Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway

Enric Gutiérrez-Martínez1,2, Inés Fernández-Ulibarri1,*, Francisco Lázaro-Diéguez1,2, Ludger Johannes3, Susan Pyne4, Elisabet Sarri1 and Gustavo Egea1,2,§

Introduction

The Golgi complex is involved in the processing, sorting and transport of membrane components (lipids and proteins) to appropriate subcellular destinations, and is also a membranous platform for signaling, metabolic and cytoskeleton proteins. Transport to and from the Golgi complex is mediated by transport carriers (vesicles and/or tubules), which are generated in sequential stages beginning with the formation of a bud, followed by its elongation, constriction and final fission. These different stages require tight control of membrane deformations by a complex molecular machinery composed of coat proteins, motors and protein domains that bend membranes (Krauss et al., 2008; Roux et al., 2005; Sorre et al., 2009), and lipid components that recruit cytosolic proteins, modulate protein functions and modify the architecture and physical properties of the membrane bilayer (Bard and Malhotra, 2006; Burger, 2000; Huijbregts et al., 2000; Kooijman et al., 2005; Lippincott-Schwartz and Phair, 2010; Shemesh et al., 2003; van Meer et al., 2008). Membrane curvature is facilitated by conical lipid molecules such as lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG).

DAG has a dual role in the formation of carriers since it acts as a scaffold and activator of proteins involved in signaling and membrane fission such as PKD and ArfGAP1 (Baron and Malhotra, 2002; Fernández-Ulibarri et al., 2007), and it also facilitates negative curvature. Moreover, there is a constant and relatively large pool of DAG in Golgi membranes (Lev, 2006). For all these reasons, DAG has been extensively associated with vesicular transport events at the Golgi in yeast and mammalian cells (Asp et al., 2009; Baron and Malhotra, 2002; Fernández-Ulibarri et al., 2007; Kearns et al., 1997; Litvak et al., 2005; Sarri et al., 2011). Nonetheless, PA has recently been reported to regulate transport carrier formation at the Golgi (Yang et al., 2008; Yang et al., 2011).

DAG at the Golgi is tightly regulated by metabolic pathways that affect its consumption and production. On the one hand, CDP-cholinephosphotransferase (CPT) consumes DAG to generate phosphatidylcholine (PC) (Henneberry et al., 2002; Sarri et al., 2011; Tian et al., 2008) and diacylglycerol kinase (DAGK) converts DAG into PA (Mérida et al., 2008; Nagaya et al., 2002). On the other hand, DAG is generated by sphingomyelin synthases (SMSs) that convert PC and ceramide into sphingomyelin (SM) and DAG (Subathra et al., 2011; Villani et al., 2008), and by the sequential coupling of phospholipase D (PLD) and phosphatidic acid phosphatase (PAPs) in which the former generates PC-derived PA, which in turn is dephosphorylated by the latter to DAG (Roth, 2008; Sciorrà and Morris, 1999).

Summary

The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER–Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER–Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.

Key words: Diacylglycerol, Phosphatidic acid phosphatase, Golgi, ERGIC, Endoplasmic reticulum, Lipid homeostasis

Accepted 27 March 2013
Journal of Cell Science 126, 2641–2655
© 2013. Published by The Company of Biologists Ltd
doi: 10.1242/jcs.117705
Two types of mammalian PAPs have been identified according to their subcellular localization, substrate affinities and regulatory mechanisms (Brindley et al., 2009; Grimsey et al., 2008; Pyne et al., 2005; Sigal et al., 2005). PAP1 enzymes are cytoplasmic, Mg$^{2+}$-dependent and inhibited by N-ethylmaleimide, and PA is their only known substrate. PAP2 enzymes are integral membrane proteins, Mg$^{2+}$-independent, and insensitive to N-ethylmaleimide. PAP2 are also known as lipid phosphate phosphatases (LPPs) because, in addition to PA, they can also catalyze in vitro the dephosphorylation of other lipid phosphates such as ceramide-1-phosphate (C1P), sphingosine-1-phosphate (SIP), and lysophosphatidic acid (LPA) with different affinities (PA $>$ C1P $>$ S1P) (Long et al., 2005; Roberts et al., 1998; Waggoner et al., 1996). Due to the crucial role of the substrates and products of PAP activity in cell signaling, several PAP isoforms have been shown to contribute to the production of lipid signaling metabolites both inside and outside cells (Brindley and Pilquil, 2009; Pyne et al., 2009).

In mammals, three LPP isoforms have been reported: LPP1 (PAP2a), LPP2 (PAP2c) and LPP3 (PAP2b). LPPs are glycoproteins with a channel-like structure containing six putative transmembrane domains. The catalytic site is arranged into three distinct conserved domains (C1–C3) and faces the extracellular side of the plasma membrane or the luminal side of endomembranes (Long et al., 2008; Zhang et al., 2000). This topology is important since lipid phosphates do not easily cross membranes and therefore, their access to LPPs, particularly in intracellular compartments, will be a major factor in their dephosphorylation rate and metabolism (Brindley and Pilquil, 2009). At present, the only experimental strategy to regulate a particular LPP isoform is by modulating its expression (Escalante-Alcalde et al., 2003; Kai et al., 1997; Long et al., 2008; Ulrix et al., 1998). All LPPs are present to some extent in the plasma membrane (Alderton et al., 2001; Jasinska et al., 1999; Kai et al., 2006), while LPP2 and LPP3 have been variably localized in endomembranes such as ER, endosomes, vesicular structures and the Golgi complex (Alderton et al., 2001; Morris et al., 2006; Sciorra and Morris, 1999). However, little is known about their role in these subcellular compartments. The use of propanolol, which inhibits general PAP activity (Pappu and Hauser, 1983), has indicated that the DAG generated in this reaction is involved in the fission (Fernández-Ulibari et al., 2007) and in budding (Asp et al., 2009) at the Golgi complex, with the subsequent alteration in membrane trafficking at the ER–Golgi interface. Here we examine the molecular machinery involved in the production of DAG required for the membrane trafficking. We show that the PAP2 family member lipid phosphate phosphatase 3 (hereafter LPP3, also known as PAP2b) localizes in the early secretory pathway trafficking stations such as ER export sites (ERES), the ER–Golgi intermediate compartment (ERGIC) and the Golgi complex, mainly contributing to the retrograde transport.

Results

LPP3 localizes in compartments of the secretory pathway

Single labeling experiments in HeLa cells with anti-LPP3 antibodies (Long et al., 2008) stained a Golgi-like perinuclear region and peripheral dot-like structures, overlapping with the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) markers ERGIC53-GFP (Fig. 1A) and KDEL receptor (KDELr) (not shown). To assess the localization of LPP3 in more detail, cells were treated with the microtubule-depolymerizing agent nocodazole (NZ) and co-labeled for LPP3 and markers of several transport stations along the secretory pathway, such as Sec31A (endoplasmic reticulum exiting sites, ERES), KDELr (endoplasmic reticulum–Golgi intermediate compartment, ERGIC), GM130 (cis-Golgi) and Golgin97 (trans-Golgi/TGN) (Fig. 1). NZ treatment induces the formation of Golgi ministacks that, despite their small size, preserve the structural and molecular polarity (cis-to-trans) of the Golgi ribbon (Deijgraaf et al., 2007; Ho et al., 1989), which in turn facilitates colocalization analysis. In NZ-treated cells, LPP3 overlapped with all these markers to a variable extent (Sec31A $>$ KDELr $>$ GM130 $>$ Golgin 97) (Fig. 1B,C). Previous studies have reported LPP3 at the ER and the plasma membrane (Long et al., 2008; Sciorra and Morris, 1999), but with our anti-LPP3 antibodies the staining of both subcellular compartments (except for ERES) was not obvious. However, LPP3 was observed in both compartments after the expression of the human GFP-tagged LPP3 (hLPP3-GFP) in COS-7 and HeLa cells, in addition to its localization at the Golgi (supplementary material Fig. S1). The presence of LPP3 at ERES led us to examine its dynamics at the ER. To this end, COS-7 cells expressing hLPP3-GFP were examined by time-lapse confocal microscopy. They showed dot-like structures that exhibited slow, short range movements within ER cisterna, with no clear directionality (Fig. 1D; supplementary material Movie 1). Sometimes, these dot-like structures jumped from one cisterna to another (supplementary material Movie 1). This dynamic behavior is in accordance with what has been reported for ERES-associated transmembrane proteins (Hammond and Glick, 2000; Kano et al., 2004).

