INTRODUCTION

The Ras-related small GTPases are key regulators of several biological phenomena (Bourne et al., 1990; Hall, 1990), including vesicular traffic (Rab, Arf and Sar; Pfeffer, 1994) and the dynamics of the actin cytoskeleton (Rho; Symons, 1996; Machesky and Hall, 1996). Ras mutations are frequently involved in experimental and spontaneously occurring tumors (Bos, 1989), which means it is particularly relevant to study its contribution to changes in organelle interaction and functions brought about by transformation. Previous studies have shown that the oncogenic Ras proteins induce numerous alterations in processes that affect cellular structure and organization, such as cytoskeletal reorganization (Bar-Sagi and Feramisco, 1986; Dartsch et al., 1994), pinocytosis (Bar-Sagi and Feramisco, 1986), cell swelling (Lang et al., 1992), alterations in the calcium metabolism (Wöll et al., 1992) and changes in cell surface glycosylation (Santer et al., 1984; Collard et al., 1985; Bolscher et al., 1986, 1988). Malignant transformation is frequently accompanied by aberrant glycosylation of proteins and lipids, which could contribute to certain properties of transformed cells, such as abnormal adhesion to the extracellular matrix or to other cells, with consequences as to their invasive and metastasic potential (Hakomori, 1989; Dennis, 1991).

The Golgi complex (GC) plays an important role in post-translational modifications and sorting of lipids and proteins transported from the endoplasmic reticulum (ER). A distinctive feature of the GC is the hierarchical compartmentalization of its components and their arrangement in a functional order, which introduces a variety of post-translational modifications into the lipids and proteins transported through the organelle (Berger and Roth, 1997; Farquhar and Palade, 1998). Recently, extensive evidence that the GC could also be a target for...
signalling molecules has emerged, since some have been immunolocalized in the organelle and/or functionally shown to be directly involved in vesicular transport. Examples include 14-3-3 proteins (Gelperin et al., 1995), phospholipase A (Morreau and Morre, 1991; Slomiany et al., 1992; Tagaya et al., 1993), phospholipase D (Kistakis et al., 1995), several protein kinase C isoenzymes (De Matteis et al., 1993; Goodnight et al., 1995; Prestle et al., 1996; Simon et al., 1996; Bucciene et al., 1996), protein kinase A (Pimpiklar and Simons, 1994; Muñiz et al., 1996), the MAP kinase ERK (Acharya et al., 1998), and heterotrimeric G-protein subunits (Melançon et al., 1987; Stow et al., 1991; Bomsel and Mostov, 1992; Leyte et al., 1992; Denker et al., 1996).

To establish direct links between cell transformation induced by a single oncogene, alterations in membrane trafficking, the structure and function of the GC, and the appearance of aberrant glycosylation, we have developed and characterized a cellular model (KT8 cell line) for the conditional expression of the murine N-ras oncogene. In N-Ras-transformed KT8 cells, the GC is collapsed and fragmented, the actin cytoskeleton is disrupted, and an increase in the constitutive protein transport from the trans-Golgi network (TGN) to the cell surface is observed. Moreover, these alterations were partially prevented by the inhibition of intracellular phospholipase A2 (PLA2), suggesting its involvement in the secretory pathway.

MATERIALS AND METHODS

Cell transfection

Normal rat kidney (NRK) 44F cells (American Type Culture Collection, Rockwell, MD, USA) were co-transfected by the calcium phosphate method with the plasmid pMMTV-N-ras1 containing the transforming mouse N-ras gene (Lys 61) under the transcriptional control of the glucocorticoid-inducible MMTV LTR (Guerrero et al., 1986), and the plasmid pBW3neo (Bond and Wold, 1987), for the expression of the neomycin resistance gene. Stable transfectants were selected by resistance to 400 μg/ml geneticin (Sigma, St Louis, MO, USA). After expansion of the clones, transfected cells were routinely selected by resistance to 400 μg/ml geneticin (Sigma, St Louis, MO, USA). After expansion of the clones, transfected cells were routinely maintained in culture medium containing 200 μg/ml geneticin.

Single-stranded conformational polymorphism

RNA was extracted by the guanidinium isothiocyanate method (Chomczynski and Sacchi, 1987), and 1 μg of RNA was used for reverse transcription in 2.5 mM MgCl2, 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 39 units/μl RNAguard (Pharmacia, Uppsala, Sweden), 200 units/μl Mo-MuLV-reverse transcriptase (BRL Gibco, UK), 200 μM deoxynucleoside triphosphates, and random hexamers, at 42°C for 30 minutes. 5 μl of this reaction were used in polymerase chain reactions (PCR) by using 1 μM of the primers that correspond to exons 1 and 2 of murine N-ras (TGACTGAGTACAAACTGG and CTGTTAGGTTATATCT). 5 μl of the PCR product were diluted (1:16) in 95% formamide, 10 mM EDTA, 0.05% Bromophenol Blue, 0.05% xylene cyanol, and incubated at 95°C for 3 minutes. Samples were ice-cooled and loaded onto a 12% sodium dodecyl sulfate (SDS) polyacrylamide gel, and electrophoresed at room temperature for 12-15 hours at 5 W. Subsequently, gels were fixed, silver-stained and dried.

