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Summary
Directional migration requires the coordination of cytoskeletal changes essential for cell polarization and adhesion turnover.
Extracellular signals that alter tyrosine phosphorylation drive directional migration by inducing reorganization of the actin cytoskeleton.
It is recognized that Nck is an important link between tyrosine phosphorylation and actin dynamics; however, the role of Nck in

cytoskeletal remodeling during directional migration and the underlying molecular mechanisms remain largely undetermined. In this
study, a combination of molecular genetics and quantitative live cell microscopy was used to show that Nck is essential in the
establishment of front–back polarity and directional migration of endothelial cells. Time-lapse differential interference contrast and total

internal reflection fluorescence microscopy showed that Nck couples the formation of polarized membrane protrusions with their
stabilization through the assembly and maturation of cell–substratum adhesions. Measurements by atomic force microscopy showed that
Nck also modulates integrin a5b1-fibronectin adhesion force and cell stiffness. Fluorescence resonance energy transfer imaging
revealed that Nck depletion results in delocalized and increased activity of Cdc42 and Rac. By contrast, the activity of RhoA and myosin

II phosphorylation were reduced by Nck knockdown. Thus, this study identifies Nck as a key coordinator of cytoskeletal changes that
enable cell polarization and directional migration, which are crucial processes in development and disease.
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Introduction
Reorganization of the cytoskeletal architecture is the driving

force behind morphological and functional changes involved in

persistent cell migration (Friedl and Wolf, 2010; Gardel et al.,

2010; Petrie et al., 2009). Deciphering how cytoskeletal

remodeling and signaling networks are spatially and temporally

coordinated during directional, persistent cell migration remains

a crucial challenge.

The cell migration cycle involves the establishment of a front–

rear axis of polarity, successive cycles of membrane protrusion,

adhesion to the substratum, forward propulsion of the cell body,

and disengagement of the trailing edge (Lauffenburger and

Horwitz, 1996). Extracellular signals that alter tyrosine

phosphorylation, including growth factors and fibrils of the

extracellular matrix, promote cytoskeletal rearrangements that

coordinate the steps in the cell migration cycle (Casaletto and

McClatchey, 2012; Geiger and Yamada, 2011; Huttenlocher and

Horwitz, 2011). Signaling by tyrosine phosphorylation relies on

recognition by proteins containing a Src homology (SH) 2

domain (Machida and Mayer, 2005; Pawson, 2004) such as the

Nck adaptors. The Nck family of SH2/SH3 domain-containing

adaptors, consisting of Nck1/a and Nck2/b (Buday et al., 2002;

Li et al., 2001), is required during development (Bladt et al.,

2003) and is involved in cytoskeletal remodeling underlying

pathogen–host cell interactions (Campellone et al., 2004;

Gruenheid et al., 2001; Moreau et al., 2000; Scaplehorn et al.,

2002), T-cell receptor activation (Barda-Saad et al., 2005; Lettau

et al., 2009), invadopodia formation (Oser et al., 2010; Stylli

et al., 2009), cell adhesion and motility (Abella et al., 2010;

Antoku et al., 2008; Guan et al., 2009; Lapetina et al., 2009;

Rivera et al., 2006; Ruusala et al., 2008), and intercellular

junction organization in kidney podocytes (Jones et al., 2006;

Verma et al., 2006). Nck1 and Nck2 have broad and overlapping

expression patterns and are believed to have mostly redundant

functions (Bladt et al., 2003), however, non-compensating roles

depending on the specific cellular and signaling context have also

been suggested (Guan et al., 2007; Guan et al., 2009; Hu et al.,

2009).

We and others demonstrated that Nck adaptors are involved in

cytoskeletal rearrangements leading to the formation of dorsal

membrane ruffles induced by growth-factors (Abella et al., 2010;

Rivera et al., 2006; Ruusala et al., 2008). Previously, we showed

that Nck promotes localized actin polymerization through the

activation of the N-WASp/Arp2/3 pathway (Rivera et al., 2004)

by a mechanism that involves cooperation with phosphoinositides

(Rivera et al., 2009). The formation of protrusions at the edge of
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migrating cells, on the other hand, is mediated by Arp2/3-

dependent actin polymerization stimulated by the related WAVE
proteins (Suetsugu et al., 2003). Although early studies linked
Nck to the activation of the WAVE complex (Eden et al.,

2002), recent investigations suggest that activation involves
phosphorylation of complex components and simultaneous
interactions with Rac-GTP and acidic phospholipids
(Lebensohn and Kirschner, 2009). More recently, a role for a

complex consisting of Nck and WAVE2 in the phagocytosis of
human-restricted CEACAM-binding bacteria has been described
(Pils et al., 2012). Thus, the role played by Nck-dependent actin

remodeling in the formation of polarized protrusions in migrating
cells remains undetermined.