A pool of LPP3 constitutively cycles between the ER and the Golgi, and behaves like an ERGIC-resident protein

To examine the dynamics of LPP3 in the secretory pathway to the plasma membrane, we compared the ER-to-Golgi transport of LPP3 with that of a characteristic secretory protein, the membrane-associated vesicular stomatitis virus glycoprotein G (VSV-G), using the fluorescence recovery after photobleaching (FRAP) technique at the Golgi area. VSV-G was induced to accumulate at the ER at 40°C overnight, and then cells were treated with cycloheximide and incubated for 15 minutes at 32°C, which allows VSV-G to reach the Golgi. At this point the Golgi-associated fluorescence was photobleached and its recovery was analyzed. After 30 minutes, most of the fluorescence at the ER was lost, while the initial Golgi-associated fluorescence intensity was recovered (supplementary material Fig. S2A). Conversely, in cells expressing hLPP3-GFP the fluorescence at the ER barely decreased despite the arrival of LPP3 at the Golgi. This difference could be explained if LPP3 were more stably associated with ER membranes than VSV-G, or if LPP3 were in part constitutively recycled back from the Golgi to the ER. To investigate this latter possibility, we bleached the fluorescence signal out of the Golgi area in COS-7 cells expressing hLPP3-GFP for 24 hours and then added cycloheximide. After the photobleaching, we observed a partial recovery of the ER-associated signal (supplementary material Fig. S2B), which most likely have come from a pool of hLPP3-GFP located at the ERGIC and at the Golgi that is recycled back to the ER.
Collectively, these results strongly indicate that LPP3 behaves, in part, like an ERGIC-resident protein, cycling between the ER and the Golgi.

LPP3 participates in ERGIC membrane dynamics

As a first approach to examining the functional role of LPP3 in membrane trafficking at the ER–Golgi interphase, we used propranolol (an inhibitor of PAP activity; Billah et al., 1989) to assess its effect on the dynamics of ERGIC-53, a protein which constitutively cycles between the Golgi and the ER. HeLa cells expressing ERGIC53-GFP were incubated first at 15˚C, which blocks both anterograde and retrograde protein transport from the ERGIC, resulting in the accumulation of recycling proteins in swollen peripheral ERGIC clusters (Klumperman et al., 1998; Saraste and Svensson, 1991). The cells were then rewarmed to 37˚C. In agreement with previous reports (Ben-Tekaya et al., 2005), control cells showed numerous ERGIC53-GFP positive globular-like structures moving throughout the cytoplasm and forming transient tubular structures in a continuous process of elongation and shrinkage (Fig. 2A; supplementary material Movie 2). In contrast, propanolol-treated cells showed very few tubules emanating from ERGIC53-GFP structures (Fig. 2B; supplementary material Movie 3), which were less motile than untreated cells (compare supplementary material Movies 2, 3). When propanolol was removed, ERGIC tubulation was re-established (Fig. 2C; supplementary material Movie 4).

We next studied the role of LPP3 in ERGIC- and Golgi-associated membrane dynamics and protein transport. For this purpose, we suppressed the expression of LPP3 by transient
transfection of siRNAs and lentiviral infection with shRNAs in HeLa and Swiss 3T3 cells, respectively. In HeLa cells, two out of four different siRNAs against LPP3 exhibited a reduction in the protein level (about 70%) when added either individually or together (Fig. 3A). A similar decrease in LPP3 protein levels was also obtained in Swiss 3T3 cells (supplementary material Fig. S3). As a proof of specificity, we show that our anti-LPP3 antibody recognizes the expressed form of the human FLAG-tagged LPP3, giving the same electrophoretic bands pattern as that given by the anti-FLAG antibody (Fig. 3A).

To examine the effects of LPP3 silencing on the tubulation of the ERGIC, control and LPP3-knockdown HeLa cells were incubated at 15°C for 1 hour and then shifted to 37°C, fixed and stained for KDELr (Fig. 3B). At 15°C, a large amount of KDELr-stained dot-like structures appeared dispersed throughout the cytoplasm in both control and LPP3-silenced cells (Fig. 3B). After rewarming, numerous tubules appeared in control cells, but their formation was reduced in silenced cells (Fig. 3B,C) as occurred in propanolol-treated cells (Fig. 2B). To investigate the link between the inhibitory effect of LPP3 depletion on the ERGIC tubulation and the decrease in the DAG pool (see below), we examined whether the reduction in ERGIC tubulation could be prevented by adding the short fatty acid chain diacylglycerol analogue 1,2-dioctanoyl-sn-glycerol (DOG). When added shortly before the rewarming of LPP3-silenced cells, DOG significantly recovered the tubulation of KDELr-associated dot-like structures (Fig. 3D,E). Collectively, these results support the participation of LPP3 in ERGIC membrane dynamics.

Fig. 2. Inhibition of ERGIC tubulation by propanolol. (A,B) Time series of live cells extracted from supplementary material Movies 2, 3 and 4. HeLa cells expressing ERGIC53-GFP were incubated at 15°C for 1 hour with no addition (control) (A) or in the presence of propanolol (60 μM) for the last 5 minutes (B) and then shifted to 37°C. Magnifications from the indicated cell region recorded over time are shown below. (C) Initial time-point after washing propanolol in cell shown in B. Magnifications below show different time-points afterwards. In A and C, arrows with the same color indicate the temporal dynamics of the same ERGIC53-GFP dot-like structure. Scale bar: 10 μm.

LPP3 is not involved in the transport of anterograde cargo
To examine whether the effects on ERGIC dynamics of LPP3 depletion alter protein transport from the ER to the Golgi, we used two cargo markers: the transmembrane VSV-G and the soluble signal sequence-tagged DsRed (ssDsRed) proteins. HeLa cells constitutively expressing the thermosensitive mutant form (ts045) of the GFP-tagged VSV-G were transfected with oligonucleotides (#6 and #8) to silence the expression of LPP3. After 48 hours, transfected cells were incubated overnight at 40°C to accumulate VSV-G-GFP in the ER. Upon a shift to the permissive temperature (32°C), we analyzed the kinetics of acquisition of Endo H resistance, which is a hallmark of VSV-G transported to the cis/middle Golgi. The transport of VSV-G from the ER to the Golgi was not perturbed in LPP3-depleted cells (Fig. 4A). Next, we analyzed the ssDsRed transport from ERGIC peripheral clusters in control and LPP3-silenced HeLa cells that had been co-transfected with ERGIC53-GFP and ssDsRed. After blocking the transport from the ERGIC by incubating cells for 2 hours at 15°C, ssDsRed mainly accumulated in enlarged peripheral punctated structures and in the Golgi in both control and LPP3-silenced cells (Fig. 4B). After 20 minutes of rewarming to 37°C (Fig. 4C), LPP3-silenced cells showed greater colocalization of ERGIC53-GFP peripheral punctated structures with the ssDsRed than control cells (compare magnified insets in Fig. 4D for quantitative analysis). However, the percentage of ssDsRed that colocalized with ERGIC53-GFP over the total ssDsRed-positive punctated structures remained unaltered between control and LPP3-silenced cells (Fig. 4E). This result indicates
that the transport of ssDsRed from the ERGIC to the Golgi was not impaired by the depletion of LPP3. Moreover, we observed a decrease in the density of ERGIC53-GFP punctated structures in LPP3-silenced cells (compare ERGIC53-GFP panels in Fig. 4Cc,d, Fig. 4F for quantitative analysis), which was accompanied by an increase in their average size (Fig. 4G). Similar results were observed in cells cultured at 37˚C, showing a significant decrease in the density of endogenous KDELr dot-like structures in LPP3-silenced cells with respect to control cells (supplementary material Fig. S4). Collectively these results indicate that LPP3 participates in the maintenance of the architecture and dynamics of the ERGIC, but not in the anterograde transport of membrane and luminal cargo.