Western blotting

Cells were lysed in 80 mM Tris-HCl, pH 6.5, 0.5% SDS. Protein samples from lysates (30-60 μg/sample) were electrophoresed by 10% or 15% SDS-PAGE, and the gels were transferred onto Immobilon-P membranes (Millipore Corporation, Bedford, MA, USA). The Immobilon-P sheets were preincubated in TBS buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl) with 5% defatted milk powder for 1 hour at room temperature, followed by incubation with 5 μg/ml of affinity-purified mouse monoclonal IgG antibody to the amino-terminal domain of cPLA2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA) or 10 μg/ml of mouse monoclonal anti-pan-Ras (Ab-2) antibody (Oncogene Sciences, Uniondale, NY, USA) in TBS with 1% bovine serum albumin (BSA) and 0.5% defatted milk powder for 1 hour. Blots were rinsed three times in TBST (TBS buffer containing 0.05% Tween 20). Subsequently, strips were incubated with alkaline phosphatase-conjugated anti-mouse IgG antibody (1:10,000) (Promega Corporation, Madison, WI, USA) for 1 hour. After three rinses in TBST and one in TBS, the reaction was visualized with NBT/BCIP.

Immunofluorescence

Cells were grown on coverslips to 70-90% confluency, quickly washed in PBS (10 mM phosphate buffer, 150 mM NaCl, pH 7.2) and fixed either by immersion in cold (−20°C) methanol for 2-3 minutes or in freshly prepared paraformaldehyde (4% in PBS) at room temperature for 15 minutes. Subsequently, coverslips were washed in PBS and, in the case of paraformaldehyde fixation, free aldehyde groups were blocked by incubation with 50 mM NH4Cl in PBS for 30 minutes. Thereafter, cells were permeabilized for 15 minutes with PBS containing 0.1% saponin and 1% BSA and further processed for single- or double-label immunofluorescence as previously described (Alcalde et al., 1994) using the following dilutions of the primary antibodies: rabbit anti-Man II (1:4,000) (Dr A. Velasco, University of Sevilla, Spain), rabbit anti-PDI (1:100) (Dr J.G. Castaño, Universidad Autónoma de Madrid, Spain), mouse monoclonal E3A5 (1:20) (Sigma Co., St Louis, MO, USA), rabbit anti-β-COP (1:60) (Dr T. Kreis, University of Geneva, Switzerland), rabbit anti-ERK2 (1:100) (Upstate Biotechnology Inc, Lake Placid, NY, USA), rabbit anti-VSVG glycoprotein ectocytotrophic plasmid (1:300) (Dr K. Simons, EMBL, Heidelberg, Germany), mouse monoclonal PSD4 anti-VSVG glycoprotein carboxy-terminal amino acids (497-511) (1:800) (Sigma Co., St Louis, MO, USA), mouse monoclonal anti-actin (1:400) (ICN, Costa Mesa, CA, USA) and anti-β-tubulin (1:200) (Boehringer Mannheim, Mannheim, Germany), and TRITC- or FITC-phallidin (1:250 from a stock solution of 0.2 mg/ml; Sigma Co., St Louis, MO, USA). Polyclonal or monoclonal antibodies were visualized with TRITC- or FITC-conjugated anti-rabbit IgG F(ab')2 or anti-mouse IgG F(ab')2 fragments (1:30) (Boehringer Mannheim, Mannheim, Germany). Samples were viewed either under an Olympus BX60 fluorescent microscope or under a Leica TCS 4D confocal microscope.

Electron microscopy and stereological analyses

Cells were washed twice in 100 mM cacodylate buffer (pH 7.2) and fixed with 2.5% glutaraldehyde in this buffer for 60 minutes at room temperature. Cells were then washed (3×, 5 minutes each) with 100 mM cacodylate buffer and post-fixed with 1% (v/v) OsO4/1.5% (v/v) K2Fe(CN)6 in 100 mM cacodylate buffer for 1 hour at 4°C. Cells were scraped, pelleted and treated for 1 hour at 4°C with 1% tannic acid in cacodylate buffer, rinsed in distilled water, and stained en bloc with 1% aqueous uranyl acetate for 1 hour, followed by dehydration through graded ethanol and embedding in Epon 812. Ultra thin sections were stained with lead citrate for 2 minutes and observed in a Philips 301 electron microscope. Randomly selected micrographs were taken at the same magnification (×47,500, final magnification) and analyzed using point-counting procedures (Weibel, 1979). The GC was defined as a point of cisternae organized in stacks with tubular and vesicular structures. Total GC (tGC) was defined as an area containing at least one cisterna and Golgi vesicles, with an arbitrary borer in the cytoplasm surrounding the GC (Renau-Piqueras et al., 1987). Intermediate elements in continuity with the rough ER were excluded.
The following stereological parameters were determined using standard procedures (Weibel, 1979; Renau-Piqueras et al., 1987): the volume density (VvG) of the I GC relative to the cytoplasm (Vvi G/cytopl); the Vvi G of cisternae relative to the cytoplasm (Vvi cist/cytop); the Vvi cist of cisternae relative to the I GC (Vvi cist/I GC); the surface density (SdG) of cisternae relative to the cytoplasm (SdiG/cytop); and the SdiG of cisternae relative to the I GC (SdiG/I GC). The minimum sample size (number of micrographs) of each stereological parameter was determined by the progressive mean technique (confidence limit ≤5%) (Williams, 1977). The results, expressed as means ± s.d., were compared using the Student’s t-test.