Current models postulate a mechanical and biochemical
coupling between actin dynamics and the assembly/disassembly

of adhesion structures in migrating cells (Gardel et al., 2010).
Although Nck adaptors are involved in cell adhesion and motility
(Stoletov et al., 2001; Vaynberg et al., 2005), it is currently

unknown if the assembly and turnover of adhesion structures is
modulated by Nck. We hypothesized that the Nck family
contributes to endothelial cell motility and morphogenesis by

coordinating protrusion at the leading edge with adhesion
turnover. Here we show that abrogation of Nck signaling in
endothelial cells leads to deficient migration and impaired

directionality due, primarily, to the loss of a front–rear axis of
polarity, the formation of transient/unstable membrane
protrusions, and disruption of adhesion turnover. Importantly,
our live cell imaging studies reveal that modulation of the

spatiotemporal activation of the Rho GTPases by Nck is a
key molecular mechanism involved in endothelial cell
morphodynamics.

Results
Nck regulates directional motility through modulation of
protrusion dynamics

Although it is generally assumed that Nck1 and Nck2 have
mostly overlapping functions, their individual contribution to cell
motility has not been determined. The expression of both Nck1
and Nck2 in HUVEC was confirmed by semi-quantitative RT-

PCR (supplementary material Fig. S1B). We used a loss-of-
function approach based on the expression of short hairpin RNAs
that consistently induced a ,90% and ,50% decrease of mRNA/

protein levels of Nck1 or Nck2, respectively (supplementary
material Fig. S1C–F). Rescue of double knockdown cells
(simultaneous targeting of Nck1 and Nck2) with retroviral

particles harboring a shRNA-resistant Nck2 cDNA resulted in
expression levels ,2 fold above that of the endogenous Nck.
Since commercially available Nck antibodies do not discriminate
between Nck1 versus Nck2, we confirmed the specificity of the

targeting shRNAs in Nck-deficient (inactivation of both Nck
genes) mouse embryonic fibroblasts expressing fluorescently-
labeled Nck1 (supplementary material Fig. S1C) or Nck2

(supplementary material Fig. S1E). We first tested the role of
Nck adaptors in directional cell migration in two dimensions
using a conventional wound-healing assay (Rodriguez et al.,

2004). Compared with control cells, depletion of Nck1, Nck2 or
both (Nck1 and Nck2) led to a well discernible impairment in
directional migration 24 hours after the wounding of confluent

monolayers (Fig. 1A). The effects of Nck1 versus Nck2 depletion
were comparable and there was only a subtle additive effect when
both adaptors were simultaneously targeted. The expression of

shRNA-insensitive Nck2 in double knockdown cells induced

significant (P,0.05) restoration of their migration capacity.
Quantitative image analysis confirmed a significant (P,0.001)
40–60% decrease in directional migration induced by Nck

depletion (Fig. 1B). Importantly, cell numbers and viability
determined in parallel cultures did not differ (P,0.05) among
experimental conditions (not shown). In addition, the double
knockdown phenotype was rescued to the same extent by re-

expression of either Nck isoform alone or in combination
(supplementary material Fig. S2).

Productive cell migration involves the establishment of a

front–rear axis of polarity, successive cycles of membrane
protrusion, adhesion to the substratum, forward propulsion of
the cell body, and disengagement of the trailing edge. Therefore,
given the defects in two-dimensional migration observed in Nck-

depleted cells, we asked what steps along the migration cycle are
affected by perturbation of Nck signaling. Time-lapse DIC
imaging was performed to analyze patterns of membrane

protrusion in unstimulated and VEGF-stimulated HUVEC in
subconfluent cultures (supplementary material Movie 1).
Differential patterns of membrane activity in Nck-knockdown

versus control and rescued cells could be readily appreciated by
visual inspection of kymographs (Fig. 1C). Surprisingly,
quantitative analysis revealed an increased (P,0.001) rate of

protrusion and ruffle frequency, but decreased protrusion
persistence, in Nck-depleted (simultaneous knockdown of Nck1
and Nck2) versus control or rescued cells under unstimulated
(starvation) conditions (Fig. 1D). Similar trends determined for

retraction velocity and persistence (data not shown) suggest that,
at least under basal conditions, interference with Nck signaling
leads to bursts of transient protrusions. On the other hand, VEGF

stimulation elicited a significant (P,0.001) increase in
protrusion velocity and ruffle frequency while decreasing
protrusion persistence in control and rescued cells. In contrast,

a decrease in protrusion velocity and ruffle frequency
accompanied by a slight increase in protrusion persistence was
observed in Nck-depleted cells in response to VEGF (Fig. 1D).