LPP3 participates in the retrograde protein transport

Previous reports indicate that incubation of cells at 15˚C induces the formation of tubules enriched in Golgi-associated SNAREs (Gos28 and GS15) and Rab (Rab6) proteins (Martínez-Alonso et al., 2007). As in our examination of the membrane tubulation from the ERGIC, here we first studied the formation of Rab6-GFP tubular and vesicular transport carriers in control and propanolol-treated cells by live imaging (supplementary material Fig. S5). After 1 hour at 15˚C, control cells showed a large number of tubular and vesicular Rab6-containing structures connected to the Golgi and dispersed throughout the cytoplasm. To study the dynamics of Rab6-GFP transport carriers formed at 15˚C, cells were then rewarmed to 37˚C and processed as indicated in A. Small red arrows point to representative tubular structures. (E) Quantitative analysis of results shown in D. *P<0.05, **P<0.01, ***P<0.001. Scale bars: 10 μm.

Fig. 3. ERGIC tubulation is inhibited in LPP3 knockdown cells. (A) Lysates from HeLa cells transfected with human LPP3-FLAG were subjected to western blot and incubated with anti-FLAG and anti-LPP3 antibodies. Lysates of these same cells as well as lysates from cells transfected for 72 hours with a non-target pool of siRNAs (N-T) or with a combination of two LPP3-specific siRNAs (6+8) were revealed with anti-LPP3 antibodies. Equally processed LPP3 knockdown cells were transfected for the last 24 hours with murine LPP3-myc and examined by western blotting with anti-LPP3 and anti-myc antibodies. Quantitative analysis of resulting LPP3 levels in the indicated transfection conditions are shown on the right. (B) Control (mock-transfected) and LPP3-silenced HeLa cells were first incubated at 15˚C for 30 minutes (Ba,c) and afterwards shifted to 37˚C for 10 minutes (Bb,d), fixed and stained with anti-KDELr antibody. The boxed areas are shown at higher magnification on the right. Arrows indicate tubular structures. (C) Quantitative analysis of cells showing KDELr-stained tubules after 10 minutes of rewarming in control cells (mock-transfected), non-targeting cells (N-T) and cells transfected with LPP3 siRNAs. (D) Control and LPP3-silenced cells were incubated at 15˚C for 30 minutes in the presence of DOG for the last 10 minutes, then rewarmed to 37˚C and processed as indicated in A. Small red arrows point to representative tubular structures. (E) Quantitative analysis of results shown in D. *P<0.05, **P<0.01, ***P<0.001. Scale bars: 10 μm.
Golgi, but they were more extended, and remained so for a longer time before their total disruption into small vesicular structures (supplementary material Fig. S5; Movie 6). Next, we examined the morphology and density of newly generated Rab6-GFP transport carriers (tubules and vesicles) from Golgi membranes in control and LPP3-silenced HeLa cells stably expressing Rab6-GFP, which, as before, had first been cooled to 15˚C for 1 hour and then shifted to 37˚C. After 10 minutes of rewarming, LPP3-depleted cells showed fewer Rab6-GFP particles than control cells (compare Fig. 5Ab,d and Fig. 5Ba,b for quantitative analysis). Interestingly, although LPP3-silenced cells contained fewer tubules, they were longer than those in control cells (Fig. 5D). Collectively, these results indicate that LPP3 participates in the formation of Rab6-GFP transport carriers generated at the Golgi.

To further investigate the role of LPP3 in Rab6-dependent protein transport, we analyzed the trafficking of the cy3-tagged subunit B of the Shiga toxin (STxB), which is transported from the Golgi to the ER in a COPI-independent and Rab6-dependent manner (White et al., 1999). Control and LPP3 silenced cells stably expressing Rab6-GFP were incubated with STxB at 4˚C for 30 minutes (supplementary material Fig. S6a,d), washed to remove unbound STxB and then shifted to 37˚C to initiate the internalization of the toxin. After 2 hours at 37˚C, STxB was mostly seen at the Golgi (Fig. 5c). When cells were subsequently incubated at 15˚C for 15 minutes, STxB appeared in enlarged peripheral vesicular structures, with the concomitant loss of the Golgi staining (supplementary material Fig. S6f). At 15˚C, we could barely see STxB colocalizing with Rab6-GFP (data not shown), in agreement with previous reports demonstrating that Golgi-emerging tubules formed at low temperature lack cargo (Martínez-Alonso et al., 2007). When cells were rewarmed to 37˚C for 10 minutes STxB reached the ER in about 50% of control cells, which was assessed by visualization of the characteristic reticular and nuclear envelope.
Conversely, in LPP3-silenced cells most STxB remained in the peripheral vesicle-like structures (Fig. 5Ec,F for quantitative analysis). In control cells, Rab6-GFP tubules contained STxB (Fig. 5Eb and magnified boxes). Taking into account that at 15˚C the STxB was barely present in tubular structures, we conclude that most of these tubules containing STxB and Rab6-GFP were newly formed during the rewarming to 37˚C. Conversely, in most of LPP3-silenced cells, co-labeled tubules were almost absent (Fig. 5Ed and magnified boxes), which is consistent with the reduction of Rab6-GFP tubular structures caused by LPP3 depletion (Fig. 5C).

To ensure that the observed trafficking defects caused by LPP3-silencing did not represent off-target effects of siRNA transfection, we performed rescue experiments involving murine LPP3, which lacks complementation for human siRNA sequences, and its protein expression levels are not perturbed (Fig. 4A). Remarkably, expression of this siRNA-resistant murine LPP3 protein reversed the blockade of the STxB arrival at the ER (Fig. 5G, asterisks).

Finally, we examined whether COPI-dependent retrograde transport is also regulated by LPP3. To this end, we monitored the transport of STxB containing the KDEL sequence in its COOH-terminus (STxB-KDEL) (Johannes et al., 1997). When STxB-KDEL reaches the ER compartment, it is retained, showing an ER-like staining pattern. Control and LPP3-silenced Swiss 3T3 cells were incubated with cy3-STxB following the same internalization protocol as indicated above. Human LPP3-silenced cells expressing murine LPP3wt (asterisks) showed Golgi- and ER-like staining patterns of STxB, whereas neighboring cells not expressing mLPP3-myc only showed the Golgi-like pattern (arrow). Panels on the right are higher magnifications of indicated cells shown in the left panels (arrowheads point to STxB in the ER). Scale bars: 10 μm.
A catalytically inactive LPP3 mutant reduces the formation of Rab6 transport carriers and the retrograde protein transport

Our next step was to test whether the expression of the wild-type (LPP3wt) and the catalytically inactive mutant (LPP3S197T; Escalante-Alcalde et. al., 2003) forms of human LPP3 affected protein transport at the ER–Golgi interface. First, we examined the formation of Rab6-containing transport carriers. When LPP3wt and Rab6 were co-expressed, both proteins colocalized at the Golgi and in cytoplasmic vesicular structures (Fig. 6A; see arrowheads in magnified boxes). The presence of both proteins in transport carriers provides no information about their directionality, since Rab6-containing transport carriers transit anterogradely to the plasma membrane (Grigoriev et. al., 2007; Grigoriev et. al., 2011) and retrogradely to the ER (White et al., 1999). To investigate whether some of these vesicular structures mediate in retrograde transport, we examined the colocalization of LPP3wt-GFP with internalized cy3-STxB. After 2 hours of STxB internalization at 37°C followed by 1 hour at 15°C, colocalization of LPP3 with STxB was seen in some vesicular structures (Fig. 6B and magnified boxes). Rab6 and LPP3 colocalization at the Golgi and in vesicular structures was seen only in cells expressing moderate levels of Rab6-myc.