Virus infection, VSV-G protein two-dimensional gel electrophoresis and VSV-G protein transport assays

Cell monolayers were infected at 25 p.f.u./cell with the vesicular stomatitis virus (VSV) temperature-sensitive mutant ts045 virus in Dulbecco’s modified essential medium (DMEM; BRL Gibco, UK) without fetal calf serum (FCS) at 32°C. At 4 hours post-infection in DMEM containing 10% FCS, Pro-Mix L-[35S]cell-labeling mix (Amersham, Buckinghamshire, UK) was added in methionine/cysteine-free DMEM (ICN, Costa Mesa, CA, USA).

For continuous metabolic labeling, infected cells were incubated for 2 hours at 32°C in the presence of 1 mM/μl of Pro-Mix L-[35S]. Labeled cells were washed with cold culture medium containing 2 mM methionine and cysteine, lysed in 100 μl of Triton X-100 lysis buffer (1% Triton X-100, 50 mM Tris-HCl, pH 8.0, 62.5 mM EDTA) for 30 minutes, and centrifuged at 14,000 g for 15 minutes. To supernatants were added 200 μl of detergent solution (62.5 mM EDTA, 50 mM Tris-HCl, pH 8.0, 0.4% sodium deoxycholate, DOC, 1% Nonidet P40, NP40), 8 μl of 10% SDS and 2 μl of mouse monoclonal P5D4 anti-VSV-G protein antibody, followed by an overnight incubation at 4°C. Then, samples were incubated with rabbit-anti mouse IgG (Dako, Denmark) for 1 hour at 4°C, followed by 20 μl of protein A/G agarose (Sta Cruz Biotechnology, Inc., Sta Cruz, CA, USA) for 45 minutes at room temperature; subsequently, samples were washed 3× in RIPA buffer (10 mM Tris-HCl, pH 7.4, 0.1% SDS, 1% DOC, 1% NP40, 150 mM NaCl), 3× in TENEN high salt buffer (10 mM Tris-HCl, pH 7.2, 500 mM NaCl, 1 mM EDTA, 0.5% NP40, 0.1% SDS), and once in PBS. Pellets were resuspended in electrophoresis sample buffer, boiled for 5 minutes, and processed for two-dimensional gel electrophoresis. Gels were processed for fluorography, dried and exposed at −80°C. Quantification of radioactive proteins was performed as previously described (Santarén and García-Bellido, 1990).

For pulse-chase metabolic labeling experiments, VSV ts045 virus-infected cells were incubated for 15 minutes in methionine-free DMEM at 40°C and pulse-labeled in suspension for 10 minutes with 100 μCi/μl of Pro-Mix L-[35S]cell-labeling mix at 40°C. Cells were washed with ice-cold PBS and chased at 32°C in methionine-containing medium for the indicated times. After the chase, cells were washed twice with ice-cold PBS and lysed for 15 minutes on ice with Triton X-100 lysis buffer. Immunoprecipitation was carried out as described above, except that after the last PBS rinse, the protein A/G agarose beads were resuspended in 10 μl of BH1 buffer (100 mM sodium acetate, pH 5.5, 1% SDS, 0.1% Triton X-100) and proteins were eluted from the beads by heating at 95°C for 5 minutes. The supernatant was recovered by centrifugation and 30 μl of BH2 buffer (100 mM sodium acetate, pH 5.5, 1 mM PMSF, 5 μg/ml aprotinin, 1 mM benzamidine) was added. Subsequently, 0.25 ml of Endo H (Boehringer Mannheim, Mannheim, Germany) was added, and the samples were incubated overnight at 37°C. They were then separated under reducing conditions by 7.5% SDS-PAGE, and gels were fluorographed. Band quantitation was performed with the Phoretix image analysis software (Phoretix International Ltd, Newcastle, England).

For cell surface biotinylation, cells were plated at confluence, infected and pulse-labeled as described above, except that the virus adsorption was performed in the presence of 5 μg/ml actinomycin D (Buccione et al., 1996). After the pulse at the non-permissive temperature, cells were either immediately placed on ice, or chased at 37°C in the presence of DMEM containing 5% FCS and 2 mM methionine for the indicated periods of time. Cell surface proteins were biotinylated according to de Hoop and Cid-Arregui (1996): cells were washed twice with PBS+ (PBS containing 0.1 mM CaCl2 and 0.1 mM MgCl2) and surface biotinylated by incubating for 30 minutes with 0.5 ml NHS-LC-biotin (1 mg/ml; Pierce, Rockford, IL, USA) in PBS+ on ice. Then, cells were washed twice with PBS+, quenched (2x, 5 minutes each) with PBS+ containing 100 mM glycine and 0.3% bovine serum albumin (BSA), and washed twice in PBS+. Biotinylated cells were lysed for 10 minutes on ice in lysis buffer (2% NP-40, 0.2% SDS in PBS supplemented with protease inhibitors). Lysates were centrifuged at 14,000 g at 4°C, and samples of the supernatant were precipitated with trichloroacetic acid or incubated overnight at 4°C by rotation with streptavidin-agarose (Pierce, Rockford, IL, USA). The beads were centrifuged at 14,000 g for 30 seconds and washed in RIPA and TENEN high salt buffers. Bound material was eluted with 30 μl of 1× SDS sample loading buffer, and analysed by 7.5% acrylamide SDS-PAGE. Finally, gels were dried, fluorographed and VSV-G protein bands quantitated by both Phoretix Image analysis and scintillation counting.