To further test the role of Nck in membrane protrusion

dynamics, we analyzed kinetic parameters of nascent protrusions
formed soon after ATP replenishment in cells briefly exposed to
low concentration of sodium azide, a treatment known to block

actin filament assembly by depleting the pool of ATP-loaded
actin monomers (Bear et al., 2002; Bladt et al., 2003; Svitkina
et al., 1986). Consistent with the findings under starvation,

kymographs derived from DIC time-lapse imaging (see
supplementary material Movies 2, 3) showed bursts of transient
protrusive activity following ATP replenishment in cells with
simultaneous knockdown of Nck 1 and Nck2, but not in control

or Nck-rescued cells (supplementary material Fig. S3).
Collectively, these results suggest that Nck adaptors modulate
directional cell migration by a mechanism that limits

unproductive, transient cycles of membrane protrusion and
retraction. In addition, these observations provide indirect
evidence that the activity of actin nucleators, such as the Arp2/

3 complex, is not directly compromised by disruption of Nck-
dependent signaling.

Nck plays an important role in the modulation of
adhesion turnover

Current views support the presence of a mechanical and
biochemical coupling between actin dynamics and the
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assembly/disassembly of adhesion structures in migrating cells

(Gardel et al., 2010). Our results suggest that actin polymer

elongation and branching, indirectly assessed by membrane

protrusion dynamics (Fig. 1; supplementary material Fig. S3;

supplementary material Movies 1–3), are not compromised when

Nck signaling is abrogated. Therefore, the migration defects

observed in Nck-depleted cells (Fig. 1A,B; supplementary

material Fig. S2) could be linked to altered adhesion dynamics.

To begin to understand the role of Nck in the modulation of cell–

substratum adhesion, we first analyzed the subcellular

distribution of Nck in control endothelial cells coexpressing

fluorescently labeled paxillin, a signaling protein associated with

focal adhesions. High levels of colocalization of paxillin and

Nck2 at focal adhesions were, indeed, revealed by TIRF imaging

(Fig. 2A,B). Calculated Pearson’s correlation coefficient of

0.5460.06 (mean 6 s.d.; n514 cells) showed significant

colocalization (Zinchuk and Zinchuk, 2008). We also predicted

a high level of colocalization of the two Nck isoforms in adhesion

structures. To test this prediction, we performed localization

experiments in HUVEC coexpressing Nck1/YFP and Nck2/

mCherry. TIRF microscopy showed a high level of colocalization

of Nck isoforms in adhesion structures of various sizes (Fig. 2C).

Fig. 1. Nck is required for two-dimensional migration and modulation of membrane protrusion dynamics. (A) DIC images of the same fields were taken at 0

and 24 hours after wounding confluent monolayers of serum-starved HUVEC plated on fibronectin-coated surfaces. The wound (dotted black lines) was allowed to

repair in the presence of starvation medium supplemented with VEGF. Scale bar: 200 mm. The bar graph shows expression levels of Nck proteins relative to GAPDH

level (mean 6 s.d., n53). (B) Cells migrating into the wound were counted, and results expressed as percentage of controls. Bars are mean 6 s.d. (n53 independent

experiments); ***P,0.001 versus control. (C) Representative frames from time-lapse videos (left panels) and kymographs (three right panels) obtained from the

same cell before and after VEGF stimulation. Subconfluent HUVEC monolayers were serum-starved for 2 hours before DIC images were collected at 15-second

intervals for 5 minutes before (Basal) and 10 minutes after stimulation with VEGF. Multiple kymographs (n54–6) were generated from each cell using the EMBL

ImageJ software. (D) Quantitative analysis of protrusion activity. The analysis included a total of 9–12 cells per treatment from each experiment (n53 independent

experiments). Statistical differences across cell populations (control, shNck1 and 2, and rescued) within each treatment (starvation versus VEGF) are indicated.

Differences between treatments (starvation, open boxes versus VEGF stimulation, grey boxes) within each cell population (control, shNck1 and 2, and rescued) also

reached statistical significance (P,0.001).
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High colocalization is readily apparent from both fluorescence

overlay images (Fig. 2C) and color scatter plots (Fig. 2D), which

are in agreement with a Pearson’s correlation coefficient of

0.6860.103 (mean 6 s.d., n511 cells).