Conversely, cells expressing high levels of Rab6-myc either alone or together with LPP3-GFP showed a complete redistribution of Rab6 into the ER (supplementary material Fig. S8). This observation is in accordance with the previously reported BFA-like phenotypical effect caused by Rab6wt or GTP-bound overexpression (Martínez et. al., 1997). Remarkably, the co-expression of Rab6-myc with the catalytically inactive LPP3 mutant (LPP3S193T-GFP) strongly reduced the redistribution of Rab6wt to the ER, with the concomitant increase of Rab6 still present in the Golgi (supplementary material Fig. S8A,B).

To study whether this blockade in the Rab6 redistribution to the ER caused by LPP3S197T mutant was due to inhibition of Golgi-to-ER retrograde transport, we monitored the arrival of retrograde cargo at the ER. In this case, we measured the colocalization of STxB with LPP3wt-GFP or LPP3S197T-GFP at the ER in COS-7 cells after 2 hours of internalization of STxB at 37°C, followed by 1 hour at 15°C and an additional hour of rewarming. At this time, in cells expressing LPP3wt part of STxB had reached the nuclear envelope, which was not the case in cells expressing the LPP3S197T mutant form (Fig. 6C,D).

Collectively, these results indicate that LPP3wt-GFP associates with Rab6 transport carriers, which are in part transported from

Fig. 6. Catalytically inactive LPP3 mutant impairs Rab6-dependent Golgi-to-ER protein transport. (A) HeLa cells were co-transfected with human LPP3wt-GFP and Rab6-myc plasmids and the colocalization of both proteins analyzed by confocal microscopy. Magnified pictures below show subcellular structures co-labeled for both proteins (arrowheads). (B) HeLa cells expressing human LPP3wt-GFP with internalized cy3-STxB (see protocol for Fig. 5E). Magnified pictures below show vesicular structures labeled only for LPP3 (arrows) or co-labeled for LPP3 and STxB (arrowheads). (C) Representative images of STxB internalized in COS-7 cells expressing human LPP3-GFP or human LPP3S197T. On the right are representative examples of human LPP3-GFP or LPP3S197T-GFP and cy3-STxB intensity profiles from random lines traced through the reticular cytoplasmic area. (D) Quantitative results from 5 lines per cell and 10 cells per experiment in two independent experiments. Scale bars: 10 μm.
the Golgi to the ER, and that the expression of the catalytically inactive mutant and the silencing of LPP3 produce similar defects in Rab6-dependent retrograde protein transport.

Ultrastructural alterations in the ER–Golgi interface in LPP3-silenced cells

We examined the ultrastructure in the ER–Golgi interface area in Swiss 3T3 cells depleted of LPP3 by means of the lentiviral shRNA system. Unlike control cells (Fig. 7A), LPP3-silenced cells showed some slightly swollen cisternae (Fig. 7C) and an invariably abnormal accumulation of numerous vesicular membrane profiles as well as membrane buds attached to Golgi cisternae and peri-Golgi tubulovesicular structures (Fig. 7B,C; arrowheads in D). Interestingly, some budding profiles clearly contained an electrondense material attached to the cytoplasmic face, which indicates the presence of the coatomer (Fig. 7D, arrows) while others did not show this electrondense content. No alterations in the ER were observed. Together, data supports the participation of LPP3 in the formation of COPI-dependent and COPI-independent transport carriers at the ERGIC and Golgi.

Alterations in the homeostasis of DAG in LPP3-silenced cells

To assess whether the aforementioned alterations in the ER–Golgi interface protein transport in LPP3-silenced cells were caused by changes in the phosphatidic acid (PA)-derived DAG, we first measured the production of DAG, triacylglycerol (TAG) and major phospholipids using radioactive labeling. The $^{[14C]}$acetate incorporation into DAG, TAG, and major phospholipids decreased in LPP3-silenced cells (Fig. 8A,C), which indicates that the newly synthesized DAG is reduced, which compromises the de novo synthesis of TAG and phospholipids in LPP3-silenced cells. Consistent with this conclusion, the incorporation of $^{[14C]}$acetate into PA as a percentage of total $^{[14C]}$acetate incorporation into the lipids was higher in LPP3-silenced cells than in control cells (Fig. 8B), indicating the accumulation of the de novo synthesized PA. To investigate whether the reduction of newly synthesized phospholipids was compensated by an enhancement of the recycling pathways, we examined the incorporation of $^{[32P]}$orthophosphoric acid. We observed that the $^{[32P]}$-labeling of major phospholipids was similar in control and LPP3-silenced cells (Fig. 8D), which confirmed a higher recycling of phospholipids in LPP3-silenced cells, compared to controls.

Next, we examined whether the DAG pool present in Golgi membranes was also affected after the silencing of LPP3. To this end, we expressed the GFP-tagged C1b domain of PKC$\hbox{\textit{h}}$ (GFP-C1b), which in control conditions localizes to the Golgi and acts as a dynamic sensor of DAG content in this compartment (Carrasco and Merida, 2004; Fernández-Ulibarri et al., 2007). LPP3-silenced Swiss 3T3 cells showed lesser GFP-C1b domain in the Golgi than control cells (supplementary material Fig. S9). Taken together, these results indicate that the depletion of LPP3 reduced de novo synthesized DAG and the Golgi-associated DAG content.

Discussion

LPP3 localization at the ER–Golgi interface

Here we provide evidence that human LPP3 is present in compartments of the secretory pathway from ERES to the trans-Golgi. The localization of LPP3 in the ER and the ERGIC is consistent with the presence of different pools of LPP3, one non-glycosylated and with immature N-glycans (Endo-H sensitive),
LPP3 metabolizes lipids involved in early secretory membrane trafficking

The enzymatic machinery that regulates membrane lipids in compartments of the secretory pathway determines their morphology, associated membrane trafficking and lipid–protein interaction (Bechler et al., 2010; Ben-Tekaya et al., 2010; Brown et al., 2003; de Figueiredo et al., 2000; Morikawa et al., 2009; San Pietro et al., 2009; Schmidt and Brown, 2009; Subathra et al., 2011). Here we incorporate LPP3 into the enzymatic machinery (PLD, SMS, LPAAT3, and PLA2) already related to the generation of the DAG necessary for the transport carrier formation along the secretory pathway. The observation that the depletion of LPP3 reduces \(^{14}\text{C}\)acetate incorporation into DAG and TAG, as well as into the major phospholipid classes, points to inhibition of the de novo synthesis of glycerolipids in LPP3-silenced cells. Taking into account that the conversion of PA to DAG is a necessary step for the de novo synthesis of phosphatidylcholine (PC), phosphatidylethanolamid (PE) and phosphatidylserine (PS), as well as the neutral lipid TAG, we postulate that LPP3 generates DAG by dephosphorylating the de novo synthesized PA in addition to the PA that comes from the PLD-induced hydrolysis of PC (Sciorra and Morris, 1999). The increase in \(^{14}\text{C}\)acetate labeled PA supports this idea. On the other hand, the observation that the labeling of major phospholipids with \(^{32}\text{P}\)orthophosphoric acid is similar in control and silenced cells (D). Results are from a representative experiment. PE, phosphatidylethanolamine; PC, phosphatidylcholine; SM, sphingomyelin; PI, phosphatidylinositol; PS, phosphatidylserine; DAG, diacylglycerol; TAG, triacylglycerol.