Release of secretory proteins

Cell monolayers were pulse labeled with 100 μCi/ml Pro-Mix L-[35S]cell-labeling mix for 5 minutes at 37°C in pulse medium, washed three times with cold culture medium containing 2 mM methionine, and incubated at 37°C for the indicated times. Then, the cell culture medium was collected, and centrifuged at 14,000 g for 30 minutes, and the supernatants were precipitated with trichloroacetic acid, resuspended in 1× sample buffer, eluted and analyzed by SDS-PAGE. Parallel samples were quantitated by scintillation counting.

Fluorescent phalloidin-binding assay

Cells cultures were fixed in 4% paraformaldehyde in PBS for 15-30 minutes and permeabilized with 0.1% Triton X-100 in PBS for 5 minutes. After 3 rinses in PBS, cells were incubated with TRITC-phalloidin (1:1,000 from a stock solution of 0.2 mg/ml) in PBS for 15 minutes, washed 3 times in PBS, and extracted with methanol for 25 minutes at room temperature. The fluorescence intensity of the supernatants was quantified in a Kontron Instruments fluorimeter (SMF25) with 554 nm and 573 nm excitation and emission wavelengths, respectively.

Lectin-mediated cytotoxicity assay

Cells were plated in each well of a 24-well plate (2x105/well) in 0.5 ml DMEM containing 5% FCS and incubated overnight at 37°C. Increasing concentrations of wheat germ agglutinin (WGA) and L-phytohemagglutinin (L-PHA) (Sigma Co, St Louis, MO, USA) were added to the cells, followed by an incubation at 37°C until the cells containing no lectin grew to confluence. The medium was removed, and the cells were rinsed in PBS without Ca2+ and Mg2+, trypsinized, centrifuged and counted. The results were expressed as the survival percentage of cells for each lectin concentration.

Cytosolic phospholipase A2 activity assay

Calcium-dependent cytosolic phospholipase A2 (cPLA2) activity was measured using a colorimetric assay (Alexis Corporation, Lülfeltingen, Switzerland). Briefly, cells were lysed with Triton X-100 lysis buffer and centrifuged at 14,000 g for 15 minutes at 4°C. Lysates were concentrated with Centricon centrifuge concentrators (Amicon Inc., Beverly, MA, USA) with a molecular mass cut-off of 30 kDa to remove any residual secretory PLA2 (sPLA2). Bromoenol lactone was added to the lysates to inhibit any calcium-independent cytosolic PLA2 (iPLA2). Equal final volumes and sample protein contents were placed into ELISA wells, and the reaction was performed according to the manufacturer’s instructions. A positive
control (bee venom PLA₂) was also included each time. The reaction product was revealed with Ellman’s reagent (DTNB) and quantitated by reading the absorbance at 405 nm using an ELISA plate reader. Results are expressed as nmol/minute/ml.

RESULTS

NRK cells were stably transfected with the mouse N-ras gene (Guerrero et al., 1986) under the transcriptional control of the glucocorticoid inducible MMTV LTR promotor. A cell line, designated KT8, was generated and used for the present study. Analysis by RT-PCR and SSCP of the expression of oncogenic mouse N-ras in KT8 cells demonstrated that two types of N-ras gene transcripts were expressed after incubation with dexamethasone, corresponding to the endogenous, wild-type N-ras, and to the exogenous, mutated N-ras genes (Fig. 1A). The oncogenic N-Ras protein [N-Ras(K61)] was visualized by immunoblotting after 8-12 hours of exposure to various concentrations of dexamethasone (Fig. 1B). Expression of the exogenous gene and proteins was accompanied with a translocation of the MAP kinase ERK2 into the nucleus and to the plasma membrane (Fig. 1D) (Chen et al., 1992; González et al., 1993). Concomitantly, induced KT8 cells acquired a morphology characteristic of transformed fibroblasts (Fig. 2). These features were maintained for as long as the inducer was present in the culture medium.

N-Ras alters the morphology and the cytological positioning of the Golgi complex

We first studied the effect of N-Ras-induced transformation on the structure and function of the GC. Using antibodies against mannosidase II (Man II), the GC of control NRK and KT8 cells showed a characteristic perinuclear distribution with an interconnected reticular morphology (Fig. 3A,C). Dexamethasone-induced KT8 cells (Fig. 3D), but not dexamethasone-treated NRK cells (Fig. 3B), showed a striking change in this arrangement into a morphological collapse in a juxtanuclear positioning. Similar images were observed when the GC was stained with antibodies against the cotameter
Table 1. Stereological analysis of the GC in control and N-Ras(K61)-transformed cells

<table>
<thead>
<tr>
<th></th>
<th>V_{vit} GC/cytoplasm</th>
<th>V_{vit} cist/cytoplasm</th>
<th>V_{vit} cist/GC</th>
<th>S_{vit} cist/cytoplasm</th>
<th>S_{vit} cist/GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cells ($N=11$)</td>
<td>12.57±3.55</td>
<td>5.02±1.82</td>
<td>43.57±9.08</td>
<td>1.23±0.45</td>
<td>11.07±3.43</td>
</tr>
<tr>
<td>Induced cells ($N=11$)</td>
<td>12.81±3.68</td>
<td>5.09±1.88</td>
<td>42.79±10.32</td>
<td>1.75±0.31*</td>
<td>15.39±4.09**</td>
</tr>
</tbody>
</table>

*Significant differences with respect to control; Student’s t-test ($P \leq 0.05$).