To determine the role of Nck adaptors in the modulation of

adhesion dynamics, we performed time-lapse TIRF imaging

of control, Nck-deficient, and rescued cells expressing

fluorescently-labeled paxillin. Visual inspection of the time-

lapse series suggested that control and rescued cells formed

nascent adhesions (Choi et al., 2008) in protruding areas that

underwent maturation into focal complexes/focal adhesions

(supplementary material Movies 4, 6). Interestingly, although

occasional changes in directionality were observed due to the

absence of guidance clues, these cells developed a front–rear axis

of polarity characterized by the formation of major protrusion.

Nck-depleted cells also formed nascent adhesions in protruding

areas (cell periphery), but in contrast to control or rescued cells,

these adhesion structures seemed to fail to mature into focal

complexes/focal adhesions and appeared to undergo an

accelerated turnover (supplementary material Movie 5). Since

TIRF movies clearly suggested major differences in control/

rescued versus Nck-depleted cells in the dynamics of peripheral

adhesions, i.e. newly formed adhesions in the protruding areas,

we first performed spatially restricted analysis of adhesion

dynamics using previously described methods (Choi et al., 2008;

Webb et al., 2004). Indeed, this analysis demonstrated that both

the intensity and longevity of adhesions developing in protruding

areas was significantly reduced (P,0.001) in Nck-depleted

versus control or rescued cells (Fig. 2E,F). In addition, the

elongation index (ratio between the long axis and the

perpendicular axis) of maturing adhesions and the percentage

of adhesions undergoing elongation was significantly decreased

(P,0.001) in Nck-depleted cells compared to control/rescued

cells (Fig. 2F).

These above results prompted us to assess whether Nck

signaling affected cell–substratum adhesions at a global scale. To

this aim, we used a recently developed analysis system for the

automated detection, tracking, and quantification of adhesion

structures in living cells (Berginski et al., 2011). This is a unique

tool that allows the assessment of adhesion dynamics in a

comprehensive, unbiased manner. Consistent with the findings of

the spatially-restricted analysis, inspection of time-lapse series

(Fig. 3A) and the quantitative analysis of adhesion dynamics at a

global scale (Fig. 3B) show that adhesion structures in cells with

Nck depletion have decreased (P,0.001) adhesion area,

intensity, assembly/disassembly rates, and longevity when

compared with control cells. In addition, the disassembly rate

was significantly higher (P,0.001) in control than Nck-depleted

Fig. 2. Nck localizes to cell–matrix adhesion structures

and regulates longevity of newly formed adhesions in

protruding areas. (A) Representative TIRF images of

HUVEC coexpressing Nck2/mCherry and paxillin/YFP.

Boxed area is shown on the right at higher magnification.

(B) Line-scans (corresponding to the white line shown in the

merged image in A) showing a tight correlation of Nck/

mCherry and Paxillin/YFP fluorescence intensity at

adhesion sites. (C) Representative TIRF images of HUVEC

coexpressing Nck2/mCherry and paxillin/YFP. (D) Color

scatter plot corresponding to the image of the whole cell

shown in C. Pearson’s correlation coefficient of 0.6860.103

(mean 6 s.d., n511 cells) shows a high level of

colocalization of Nck1 and Nck2 isoforms. (E) Images

extracted from time-lapse TIRF series obtained from cells

expressing paxillin-YFP (left panels). Numbered white lines

indicate protruding areas where kymographs were derived

(right panels; two kymographs/cell are shown). Notice that

adhesions located at the cell periphery are smaller and/or

dimmer in Nck-depleted versus control or rescued cells.

(F) Spatially restricted analysis, based on kymographs

extracted from protruding areas, showing decreased

intensity and longevity of peripheral adhesions in Nck

knockdown cells. The elongation index and percentage of

maturing adhesions were also calculated for new adhesions

forming in protruding areas. ***P,0.001 versus

corresponding control. Scale bars: 20 mm.
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cells or rescued cells. It remains unclear why re-expression of

Nck2 failed to fully rescue the disassembly rate of adhesion

structures. Nevertheless, the comprehensive analysis of adhesion

dynamics reveals that Nck depletion is linked to altered patterns

of adhesion turnover. Remarkably, the formation of smaller,

short-lived adhesion structures at the cell periphery is consistent

with the formation of transient and non-polarized protrusion

events in response to abrogation of Nck signaling. Collectively,

our studies of cell migration and colocalization suggest important

functional redundancy between Nck1 and Nck2.

Fig. 3. Nck depletion alters adhesion turnover. TIRF imaging of

HUVEC expressing paxillin-YFP was performed to monitor focal

adhesion (FA) dynamics following ATP depletion and replenishment.