Fig. 8. Reduction of the de novo synthesis of DAG, TAG and major phospholipids in LPP3-silenced cells. (A–D) Control and LPP3-silenced HeLa cells were labeled with \(^{14}\text{C}\)acetate (A–C) or with \(^{32}\text{P}\)orthophosphoric acid (D) for the last 24 hours of the silencing protocol. Lipids were extracted, separated by TLC and counted for radioactivity. The labeling with \(^{14}\text{C}\)acetate of DAG and TAG (A) and main phospholipids (C), but not PA (B) is reduced in LPP3-silenced cells, whereas the labeling of phospholipids with \(^{32}\text{P}\)orthophosphoric acid is similar in control and silenced cells (D). Results are from a representative experiment. PE, phosphatidylethanolamine; PC, phosphatidylcholine; SM, sphingomyelin; PI, phosphatidylinositol; PS, phosphatidylserine; DAG, diacylglycerol; TAG, triacylglycerol.

and the other with mature N-glycans (Endo-H resistant) (Sciolla and Morris, 1999). Remarkably, the time-lapse analysis of LPP3 transport at the ER–Golgi interphase strongly suggests that part of the protein constitutively cycles between the ER and the Golgi, and behaves like an ERGIC-resident protein. The association of the overexpressed LPP3 with the STxB in vesicular structures directed to the ER indicates that LPP3 retrograde transport from the Golgi is partly Rab6-dependent. We also notice that unlike LPP1 and LPP2 isoforms, LPP3 contains the sequence KTKTT in the position 279–283 of its cytoplasmic C-terminus, which matches one of the two canonical motifs (KKXXX and KKKX) by which integral membrane proteins are incorporated into COPI transport carriers (Beck et al., 2009; Jackson et al., 1990; Nilsson et al., 1989). This could explain the interaction of LPP3 with the COPI machinery, which is later retrieved from the ERGIC and Golgi membranes and carried back to the ER and ERGIC respectively, in a similar manner to other ERGIC proteins such as ERGIC53, KDELr and Sac1 (Cabrera et al., 2003; Rohde et al., 2003; Schindler et al., 1993). Whatever the mechanism by which LPP3 recycles at the ER–Golgi interface, some of it escapes from the retrieval system to complete N-glycosylation at distal Golgi membranes and it finally reaches the plasma membrane, where it seems to associate with lipid rafts (Kai et al., 2006).

LPP3 in the transport carrier formation process and in protein transport at the ER–Golgi interface

Here we show that propanolol and LPP3 depletion cause similar impairments in the formation of ERGIC tubules. We consider that DAG formation mediated by LPP3 is required for the budding of highly curved tubular transport carriers from the ERGIC (and Golgi) membranes, since the addition of DOG (a short chain cell membrane-permeant DAG) prevented the inhibitory effects caused by the depletion of LPP3. In this context, recent studies have suggested a role for PA-derived DAG in the budding stage of transport carrier formation in Golgi membranes (Asp et al., 2009). This work showed that in the presence of 300 \(\mu\)M propanolol, which completely inhibits the PAP1 and PAP2 families of enzymes, Golgi cisternae remain flat without any omega profiles (which is indicative of vesicle formation), suggesting that PAP1 and PAP2 were involved in the initial budding stage. However, we reported earlier that 60 \(\mu\)M propanolol, which does not completely inhibit PAP1 proteins (Meier et al., 1998) and does not perturb the microtubular
network, induced the accumulation of COPI-coated budding vesicles at the Golgi and peri-Golgi membranes (Fernández-Ulibarri et al., 2007), thus implicating PAP2 enzymes in the fission step of vesicle generation. Thus, these previous results and those reported here indicate that PAP1 and the PAP2 subtype LPP3 could cooperate in the formation of transport carriers both in the ERCIG and in the Golgi. Likewise, LPP3 seems to regulate budding and fission at the Golgi, since the decrease in the number of Rab6-GFP transport carriers occurring when the PAP activity was inhibited by propanolol, LPP3 was silenced or the catalytically inactive LPP3 was expressed indicates that budding is impaired. The concomitant increase in the length of the Rab6 tubules also points to a defect in the final fission of these tubules. Therefore, we envision a model in which, at an early stage, LPP3 (whose catalytic domain faces the lumen) would form DAG (a cone-shape lipid) in the inner leaflet of the bilayer. At this stage LPP3 could coordinately act with cPLA2, early stage, LPP3 (whose catalytic domain faces the lumen) these tubules. Therefore, we envision a model in which, at an early stage, LPP3 (whose catalytic domain faces the lumen) would form DAG (a cone-shape lipid) in the inner leaflet of the bilayer. At this stage LPP3 could coordinately act with cPLA2, which forms LPA (an inverted cone-shape lipid, which in turn might be enhanced by the inhibition of LPP3) in the cytoplasmic leaflet of the bilayer (de Figueiredo et al., 2000; San Pietro et al., 2009; Yang et al., 2011), allowing membranes to bend outward into the cytosol, thereby facilitating initial budding. Although there are no experimental data showing the precise localization of DAG in a budding vesicle/tubule, the strong negative curvatures generated in the neck clearly require DAG and its spontaneous flip-flop between the two membrane leaflets. On the other hand, the presence of DAG permits and enhances the negative curvature necessary for the recruitment of ArfGAP1 through its ALP motif (Antony et al., 1997; Ambroggio et al., 2010). Thus, local DAG accumulation and the increased recruitment of ArfGAP1 could act together, leading to the progressive pre-fission constriction of the neck in such a way that final vesicle/tubule scission could occur even without the involvement of a fission protein. In any case, whatever the biophysical mechanism involved or the stage in the transport carrier formation in which LPP3 participates, cargo trafficking at the ER–Golgi interface should be affected. This is indeed the case in LPP3-silenced cells and in cells overexpressing a catalytically inactive form of LPP3, where retrograde cargo (STxB) transport is impaired. Although the transport of VSV-G from the ER to the Golgi was unaltered in LPP3-silenced cells, we observed increased colocalization of ERCIG53-GFP with ssDsRed after the rewarming to 37°C from 15°C. A possible explanation for this apparent discrepancy is that the depletion of LPP3 perturbs the maturation and/or sorting functions of ERCIG compartment. In contraposition to the maturation model, in which ERCIG clusters would represent transport vehicles for protein delivery to the Golgi, recent studies show that the ERCIG is a stable compartment which is made up of numerous discontinuous elements that function in bidirectional sorting to the ER and to the Golgi. The reduction in the number of ERCIG53-GFP elements (with the concomitant increase in their size) as well as the greater association of ERCIG53-GFP with the ssDsRed secretory protein seen in LPP3-silenced cells indicates that ERCIG-resident proteins (such as ERCIG53) cannot be efficiently sorted from transport carriers that contain anterograde protein cargo (such as ssDsRed). Then, tubulation could be more involved in the interconnection and membrane exchange occurring between ERCIG stationary clusters (which would determine the steady number of ERCIG dot-like structures at physiological conditions) rather than a critical process for transport of anterograde cargo at the ER–Golgi interface. Likewise, the decrease in density of ERCIG clusters could result from impairment in the retrograde transport from the cis-Golgi to the ERCIG, which is supported by the delay in the STxB-KDEL transport from the Golgi to the ER and the accumulation of uncompleted fissioned buds in Golgi cisternae.

Remarkably, the retrograde trafficking impairment occurring in LPP3-depleted cells does not distinguish between COPI-dependent and COPI-independent mechanisms, as both wild type STxB (COPI-independent) and STxB-KDEL (COPI-dependent) were equally perturbed in LPP3-silenced cells. These results suggest that the DAG pool derived from the LPP3 activity is involved more in generating the membrane curvature than in acting as an acceptor for the recruitment of a specific molecular machinery that discriminates between the COPI-dependent or COPI-independent retrograde protein transports.