$V_{\text{vit}} =$ volume density expressed as %.

$S_{\text{vit}} =$ surface density expressed as μm^{-1} (area surface of cisternae/volume cytoplasm).

Parameters are defined in Materials and Methods.

The Golgi complex collapse induced by N-Ras is associated with the disassembly of actin microfilaments

Double-label confocal immunofluorescence experiments were performed to analyze the GC in parallel with the status of microtubules (Fig. 5) and actin microfilaments (Fig. 6). Dexamethasone-induced KT8 cells showed a collapsed GC against a background of intact microtubules (Fig. 5B). On the other hand, nocodazole treatment resulted in microtubular network disruption and dispersion of GC fragments both in control (Fig. 5C) and in transformed KT8 cells (Fig. 5D). In addition, no differences in control versus transformed cells were observed when a time-course of microtubule depolymerization by cold treatment was performed (not shown). Therefore, the GC morphological alteration induced by N-Ras requires an intact microtubular network.

In contrast to the stability of the microtubular network, transformed KT8 cells showed a disruption of the actin cytoskeleton (Fig. 6A) concomitant with the appearance of the collapsed GC (Fig. 6B). The N-Ras-induced actin disassembly was quantitated by a fluorescent phalloidin binding assay, which reflects the amount of actin microfilaments, confirming that control KT8 cells contained significantly higher levels of F-actin than dexamethasone-induced KT8 cells (Fig. 7). The dependence of GC architecture on the actin cytoskeleton was further
substantiated by treatment with the actin-disrupting drug cytochalasin D (cyD). This drug also produced a collapse of the GC in control KT8 cells, which appeared to be more severe than that induced by N-Ras-induced transformation (Fig. 6D). The N-Ras-induced disruption of actin microfilaments and the GC collapse were both reversed after withdrawal of dexamethasone (Fig. 8). Quantitation by the phalloidin binding assay showed that the recovery of the F-actin content (Fig. 8G) and the restoration of the GC morphology (Fig. 8C,E) followed similar kinetics. Thus, the reversal of the GC to its normal morphology is closely associated with the restitution of actin microfilaments, which appear before the cytochemical visualization of stress fibers. Altogether, these results indicate that N-Ras reversibly disrupts the actin cytoskeleton, and confirm our previous observations, utilizing actin-disrupting agents, that the morphology and subcellular localization of the GC is also controlled by actin microfilaments (Valderrama et al., 1998).

The phospholipase A$_2$ signal transduction pathway is involved in the Golgi complex alterations induced by N-Ras

We next performed experiments to determine which of the effectors and pathways known to be regulated by N-Ras could be involved in its effects on GC integrity. Phosphatidylinositol 3'-kinase (PI3K) is a downstream effector of the Ras protein (Kodaki et al., 1994; Rodríguez-Viciana et al., 1994) and is involved in the control of vesicular traffic (Brown et al., 1995; Davidson, 1995; De Camilli et al., 1996). When dexamethasone-induced KT8 cells were incubated with wortmannin at concentrations that specifically block PI3K activity (10-100 nM) (Stack et al., 1994), neither the collapse of the GC nor the actin disassembly were prevented (not shown). This result indicates...
Fig. 5. The Golgi complex collapse induced by N-Ras requires an intact microtubular network. Double (A,B) or single (C,D) confocal immunofluorescence experiments in control (A,C) and dexamethasone-induced (B,D) KT8 cells stained with anti-Man II (A-D) and anti-tubulin (A,B) antibodies. Note that in dexamethasone-induced KT8 cells the microtubular cytoskeleton remains intact whilst the GC collapse occurs (B). When control (C) and dexamethasone-induced (D) KT8 cells were treated with the microtubule-disrupting agent nocodazole (noc), the GC appears, as expected, extensively fragmented and dispersed throughout the cytoplasm. Bar, 10 μm.

Fig. 6. The Golgi complex collapse induced by N-Ras is concomitant with the disassembly of actin microfilaments. Double (A,B) or single (C,D) confocal immunofluorescence experiments in control (A,C,D) or dexamethasone-induced (B) KT8 cells stained with anti-Man II (A,B,D) and anti-actin (C) antibodies or FITC-phalloidin (A,B). Dexamethasone-induced KT8 cells show the GC collapse and disassembly of the actin cytoskeleton (B). Treatment of control KT8 cells with cytochalasin D (cyD) (1 μM, 30 minutes) (C,D) produces a similar but more severe collapsed morphology of the GC (compare B with D). Bar, 10 μm.
that the GC and actin cytoskeleton alterations induced by N-Ras are not directly mediated by PI3K.