High-resolution quantification of spatiotemporal dynamics of FA was

performed using an analysis system for the automated detection,

tracking and data extraction of these structures in living cells (see

Materials and Methods). (A) Images of cells (left panels) and regions of

interest (right panels) from selected frames extracted from time-lapse

series following the processing with the tracking algorithm. The

software assigns the same color to particular adhesion structures that are

unambiguously detected in successive frames. Circled arrows and

asterisks highlight persistent and transient adhesion structures,

respectively. (B) Quantitative analysis showing parameters of adhesion

dynamics in control, Nck-depleted (shNck) and rescued cells. The

analysis included a total of 10–13 time-lapse series (cells) from each

treatment. Bars (mean, with 95% confidence intervals, top panels) with

different letters are significantly different (P,0.0001). The box plots

(bottom panels) summarize the data of assembly and disassembly rates

for adhesions with curve fits for paxillin intensity.
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Integrin a5b1-fibronectin adhesion force and cell stiffness

are modulated by Nck

The findings that Nck signaling affects the longevity, size/

intensity, and assembly/disassembly rates of adhesions at a global

scale prompted us to probe the role of this pathway in structural,

mechanical, and functional properties of the cytoskeleton using

atomic force microscopy (AFM). Endothelial cells express a5b1

integrins (Paik et al., 2001) which are known to be the specific

adhesion receptor for fibronectin (Humphries et al., 2006). Using

an AFM probe functionalized with fibronectin (Trache et al.,

2005), integrin-dependent adhesion forces and cell stiffness were

compared in cells with normal or altered Nck signaling. As

shown in Fig. 4A, both the adhesion force and cell stiffness were

significantly decreased (P,0.05) in Nck-depleted compared to

control or rescued cells. Consistent with these observations, the

morphology of the actin cytoskeleton showed important

qualitative differences (Fig. 4B); (i) a single, polarized

protrusion was evident in the majority of control and rescued

cells whereas most of the Nck-depleted cells presented numerous

protrusions oriented in multiple directions, and (ii) prominent,

well organized actin fibers were present in control and rescued

cells but not in Nck-depleted cells. Quantitative analysis (Lim

et al., 2010) showed that the F-actin area relative to cell area was

reduced in cells with disruption of Nck signaling (Fig. 4C).

Furthermore, the probability of integrin a5b1adhesion to

fibronectin was significantly decreased in cells with Nck

depletion versus control or rescued cells (Fig. 4A).

Mechanistically, the decrease in adhesion force and cell

stiffness observed in Nck-depleted cells was linked to a

significant decrease (P,0.05) in the phosphorylation levels of

serine 19 of myosin II regulatory light chain (Fig. 4D), a major

phosphorylation site involved in the activation of myosin II by its

primary kinases, including Rho-associated coiled coil-containing

kinase (ROCK) (Vicente-Manzanares et al., 2009). Taken

together, these results demonstrate that Nck-stimulated actin

remodeling modulates a5b1 integrin-fibronectin adhesion force

and cytoskeletal tension through phosphorylation-dependent

activation of myosin II by a mechanism that involves the

RhoA/ROCK pathway.

Perturbation of Nck signaling inhibits the establishment of

a front-rear axis of cell polarity and directional migration

During the course of experiments designed to quantify protrusive

activity (DIC imaging for 10–15 minutes), control and rescued,

but not Nck knockdown cells, underwent an incipient

polarization. To test whether Nck plays a role in the

establishment of front–rear axis of polarity in crawling cells,

we performed time-lapse DIC imaging for prolonged periods of

time (up to 1 hour) of cells previously subjected to ATP

depletion/replenishment as described above. The application of

a uniform motogenic signal (ATP replenishment) activates the

basic motility machinery, and in the absence of a chemotactic

signal or other directional clue, this assay enables the assessment

of mechanisms of intrinsic cell directionality (Petrie et al., 2009).