In conclusion, our study shows that LPP3, en route to the plasma membrane (where it has a variety of physiological functions (Escalante-Alcalde et al., 2003; Long et al., 2005; Huntsoe et al., 2010), acts in early compartments of the secretory pathway, in particular in the formation of retrograde transport carriers. LPP3 dephosphorylates at least de novo synthesized PA to generate DAG, which is in turn necessary for the aforementioned transport process. Thus, LPP3 can be added to the increasing arsenal of enzymatic machinery that regulates the lipid metabolism of secretory compartments, which contributes to the formation of transport carriers.

Materials and Methods

Antibodies and plasmids

Rabbit polyclonal antibodies against LPP3 used for immunocytochemistry were generated to the 233–235 amino acid sequence of the human protein (Alderton et al., 2001). Antibodies used for western blotting were provided by H. Kanoh (Sapporo Medical University School of Medicine, Japan). Mouse monoclonal antibodies to KDEL receptor were purchased from Calbiochem, BD Transduction Laboratories (San José, CA, USA). Mouse monoclonal antibodies to GM130 and myc, and rabbit polyclonal antibodies to FLAG were purchased from Sigma (St. Louis, MO, USA). Mouse monoclonal antibody to Golgin97 and rabbit polyclonal antibody to GFP were purchased from Molecular Probes (Paisley, United Kingdom). Secondary antibodies [Fab’2], fragments conjugated to Cy3- or Alexa-488 were from Jackson ImmunoResearch Laboratories (West Grove, PA, USA). Secondary antibodies conjugated to HRP were from Promega (Madison, WI, USA).

Plasmids: LPP3wt-GFP and LPP3si1977-GFP were provided by H. Kanoh (Medical School University of Medicine, Sapporo, Japan). Rab6-myc was from B. Goud (Institut Curie, Paris, France). GFP-C1 domain-PKCα C1 domain-PKCα was from I. Mérida (CSIC, Madrid, Spain), and ERCIG53-GFP and ssDsRed were from H.-P. Hauri (Biozentrum, University of Basel, Basel, Switzerland). Plasmids encoding mouse LPP3wt-myc and human Gb3 synthase were purchased from OriGene (Rockville, MD, USA). The second-generation lentivirus packaging (psPAX2) and envelope plasmids (pMD2.G) were provided by R.M. Rios (Cabimer, Sevilla, Spain). Cy3-conjugated wild type Shiga toxin B subunit (STB) and STxB coupled to the KDEL sequence (STxB-KDEL) were provided by L. Johannes (Institut Curie, Paris, France).

Chemicals and reagents

2-dioctanoyl-sn-glycerol (DOG) was purchased from Sigma (St. Louis, MO, USA), propanolol and nocodazole were from Calbiochem (Darmstadt, Germany). Endoglycosidase H (Endo H) was purchased from New England Biolabs (Beverly, MA) and [14C]acetate and [32P]orthophosphoric acid were from PerkinElmer Life Sciences (Waltham, MA, USA). Unless otherwise stated, all other chemicals were from Sigma or Calbiochem.

Cell lines and cell culture conditions

HeLa cells stably expressing Rab6-GFP were provided by B. Goud (Institut Curie, Paris, France). HeLa cells stably expressing VSVG-GFP were provided by V. Malhotra (Center of Regulatory Genomics, Barcelona, Spain). HeLa, COS-7, Swiss 3T3, and 293T cells were cultured in DMEM (Invitrogen, Paisley, United Kingdom) containing 10% of fetal calf serum (FCS; Gibco/BRL, Invitrogen, Paisley, United Kingdom) and supplemented with sodium pyruvate (1 mM),
glutamine (0.5 mM), penicillin (100 U/ml) and streptomycin (100 µg/ml). Cells were grown in a humidiﬁed incubator at 5% CO2 at 37°C. Expression of stably transfected HeLa Rab6-GFP and HeLa VSVG-GFP cells was maintained by adding gentisic (500 µg/ml) to the culture medium. For the temperature experiments, cells were cultured in a temperature-controlled incubator at 15°C for different periods of time. Where indicated, cells were treated with nocodazole (NZ, 30 µM), propanolol (60 or 100 µM) or DOG (3 µM) for the indicated times.

LPP3 silencing and plasmids transfection

The negative control non-targeting pool of siRNAs and the siRNAs sequences against human LPP3 – oligonucleotide #6 (5'-GGACAUUAUUGAGACCGAA-3') and oligonucleotide #8 (5'-GGACAUUAUUGAGACCGAA-3') were obtained from Open Biosystems (Huntsville, AL, USA). Clone C138 was purchased from Open Biosystems (Huntsville, AL, USA). Colony details for creating shRNAs against LPP3 are available online (http://www.thersomolisticﬁnch.com). The viral particles were produced by transient co-transfection of plasmid encoding LPP3 shRNA and packaging vectors into 293T cells using Lipofectamine 2000 (Invitrogen, Paisley, United Kingdom). The resulting supernatant was collected after 48 hours. For the infection, Swiss 3T3 cells were seeded at a density of 6x10^4 cells in 100-mm plates for 24 hours. Thereafter, lentiviral particles containing siRNAs were added to the culture medium for 24 hours. The post-transduction culture medium was subsequently replaced with complete DMEM supplemented with puromycin (1 µg/ml). After 96 hours, infected cells were collected for western blotting or ﬁxed for immunofluorescence analysis. Control Swiss 3T3 cells were infected with lentiviral particles lacking the plasmids containing the LPP3 shRNAs. For plasmid transfections, Fugene (Promega) were used for HeLa cells and Lipofectamine 2000 for Swiss3T3 and 293T cells, following the manufacturer’s instructions in all cases.

Immunofluorescence

Indirect immunofluorescence assays were carried out as previously described (Fernandez-Ulloa et al., 2007), except when the tubulation of the ERGIC was examined. In this case, cells were ﬁxed at 37°C with 3% paraformaldehyde (PFA) in PBS for 10 minutes followed by additional 10 minutes of ﬁxation at room temperature. The antibodies were used at the following dilutions: anti-LPP3 (1:100), anti-KDEL (1:500), anti-Golgin97 (1:500), anti-GM130 (1:1000), anti-EEA1 (1:50), anti-mouse-Cy3 (1:200), and anti-rabbit-Cy2 (1:200) and anti-rabbit-Alexa488 (1:100). Coverslips were mounted on microscope slides using Mowiol (Calbiochem). Microscopy and imaging were performed either with an Olympus BX61 epifluorescence microscope equipped with a cooled Olympus CCD camera (Lake Success, NY) or with a TCS-CL laser scanning confocal microscope (Olympus, Germany). Confocal images were taken with a PL APO 63× (NA 1.32) or PL APO 100× (NA 1.4) objectives. For each cell, different images with an optical slice of 0.5 µm from the ventral surface to the top of the cell were acquired.

Live imaging

Time-lapse fluorescence confocal microscopy experiments were carried out equipped with a TCS-CL laser-scanning confocal spectral microscope (see above) equipped with an incubation system with temperature and CO2 control. GFP images were acquired with a PL APO 100× (NA 1.4) objective, 488-nm laser line (excitation intensity 15%), excitation beam splitter RSF 500, emission range detection: 500–610 nm and the confocal pinhole set at 1 airy unit. Images were recorded at 0.6 second intervals for a maximum of 15 minutes and processed using the freeware ImageJ. Filters were used to optimize each experiment. For the analysis of ERGIC53-GFP and Rab6-GFP tubulation, the initial frame was acquired immediately after shifting cells from a temperature-controlled incubator at 15°C to another incubation system coupled to the TCS-CL confocal at 37°C. In the experiments with ERGIC53-GFP, where indicated, propanolol was added 5 minutes before the shift from 15°C to 37°C. In the reversion experiment, propanolol containing media was carefully replaced after 6 minutes of incubation of cells at 37°C by adding fresh media. In the experiments with Rab6-GFP, propanolol was added at the moment of the temperature shift.