One of the major pathways governed by Ras proteins is the sequential phosphorylation of substrates in a cascade initiated by activation of the serine-threonine kinase Raf, followed by activation of MEK and MAP kinases. One of the substrates of MAP kinases is cytoplasmic PLA$_2$, which modulates the dynamics of the actin cytoskeleton through the production of derivatives of arachidonic acid (Lin et al., 1993; Peppelenbosch et al., 1993). In dexamethasone-induced KT8 cells, a significant increase in cPLA$_2$ activity is produced (from 11.3 ± 0.08 nmol/minute/ml to 15.5 ± 0.04 nmol/minute/ml, $P \leq 0.01$; means ± s.d. of three independent experiments). This activation was accompanied by an increase in the levels of the slower electrophoretic mobility species of cPLA$_2$ (Fig. 9), indicative of its phosphorylation by MAP kinase (Lin et al., 1993; Wijkander et al., 1995).

We thus tested the effect of the PLA$_2$ inhibitor 4-bromophenylacyl bromide (4BPB) (Peppelenbosch et al., 1993) in the N-Ras-induced effects on the GC architecture. The drug 4BPB significantly inhibited cPLA$_2$ activity (5.8 ± 0.1 nmol/minute/ml; $P \leq 0.01$) in dexamethasone-induced KT8 cells. Then, two different experimental approaches were followed: (1) dexamethasone and 4BPB were simultaneously added to KT8 cells in order to determine if 4BPB could prevent the N-Ras-induced collapse of the GC (Table 2); (2) dexamethasone-induced KT8 cells were incubated with 4BPB to determine if the GC collapse could be reverted (Table 3). Results showed that 4BPB partially inhibited and reverted the GC collapse induced by N-Ras. The F-actin content was also partially recovered (Fig. 7). Although it has been shown that 4BPB can affect microtubular integrity (Hargreaves et al., 1994), double labeling experiments with anti-Man II and anti-tubulin antibodies indicated that the microtubular network remained intact in the presence of 4BPB (not shown). Thus, these results indicate that PLA$_2$ is directly involved in the actin and the GC alterations produced by N-Ras-induced transformation.

N-Ras-induced transformation does not lead to aberrant glycosylation but increases the constitutive protein transport to the cell surface

We next analyzed if the conspicuous morphological changes in the GC were accompanied by functional alterations associated with this organelle, such as protein glycosylation and transport. It has been reported that transforming proteins alter the composition of cell surface carbohydrates (Santer et al., 1984; Bolscher et al., 1986). Analysis by two-dimensional SDS-PAGE of the VSV-G glycoprotein in KT8 cells revealed that N-Ras-induced transformation did not produce any quantitative changes in the multiple spots that reflect the different glycosylated isoforms containing sialic acid residues (not shown). In addition, we used the VSV-G protein as a reporter molecule that can reflect modifications in protein glycans (Bolscher et al., 1986). Analysis by two-dimensional SDS-PAGE of the VSV-G glycoprotein in KT8 cells revealed that N-Ras-induced transformation did not produce any quantitative changes in the multiple spots that reflect the different glycosylated isoforms containing sialic acid residues (not shown).

We next investigated whether the secretory movement of
proteins was altered by N-Ras transformation. For this, we analyzed the ER-to-plasma membrane trafficking steps. When we studied the ER-to-plasma membrane transport of the VSV-G glycoprotein (Fig. 10A) and secretory proteins (Fig. 10B), dexamethasone-induced KT8 cells showed an increased transport both in the rate and extent of VSV-G (Fig. 10A) and secretory proteins relative to 24 minutes in control KT8 cells (Fig. 10B). Importantly, 4BPB (2.5 μM) inhibited the N-Ras-induced increase in the constitutive protein secretion (Fig. 10B). Treatment of NRK cells with dexamethasone did not alter protein secretion levels (not shown). Consequently, we next analyzed the sequential membrane transport step(s) altered by N-Ras-induced transformation. Thus, we assayed ER-to-Golgi, and TGN-to-plasma membrane transports. As shown in Fig. 11, dexamethasone-induced KT8 cells did not show any difference in the processing of newly synthesized VSV-G glycoprotein to the Endo H-resistant form. Moreover, the treatment with 4BPB (Fig. 11) or cyD (not shown) did not produce any alteration either in transformed or control KT8 cells. These results argue that transport from the ER-to-GC is not altered by N-Ras, despite any other effects of 4BPB, and confirm that there is no involvement of actin microfilaments in the ER-to-Golgi membrane dynamics (V alderrama et al., 1998). Finally, we studied the TGN-to-plasma membrane transport (Fig. 12). After an incubation at 20°C to block material in the TGN, VSV-G transported to the cell membrane was analyzed. In particular, control and dexamethasone-induced KT8 cells were infected for 3 hours at the restrictive temperature and subsequently incubated for 1 hour at 20°C. Under these experimental conditions, VSV-G accumulates in the TGN (Griffiths and Simons, 1986). Cells were subsequently transferred to 32°C in the absence or presence of 4BPB or cyD, and based on fluorescence-activated cell sorting (FACS) analysis using an antibody specific for the VSV-G protein ectodomain, VSV-G was transported to the plasma membrane (Fabbri et al., 1994). VSV-G was faster and more extensively transported in N-Ras-transformed KT8 cells. The presence of...
4BPB or cyD in control KT8 cells did not produce significant alterations in the transport of VSV-G to the cell membrane. However, 4BPB prevented the N-Ras-induced increase in VSV-G transport from TGN-to-plasma membrane. These results indicate that N-Ras-induced transformation stimulates TGN-to-plasma membrane but not ER-to-Golgi transport.