Fig. 4. Nck modulates cell adhesion strength to the matrix

and cytoskeletal tension. (A) The cell adhesion and cytoskeletal

properties of control, Nck-depleted (shNck) and rescued cells

were probed using AFM. Estimated peak values and 95%

confidence intervals (C.I.) are shown for the a5b1 integrin–

fibronectin adhesion force and cell stiffness distributions. Kernel

density plots of the distribution of force or elasticity values

(number of individual measurements per treatment are shown in

the last column) were generated using normal reference

bandwidths and Gaussian kernel functions (Silverman, 1986). For

comparisons, peaks whose confidence intervals did not overlap

were considered significantly different (P,0.05) (see Materials

and Methods). Probability of adhesion for each treatment is also

included. (B) Representative confocal images of cells stained with

fluorescent phalloidin showing the morphology of F-actin. Notice

the presence of prominent stress fibers in control and rescued but

not Nck-depleted cells. In most instances, the leading edge was

readily identified in control and rescued cells. Instead, multiple

protrusions were more frequently observed in Nck-depleted cells

(double arrowheads). Scale bar: 20 mm. (C) F-actin/cell surface

ratio for control, Nck-depleted (shNck1 and 2) and rescued cells.

Bars represent the mean 6 s.d. Different letters indicate

statistical significance (P,0.01). (D) Representative western

blots (top panel) showing phosphorylation (Ser19) of the

regulatory light chain of myosin II (pMLC), total regulatory light

chain (TMLC), Nck and b-actin (loading control). The intensity

of bands was measured by densitometry and the ratios of pMLC

to TMLC were normalized by b-actin and expressed as a

percentage of control (bottom panel).
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Control cells and Nck-depleted cells rescued with Nck2 (rescued)

began to develop a front–rear axis of polarity within 15 minutes

of ATP replenishment and, in spite of occasional changes in

the direction of movement, maintained a distinct polarized

morphology with readily recognizable leading and trailing edges

(Fig. 5A; supplementary material Movies 2, 3). Unexpectedly,

Nck-depleted cells (depletion of both Nck1 and Nck2) frequently

adopted a spread or fragmented morphology characterized by the

lack of a defined front–rear axis of polarity (Fig. 5A;

supplementary material Movies 2, 3). Compared to control or

rescued cells, Nck-depleted cells changed directionality (Fig. 5B,

left panel, P,0.05) and formed simultaneous protrusions in

multiple directions with higher frequency (Fig. 5B, right panel,

P,0.05). In addition, protrusions occupied a larger proportion of

the total cell perimeter in Nck-deficient cells versus control or

rescued cells (Fig. 5B, middle panel, P,0.05).

To further test the role of Nck in the establishment of the

front–rear axis of polarity, we estimated an index of polarity

based on the orientation of the Golgi complex (Etienne-

Manneville and Hall, 2001) in endothelial cells located at the

edge of wounds traced in confluent monolayers. In polarized

cells migrating in two dimensions after the wounding of

confluent monolayers (Uetrecht and Bear, 2009), the Golgi

complex is usually positioned between the leading edge and the

nucleus. As shown in Fig. 5C, almost 80% of control cells and a

slightly smaller percentage of rescued cells were clearly

polarized. In contrast, only 40% (P,0.05 versus control) of

Nck-depleted cells show a polarized orientation of the Golgi

complex.

Based on our findings that Nck depletions causes an overall

defect in cell migration (Fig. 1A,B) and in the establishment of

the front–rear axis of polarity (Fig. 5), we hypothesized that Nck

plays a significant role in directionality of migration. To test this

hypothesis, we performed time-lapse DIC imaging of HUVEC

induced to migrate following the wounding of confluent

monolayers. From visual inspection of representative DIC time-

lapse series (supplementary material Movie 7) and tracks of cell

movement shown in Fig. 6A, it is readily apparent – at the

population level – that control and rescued, but not Nck-depleted

cells, migrated faster, over longer distances, and followed

straighter paths. We also performed detailed quantitative

analysis of migration patterns of representative cells from each

population using commercially available software (IbidiH) for

the visualization and analysis of cell migration data. Migration

trajectories were tracked for individual cells during a period of

12 hours. As shown in Fig. 6B and supplementary material

Movie 8, migration paths of control and rescued cells were longer

and less convoluted than those of Nck-depleted cells. Circular

plots in Fig. 6C, representing the distribution of migrating cells at

discrete angle intervals, show that Nck-depleted cells had

significantly more scattered (P,0.01) trajectories than control

or rescued cells. Similarly, the velocity (total path length/time),

straightness (displacement/total path length) and forward

migration index (Wu et al., 2012) were significantly decreased

Fig. 5. Disruption of Nck signaling leads to loss of

cell polarity. (A) Sub-confluent cultures of HUVEC

were incubated with sodium azide for 30 minutes to

induce ATP depletion. Following sodium azide

washout, glucose-containing culture medium was

replaced. Time-lapse DIC images were collected at 15-

second intervals for 60 minutes following ATP

replenishment. Continuous white and black traces

highlight the leading and trailing edges (polarized

cells), respectively, whereas the dotted white lines

demark the borders of non-polarized cells. Black

arrows indicate directionality of movement. Scale bar:

20 mm. (B) Quantitative analysis of cell polarity

showing number (mean 6 s.d.) of changes in

directionality (turns, left panel); percentage of the total

cell perimeter occupied by protrusions (middle panel)

and number of simultaneously forming protrusions per

15-minute intervals (right panel). (C) Representative

confocal images (left panel) of cells localized at the

edge of a wound traced in confluent monolayers of

HUVEC. Two hours after wounding the monolayers,

cells were fixed and stained with an antibody against

GM130 (Golgi marker), DAPI and Texas-Red

phalloidin to visualize nuclei and F-actin, respectively.