FRAP and iFRAP experiments

Fluorescence recovery after photobleaching (FRAP) experiments were performed using the Leica confocal mentioned above equipped with an incubation system with temperature and CO2 control. COS-7 cells were seeded to a 35-mm plate (Nunc, Roskilde, Denmark) containing a glass coverslip of 22 µm (Micro cover glass; Electron microscopy Sciences, Fort Washington, PA). 24 hours after seeding, COS-7 cells were infected with LPP3-GFP and VSVG-GFP. In the case of VSVG-transfected cells were incubated at 4°C to accumulate the protein at the ER. After FRAP experiments 24 hours after transfection, the glass coverslip was mounted in the video confocal chamber, keeping the cells at 33°C. For FRAP experiments, the whole Golgi area was photobleached using 40 scans with the 488 nm laser line at full power. Subsequent images were taken every 0.657 seconds using 63× oil immersion objective lens (numerical aperture, 1.32), 488 nm laser line and the confocal pinhole set at 5 airy units to minimize changes in fluorescence efficiency attributable to proteins moving away from the plane of focus. Recovery of the Golgi-associated intensity was monitored for about 30 minutes. To evaluate the results of photobleaching experiments, the observed fluorescence equilibration in the bleached region (the Golgi complex) was quantiﬁed using the Image Processing Leica Confocal Software. Background subtraction was measured from the cell edge outside the Golgi. All experiments were background subtracted, corrected and normalized using the equation described below. For each time point the relative recovery of total ﬂuorescence intensity in the bleached Golgi region was calculated as:

\[
I_t = \left(\frac{I_{Golgi(t)}}{I_{Golgi(0)}} \right) \times \left(\frac{I_{Cytoplasm(t)}}{I_{Cytoplasm(0)}} \right) \times 100
\]

where \(I_{Golgi(t)}\) and \(I_{Cytoplasm(t)}\) are the average fluorescence intensities of the bleached (Golgi) and unbleached (Cytoplasm) regions at the time-point \(t\) and \(I_{Golgi(0)}\) and \(I_{Cytoplasm(0)}\) are the average intensities of the corresponding areas before the Golgi bleaching.

For iFRAP experiments, after about 24 hours of transfection with LPP3wt-GFP, COS-7 cells were treated with cycloheximide (Sigma, St.Louis, MO, USA) at 0.1 µg/ml just before performing photobleach of the fluorescence out of the Golgi by 80 scans with the 488 nm laser line at full power. Afterwards, images were collected with a 63× oil objective lens (numerical aperture, 1.32, pinhole set at 1 airy units) applying a 6× zoom to visualize the endoplasmic reticular ﬂuorescence recovery along time. Images were collected every 5 minutes for 20 minutes.

Image processing

All the images were analyzed using the freeware ImageJ version 1.33 by Wayne Rasband (NIH, Bethesda, USA). Briefly, the total number of Rab6-GFP tubular structures per cell was the result of summing the tubules counted in each slice. The density of ERGIC53-GFP and KDELr dot-like structures was calculated setting an arbitrary threshold on the Z projection of different slices and making a ratio between the number of vesicles and the cell area (in both cases excluding the Golgi). The size of ERGIC53-GFP dot-like structures was calculated converting the average area in pixels of individual vesicles to their diameter (in nanometers). Rab6-GFP number of tubular and globular transport carriers was calculated as indicated above by counting the number of structures between 5 and 200 pixels. The length of Rab6-GFP transport assays was calculated from the Z projection of different slices by measuring the area in pixels of drawn lines connecting the extremities of each tubule. The method to quantify colocalization between the different markers was the following: the cell area was delineated setting up a threshold for each of the markers assessed. Afterwards, colocalization analysis was performed using the ImageJ plug-in named ‘colocalization highlighter’, considering ‘colocalization’ when the ratio of fluorescence intensities between red and green channels was above 0.5. Those pixels above the threshold in which this ratio is accomplished appear in a binary image color as white. Thereafter, a ratio between the number of pixels of one channel that colocalizes with the marker in the other channel and the total number of pixels above the threshold measured for each of the channels was obtained. To quantify colocalization between LPP3wt-GFP and LPP3S197T-GFP with the STx8-cy3 subunit at the ER, the fluorescence intensity proﬁles of each marker were obtained tracing lines randomly along the reticular staining of LPP3wt and LPP3S197T. For each pixel we calculated the difference between the LPP3wt/LPP3S197T-GFP and StxB-cy3 intensities.

Protein transport assays

For the ssDsRed transport assay, HeLa cells were co-transfected with plasmids encoding ssDsRed and ERGIC53-GFP. After 17–20 hours of expression, anterograde trafﬁc from the ERGIC was blocked by incubating cells at 15°C for...
2 hours. Thereafter, cells were warmed to 37°C and incubated at 37°C for 20 minutes to allow ssDsRed transport to the Golgi.

For the VSVG-GFP Endo-H resistance acquisition transport assay, HeLa cells stably expressing VSVG-GFP were incubated the last 24 hours of silencing at 40°C. Cycloheximide was added to a final concentration of 100 ng/ml, and then cells were shifted to 32°C to allow transport. Cell lysates at different time-points after the temperature shift were obtained solubilizing pellets in 0.5% SDS and 1% 2-mercaptoethanol (0.1 ml per 35-mm dish), and heated to 100°C. 20 μg of protein from each lysis was digested with Endo-H according to the manufacturer’s protocol and subjected to SDS-PAGE on 8% gels. VSVG-GFP was detected by immunoblotting with an anti-GFP antibody.

For the wild-type Shiga toxin B fragment (STxB) transport assay, two sets of experiments were used: HeLa cells (wild type or stably expressing Rab6-GFP) and COS-7 cells co-transfected with either LPP3wt-GFP or LPP3S197T-GFP together with a cell line expressing the STxB receptor Gb3. Briefly, cells were first incubated for 15 minutes in DMEM in the presence of 0.5 μg/ml of Cy3-STxB. Subsequently, the unbound Shiga toxin was removed by three washes with ice-cold PBS. Thereafter, fresh DMEM was added and cells were incubated at 37°C for 2 hours to accumulate internalized STxB in the Golgi. Next, retrograde transport from the Golgi to the ER was synchronized by shifting cells to 1 hour at 37°C, after which STxB arrival in the ER was allowed by shifting cells to 37°C for 10 minutes (in HeLa) or 1 hour (in COS-7).

For the Shiga toxin B subunit containing the KDEL sequence (STxB-KDEL) transport assay, Swiss 3T3 cells were first incubated with Cy3-ST-B-KDEL (4 μg/ml) for 45 minutes at 4°C and, subsequently, the unbound toxin was removed by three washes with ice-cold PBS. Thereafter, cells were incubated with DMEM at 19°C for 2 hours to accumulate the internalized STxB-KDEL in early/recycling endosomes. Next, cells were shifted to 37°C. In all transport experiments cells were fixed in FPA (4% in PBS) at the indicated times.

Transmission electron microscopy
For transmission electron microscopy (TEM), Swiss 3T3 cells infected with the LPP3 shRNA lentivirus were rapidly fixed after 96 hours post-infection with 1.25% glutaraldehyde in PIPES buffer (0.1 M, pH 7.4) containing sucrose (2%) and 0.1 M phosphate (pH 7.4) for 1 hour. The cells were then gently scraped and pelleted at 100 g for 10 minutes, rinsed in PIPES buffer (3×5 minutes), and postfixed with 1% (wt/vol) OsO4, 1% (wt/vol) K2Fe(CN)6 in PIPES buffer for 1 hour at room temperature in the dark. They were then treated for 5 minutes with tannic acid (0.1%) in PIPES buffer, rinsed in distilled water, block-stained with 1% uranyl acetate in 70% ethanol for 1 hour, dehydrated with graded ethanol solutions, and finally embedded in Epon plastic resin (EMS, Hatfield, PA). Ultrathin sections were stained with lead citrate and observed on a JEOL 11010 electron microscope (Peabody, MA). Micrographs of randomly selected areas were obtained with a GatanBiocam digital camera (Pleasanton, CA) at the same final magnification.