DISCUSSION

In this study, we show that N-Ras-induced transformation produces GC collapse and stack fragmentation, and an increase in protein transport from the TGN to the cell surface. In order to identify mediators of these effects we have focused our attention on the cytoskeleton and two major downstream effectors of Ras proteins, PI3K and PLA2. The collapse of the GC is accompanied by the disassembly of actin microfilaments but not of microtubules (Prendergast and Gibbs, 1993; Dartsch et al., 1994). The observation that cyD also induced the collapse of the GC further supports the importance of the actin cytoskeleton in the maintenance of the normal arrangement of the GC in the cell (Valderrama et al., 1998). The block of expression of oncogenic N-ras by removal of dexamethasone allowed the GC to return to its normal morphology and subcellular arrangement, in parallel with the recovery of the F-actin content. Thus, our results indicate that the disruption of the GC morphology correlates with the disruption of filamentous actin. Recovery of F-actin to levels sufficient for the reconstitution of the GC architecture preceded the appearance of visible actin stress fibers. Thus, the GC is most likely linked to actin microfilaments that do not form part of...
Fig. 11. The VSV-G glycoprotein transport from the ER to the Golgi complex is not altered by N-Ras. KT8 cells were infected with the VSV ts045 temperature-sensitive mutant virus, labeled with [35S]methionine at 40°C and chased at 32°C at different times, as indicated, to study the ER-to-Golgi transport by acquisition of the Endo-H resistant form of the VSV-G glycoprotein. Note that no change in the kinetics of the arrival of G-protein to the GC is observed in either control (open circles) or dexamethasone-induced (filled circles) KT8 cells. Pretreatment with 4BPB (2.5 μM, 16 hours) in control (open triangles) and dexamethasone-induced (filled triangles) KT8 cells does not produce any significant changes in ER-to-Golgi transport of VSV-G.

Fig. 12. The transport of VSV-G from the TGN to the plasma membrane is increased by N-Ras. Control (open circles) and dexamethasone-induced (filled circles) KT8 cells were infected with VSV for 3 hours at the restrictive temperature (40°C) and then incubated at 20°C for 60 minutes to accumulate VSV-G in the TGN and, consequently, to block transport to the cell surface. To detect VSV-G on the plasma membrane, cells were washed in ice-cold PBS containing 1% mouse serum and stained with an antibody recognizing the extracytoplasmic domain of VSV-G, followed by an FITC-conjugated goat anti-rabbit second antibody. The fraction of cells containing VSV-G on the cell surface was measured by FACS analysis. Note that dexamethasone-induced KT8 cells show an increase in TGN-to-plasma membrane transport (filled circles). This increase is inhibited by pretreatment with 4BPB (2.5 μM, 16 hours) (filled triangles). Moreover, the treatment with cyD (1 μM) in control KT8 cells (open squares) does not produce any significant change in the rate of VSV-G transported to the cell surface.

ERK2 to the nucleus and to the cell periphery, a hallmark of MAP kinase activation (Chen et al., 1992; González et al., 1993). MAP kinases phosphorylate and activate cPLA2 (Lin et al., 1993), which in turn causes disruption of F-actin containing stress fibers (Peppelenbosch et al., 1993, 1995). Since the N-Ras-induced disruption of actin microfilaments and alterations in the GC were significantly prevented by 4BPB, our observations suggest a sequential link between the expression of plasma membrane-associated activated N-Ras, activation of the Raf kinase/MAPK kinase pathway, an enzymatic activation of cPLA2 and, finally, the alteration in the actin cytoskeleton and GC integrity. However, inhibition of PLA2 does not completely prevent these alterations, leaving the possibility that activation of other small GTP-binding proteins or other downstream effectors of Ras are involved in the regulation of the GC structure and/or actin organization. Recently, it has been reported that Golgi fragmentation occurring during mitosis depends on activation of MEK1 (Acharya et al., 1998), a direct downstream effector of the Ras/Raf/MAPK signalling pathway. Interestingly, N-Ras-transformed and mitotic cells share the signalling activation of MEK1, although in N-Ras-transformed KT8 cells, GC fragments remain juxtanuclearly located, whereas in permeabilized NRK cells incubated with mitotic extracts, GC fragments are dispersed throughout the cytoplasm (Acharya et al., 1998). It is therefore possible that in N-Ras-transformed