In polarized, migrating cells the Golgi complex is

positioned between the cell’s leading edge and the

nucleus within an angle (120 )̊ facing the major axis of

the wound (white dotted line). White arrows indicate

polarized cells. Scale bar: 25 mm. The percentage of

polarized control, shNck 1 and 2, and rescued cells

(mean 6 s.d., right panel) was calculated by counting

,120 cell per treatment (n53 independent

experiments). Different letters indicate statistical

significance (P,0.01).
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(P,0.001) in cells with abrogation of Nck signaling but not

control/rescued cells (Fig. 6D). Collectively, these results

strongly suggest that Nck adaptors play an important role in

directional cell migration through a mechanism that involves the

specification of the front–rear axis of polarity.

Nck plays a crucial role in the coordination of the

spatiotemporal activation of the Rho GTPases

The Rho GTPases Cdc42, Rac, and RhoA are molecular switches

that play a key role in the regulation of the cytoskeleton and

contribute to tissue morphogenesis by modulating intercellular

Fig. 6. Nck adaptors enable directional cell migration. Low magnification (56objective) DIC time-lapse series were obtained (images collected at 15-minute

intervals for 12 hours) and subsequently processed using cell-tracking algorithms. (A) Tracks of cells migrating in a representative field of imaging. (B) Detailed

migration trajectories of representative cells (n526) from control, Nck-depleted and rescued cells. Individual tracks were transposed so that each had its start at

the origin. (C) Circular plots showing the distribution of the trajectories of migrating cells at discrete angle intervals. (D) Comparison of velocity (displacement/

time), straightness (displacement/total path length) and forward migration index (FMI), defined as cos h5b/h, where b is the y coordinate of the pair yi;xi

(the cell’s end point of migration) and h is the net displacement of the cell measured by the straight line from the origin to the cell’s end point of migration.

P,0.001 for Nck-depleted cells compared with controls.
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and cell–matrix adhesions, cell polarity, and membrane transport

(Etienne-Manneville and Hall, 2002; Ridley, 2012). The

activation of these master regulators of the cytoskeleton is

governed by the abundance, subcellular distribution, and balance

in the activity of guanine nucleotide exchange factors (GEFs),

GTPase activating proteins (GAPs), and GDP-dissociation

inhibitors (GDIs). It has been shown that the activation of

RhoA at the cell’s leading edge coincides with edge advancement

and slightly precedes the subsequent local activation of Cdc42

and Rac (Machacek et al., 2009). Since abrogation of Nck

signaling altered protrusion dynamics, adhesion turnover, and

cell polarity, we hypothesized that Nck-dependent cytoskeletal

changes are mediated by the Rho GTPases. To directly assess the

role of Nck on the spatiotemporal activation of Rho GTPases we

used the Raichu fluorescence resonance energy transfer (FRET)-

based biosensors that monitor the activity balance between

guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs) (Aoki and Matsuda, 2009). Our

quantitative imaging experiments showed that activation of all

three Rho GTPases was highly localized at the leading edge of

crawling control and rescued cells (Fig. 7A; supplementary

material Movies 9–11). Consistent with the formation of

transient, multidirectional protrusions associated with short-

lived cell–matrix adhesions, the activation of Cdc42 and Rac

was significantly increased (P,0.05) and delocalized

(unpolarized) in cells with depletion of Nck. RhoA activation

in Nck knockdown cells was also delocalized, but in contrast to

control and rescued cells, the overall levels of RhoA activation

were reduced (P,0.05) by at least 50% (Fig. 7B; supplementary

material Movies 9–11). Importantly, the impaired RhoA

activation induced by abrogation of Nck signaling is consistent

with decreased phosphorylation (activation) of myosin II

regulatory light chain, reduced cell stiffness, limited

incorporation of F-actin into stress fibers, and lack of

maturation of cell–matrix adhesions forming in association with

transient protrusions. Taken together these results strongly

suggest that cytoskeletal changes induced by Nck are mediated

by the Rho GTPases through a mechanism that involves

regulation of the subcellular distribution and/or activity balance

of a particular subset of GEFs and GAPs.

