M., Westerman, E. L.,
Williams, D. S. and Goldstein, L. S. (2009). Axonal stress kinase activation
and tau misbehavior induced by kinesin-1 transport defects. J. Neurosci. 29,
5758-5767.

Falzone, T. L., Gunawardena, S., McCleary, D., Reis, G. F. and Goldstein, L. S.
(2010). Kinesin-1 transport reductions enhance human tau hyperphosphorylation,
aggregation and neurodegeneration in animal models of tauopathies. Hum. Mol.
Genet. 19, 4399-4408.

Goldstein, L. S. (2003). Do disorders of movement cause movement disorders
and dementia? Neuron 40, 415-425.

Gorbea, C., Pratt, G., Ustrell, V., Bell, R., Sahasrabudhe, S., Hughes, R. E. and
Rechsteiner, M. (2010). A protein interaction network for Ecm29 links the 26 S
proteasome to molecular motors and endosomal components. J. Biol. Chem.
285, 31616-31633.

Hirokawa, N., Niwa, S. and Tanaka, Y. (2010). Molecular motors in neurons:
transport mechanisms and roles in brain function, development, and disease.
Neuron 68, 610-638.

Hoopfer, E. D., McLaughlin, T., Watts, R. J., Schuldiner, O., O’Leary, D. D.
and Luo, L. (2006). Wlds protection distinguishes axon degeneration following
injury from naturally occurring developmental pruning. Neuron 50, 883-895.

Jin, S., Haggie, P. M. and Verkman, A. S. (2007). Single-particle tracking of
membrane protein diffusion in a potential: simulation, detection, and application
to confined diffusion of CFTR Cl- channels. Biophys. J. 93, 1079-1088.

Kalies, K. U., Allan, S., Sergeyenko, T., Kröger, H. and Römisch, K. (2005). The
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