stress fibers. In fact, we have also observed (F. Valderrama, T. Babià, A. Luna, J. W. Kok and G. Egea, unpublished) that when NRK cells are incubated or microinjected with Botulinum toxin C3, a toxin that specifically inactivates the stress fiber formation-controlling small GTPase protein Rho (Ridley and Hall, 1992), the actin stress fibers are disrupted, but the interconnected reticular GC morphology stained with anti-Man II antibodies remained unaltered. It is also possible that, in induced KT8 cells, the actin cytoskeleton specifically linked to the GC is disassembled in the first instance, followed then by the actin stress fibers. Upon removal of the inducer, the reconstitution of the actin cytoskeleton would follow the same order. Consequently, the GC morphology recovers before the formation of stress fibers. The correlation between actin disassembly and the GC collapse is not exclusive of N-Ras-induced transformation. In K-Ras transformed (KiKi) rat thyroid cells, the GC is also tightly collapsed and the internal, but not the cortical, actin cytoskeleton is disrupted (I. Ayala, M. G. Silletta, D. Corda and G. Egea, unpublished results). These observations indicate that actin microfilaments are needed to exert a ‘pushing force’ on the GC to maintain its morphology and cytological localization, and that the resulting clustering of the GC could simply reflect an equilibrium between the inward and outward membrane movements governed only by the microtubular motors. Thus, the actin and microtubular cytoskeletons are essential and complementary webs that maintain the architecture and the cytological positioning of the GC.

Induction of the activated N-Ras oncoprotein caused a sustained and simultaneous translocation of the MAP kinase
cells, the concomitant disassembly of actin microfilaments impairs the cytoplasmic dispersion of GC fragments.

Most probably, the GC collapse and stack fragmentation are coincidental but independently generated phenomena. This hypothesis is based on the observation that in cyD-treated cells, the GC was tightly collapsed, but the stacks of cisternae appeared swollen and not fragmented (Valderrama et al., 1998). A possible explanation would be that the reticular morphology of the GC and its cytological positioning are maintained by the actin cytoskeleton, whereas the integrity of the Golgi stack is regulated by an intracellular PLA2 activity that could produce tubulation (de Figueiredo et al., 1998) and/or fragmentation by altering membrane lipid composition. Previous reports have shown the presence of an endogenous Golgi phospholipase A activity (Moreau and Morre, 1991) correlated with an in vitro ER-to-Golgi and intra-Golgi transport (Slomiany et al., 1992; Tagaya et al., 1993).

GC morphological alterations induced by N-Ras lead to a significant increase in the constitutive protein transport from the TGN to the cell surface. The observation that control KT8 cells treated with cyD do not alter this protein transport indicates that the integrity of actin microfilaments is not essential for the constitutive secretory transport. Moreover, preliminary results in other cell lines show that cyD and latrunculin B do not significantly alter constitutive secretion (I. Ayala, A. Luna, M. Baldassarre, A. Luini, R. Buccione and G. Egea, unpublished results). However, the blocking effect of 4BPB on the increased delivery of proteins to the cell surface suggests a functional role of an intracellular PLA2 in the constitutive protein transport from the TGN to the cell surface. However, besides the TGN-to-plasma membrane transport increase induced by N-Ras, an intra-Golgi alteration is also possible since previous results have also shown a correlation between PLA2 activity and in vitro intra-Golgi transport.

Also of interest is that N-Ras did not induce changes either in the VSV-G protein glycosylation or the cell surface content of sialic acid and oligosaccharides containing β1,6 branching. This appears to be in contrast to the results previously described with Ha-Ras (Bolscher et al., 1986). Substantial differences in the two models of transformation and/or Ras oncoprotein involved might account for these discrepancies. In particular, the NIH3T3 model displays a morphological transformation only after two passages in the presence of the inducer dexamethasone. Furthermore, in this NIH3T3 model the Ras protein is observed only after 20 hours of induction, and described glycosylation alterations in the VSV-G protein were a late effect, being detected only 36 hours after the addition of dexamethasone. Even considering that activation of a given signalling pathway can produce different responses in different cells, a further extrapolation of our observations leads to the conclusion that alterations in glycosylation patterns and vesicular transport found in transformed cells may not be solely a direct consequence of the expression of activated Ras proteins.

Our sincere thanks to Dr Roberto Buccione, Dr Alberto Luini and Dr Vivek Malhotra for reading of the manuscript, Dr Antonio García de Herreros for useful suggestions, Maite Muñoz for skilful technical assistance, Dr Pablo Engel for help and advice with the FACS, Susana Castel (Serveis Científico-Tècnics, Universitat de Barcelona) for assistance with confocal microscopy, and Dr C. P. Berrie for editorial assistance. We also thank Dr A. Velasco (Universidad de Sevilla, Spain), Dr G. Banting (University of Bristol, UK), Dr K. Simons (EMBL, Heidelberg, Germany), Dr J. G. Castaño (UAM, Madrid, Spain) and the late Dr T. Kreis (University of Geneva, Switzerland) for generous gifts of antibodies. T.B. is the recipient of a postdoctoral fellowship from CIRIT (Catalunya, Spain). F.V. and I.A. are predoctoral fellows from the Universitat de Barcelona and Ministerio de Educación y Ciencia, respectively. J.W.K. is supported by the Royal Netherlands Academy of Arts and Sciences. This work is supported by grants to G.E. (SAF 97/0016 and TeleMarató de Catalunya TV3) and to T.M.T. (DGIICYT PB-092-0506-CO2-01 and from the Fundación Científica de la Asociación Española contra el Cáncer and the Fundación Ramón Areces).

REFERENCES

De Matteis, M. A., Santini, G., Kahn, R. A., Di Tullio, G. and Luini, A.
Golgi complex in Ras-transformed cells