Determination of lipid labeling
Control and silenced cells were labeled with 5 μCi/ml [32P]orthophosphoric acid or 1 μCi/ml [3H]acetate for the last 24 hours of LPPL3 silencing. Lipids were extracted as previously described (Sarri et al., 2011). Individual lipid classes were separated by TLC, identified with authentic standards and counted for radioactivity. Major phospholipid classes were phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidic acid (PA), sphingomyelin (SM), and glucosylceramide (GC). The [3H]-labeled lipids and the [32P]-labeled phospholipids separated in the TLC plates were counted for radioactivity with a PhosphorImager (Typhon TRIO, Amersham Biosciences), and analyzed with ImageQuant software (Amersham Biosciences).

Statistics
Unless stated otherwise, data are presented as mean ± s.e.m. of at least three independent experiments. Statistical analysis was performed with either a paired Student’s t-test or ANOVA one-way followed by Tukey’s multiple comparison test. For statistical computation and estimation of significance, we used the online software GraphPad (San Diego, CA; www.graphpad.com).

Acknowledgements
We thank our colleagues for generously providing antibodies, plasmids and cells used in this study, Maite Muñoz for technical support, staff of SCT-UB for confocal microscope advice, Rosa M.

Fig. S1. Subcellular localization of overexpressed LPP3wt-GFP in COS-7 and HeLa cells. Cos7 (top) and HeLa (bottom) cells expressing for 24 h human LPP3wt-GFP, fixed and stained for GM130 (A) or Golgi97 (B). LPP3-GFP presence in the nuclear envelope (representative of the ER localization) and in the plasma membrane (arrowhead) are indicated by an arrow and an arrowhead, respectively. Scale bars: 10 μm.
Fig. S2. LPP3 behaves in part as an ER-to-Golgi cycling protein. (A) Time-lapse of LPP3-GFP and VSVG-YFP fluorescence recovery after photobleaching of the Golgi area in COS-7 cells transiently transfected with LPP3-GFP or VSV-G-YFP plasmids. For VSVG-YFP experiments, cells were incubated overnight at 40°C to keep the protein accumulated at the ER. Subsequently, cells were treated with cycloheximide, shifted to 32°C for 10 min and the fluorescence at the Golgi area was bleached. Images show the recovery of the fluorescence at the Golgi after 30 min. The recovery of Golgi intensity occurs in parallel to the disappearance of the ER staining. However, after 30 min post-bleach of the Golgi area in LPP3-GFP transfected cells, the reticular fluorescence staining remains almost unchanged in comparison to that observed in the beginning of the photo-bleach. On the right, graphs depicting the rate between the Golgi and the whole cell fluorescence along the time for LPP3-GFP and VSVG-YFP. (B) Fluorescence recovery after photobleaching of the LPP3-GFP signal out of the Golgi showing after 20 min of post-bleaching the presence of LPP3-GFP again at the ER. Arrowheads indicate the staining of the nuclear envelope. Scale bars: 10 μm.
Fig. S3. **ShRNA and lentiviral infection in Swiss 3T3 cells.** Cell lysates from Swiss3T3 cells mock infected (control) or infected with LPP3 shRNA lentivirus (TRC49 and TCR51) were obtained after 96 h of infection and analyzed by Western blotting with anti-LPP3 antibodies. The histogram shows the percentage of total LPP3 protein content in silenced cells compared to mock infected cells. **P ≤ 0.01 and ***P ≤ 0.001.

Fig. S4. The density of KDELr particles is reduced in LPP3-depleted cells. Representative images of the KDELr staining and its quantitative analysis in control and LPP3-silenced HeLa cells. Scale bar: 10 μm.
Fig. S5. **Propanolol reduces the exit of Rab6-GFP transport carriers from the Golgi.** Time series of live cells extracted from supplementary material Movies 4 and 5. HeLa cells stably expressing Rab6-GFP were incubated at 15°C for 1 h and then shifted to 37°C initiating time-lapse recording (left panel and time points below extracted from supplementary material Movie 4). Propanolol was added at the moment of rewarming cells to 37°C (right panel and time points below extracted from supplementary material Movie 5). Arrows point to the dynamic formation and consumption of Rab6-GFP tubules exiting from the Golgi at the indicated times after rewarming. Note that tubules formed after propanolol treatment are longer and require more time to generate vesicular carriers. Scale bar: 10 μm.
Fig. 56. LPP3 silencing does not alter the trafficking of STxB from the plasma membrane to the Golgi. Control and LPP3-silenced HeLa cells expressing Rab6-GFP were incubated with STxB at 4°C for 15 min (a and d). After washing unbound toxin, cells were incubated at 37°C for 2 h, allowing the toxin to accumulate in the Golgi (b and e). Thereafter, cells were cooled at 15°C for 60 min. A synchronized redistribution of STxB in peripheral vesicle-like structures was observed in both cases (c and f). Scale bar: 10 μm.
Fig. S7. LPP3 silencing inhibits the COPI-dependent retrograde transport of STxB-KDEL. Control and LPP3 silenced Swiss 3T3 cells were incubated with STxB containing the ER-retention KDEL signal (STxB-KDEL) at 19.5°C for 3 h to block transport at the early endosomal compartment. Localization of STxB-KDEL in this compartment was analyzed using anti-EEA1 antibodies (A, B, I, J). Thereafter, cells were warmed to 37°C to induce the synchronic retrograde transport of the toxin to the ER through the Golgi complex (C–H, K–P), which was visualized with anti-giantin antibodies. After 6 h at 37°C, almost all the STxB-KDEL was already localized in the ER in control cells, whereas the majority of STxB was still retained in the Golgi in LPP3-silenced cells. The histogram shows the percentage of cells showing STxB-KDEL staining in the Golgi at 2, 4 and 6 h after the shift to 37°C. Scale bar: 10 μm.
Fig. S8. Catalytically inactive LPP3 prevents the induced redistribution of Rab6 to the ER. (A) Rab6-myc subcellular localization in high overexpressed Rab6-myc cells cotransfected with LPP3wt-GFP or with the catalytically inactive LPP3S197T-GFP mutant. (B) Quantitative analysis of the different Rab6-myc redistribution patterns (ER and ER-Golgi) shown in panel A.
Fig. S9. Redistribution of the PKCθ-C1b domain from the Golgi to the cytosol is perturbed in LPP3-silenced cells. Control (a,b,e,f) and silenced (c,d,g,h) Swiss 3T3 cells using LPP3 shRNA lentivirus (TCR49) were transfected with GFP-tagged C1b domain of PKCθ and stained with anti-GM130 antibody to visualize the Golgi (upper panels). Bottom panels: magnifications of boxes indicated in the upper panels. The relative fluorescence intensity emitted by GFP is shown (maximum in red; intermediate in green; minimum in blue) in the Golgi. Note that the GFP-C1b intensity at the Golgi is higher in control than in LPP3-silenced cells. Images are representative of two different experiments. Scale bar: 10 μm.

Movie 1. LPP3wt-GFP dynamics in the ER of COS-7 cells.
Movie 2. ERGIC53-GFP dynamics in control HeLa cells.

Movie 3. ERGIC53-GFP dynamics in propranolol-treated HeLa cells.

Movie 4. ERGIC53-GFP dynamics after propranolol wash-out.
Movie 5. Rab6-GFP dynamics in control HeLa cells.

Movie 6. Rab6-GFP dynamics in propranolol-treated HeLa cells.