Discussion
Using a combination of molecular genetics and quantitative live-

cell imaging we have uncovered an important role for Nck

adaptors in directional cell migration that involves modulation of

membrane protrusion dynamics, cell polarity, cytoskeletal

tension and cell–matrix adhesion turnover. This study unveils

new mechanistic insights whereby Nck integrates signaling by

tyrosine phosphorylation with precise spatiotemporal activation

of the Rho GTPases in the coordination of cytoskeletal dynamics.

Of significance, our results point to Nck adaptors as critical

players in endothelial cell morphogenesis and, therefore, relevant

therapeutic targets in diseases associated with aberrant

angiogenesis.

We (Ditlev et al., 2012; Rivera et al., 2006; Rivera et al., 2004;

Rivera et al., 2009) and others (Bladt et al., 2003; Dodding and

Way, 2009; Gruenheid et al., 2001; Jones et al., 2006; Scaplehorn

et al., 2002) have demonstrated that Nck is a key regulator of

Fig. 7. Spatiotemporal activation of the Rho GTPases is altered in

cells with aberrant Nck signaling. (A) Representative FRET/CFP

ratio images extracted from time-lapse series obtained in control, shNck

1 and 2, or rescued cells expressing the FRET-based Raichu biosensors

for Cdc42 (top row), Rac (middle row) and RhoA (bottom row). Scale

bar: 10 mm. The FRET images are represented in the intensity

modulated display. This mode associates color hue and the intensity of

each hue with the image brightness; thus color represents activity. Red

means high and blue low activity. The leading edge of polarized cells

(control and rescued) is indicated by a single outward white arrow;

multiple white arrows in non-polarized cells (shNck 1 and 2) point to

multiple protruding areas. (B) Quantitative analysis of FRET activity

based on 6–8 cells/treatment (mean 6 s.d., n53 independent

experiments, ***P,0.001 versus control). (C) Role of Nck in the

coordination of cytoskeletal changes involved in endothelial cell

morphodynamics: a working model. Our data suggest that Nck

regulates the subcellular localization and/or activity balance of a subset

of GEF/GAPs. As a result, a net increase in the activity of GEFs at

discrete sites on the plasma membrane leads to a ‘symmetry break’ and

the controlled, localized activation of the Rho GTPases. Rac-dependent

stimulation of localized actin polymerization leads to the formation of a

major protrusion (leading edge). Nck may contribute indirectly, through

the localized activation of Cdc42, to the stimulation of polarity

pathways and the specification of the front–rear axis of polarity. Robust

activation of RhoA at the cell’s leading edge stimulates the formation

of prominent stress fibers and ROCK-dependent phosphorylation of the

regulatory light chain of myosin II (MLC). Increased actomyosin

contractility, in turn, promotes the maturation of nascent adhesion/focal

complexes (Fx) into focal adhesions (FA) that enable protrusion

persistence and directional migration.
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actin cytoskeletal dynamics. Here we used a number of
complementary approaches to show that Nck-dependent

cytoskeletal remodeling contributes to endothelial cell
morphodynamics. The initiation of sprouting angiogenesis by
endothelial cells relies on the acquisition of a mesenchymal
phenotype characterized by the loss of cell–cell junctions, and the

development of a migratory properties (Adams and Alitalo,
2007). Quite unexpectedly, our study shows that Nck promotes
polarization of migrating endothelial cells by restricting transient

lateral protrusions while enhancing the stability of a major
leading edge protrusion by enabling adhesion maturation.
Consistent with these findings control and rescued, but not

Nck-depleted cells, migrated faster while maintaining
directionality.

Accumulating evidence suggests a role for Nck in the
orchestration of polarized cellular activities including localized

actin polymerization at the site of T-cell receptor activation
(Barda-Saad et al., 2005), the formation of invadopodia and
associated matrix degradation in tumor cells (Oser et al., 2010;

Oser et al., 2009; Stylli et al., 2009), the actin-dependent
transport of Fas ligand to the immunological synapse (Lettau
et al., 2006), and the organization of phagocytic cups stimulated

by the cooperation between Nck and Cdc42 (Dart et al., 2012).
We have previously shown that Nck interacts with p130Cas in
growth factor-stimulated actin remodeling (Rivera et al., 2006)
and recent findings suggests that Nck mediates p130Cas-

dependent regulation of cell polarization through a pathway
that involves Cdc42 activation (Funasaka et al., 2010). Results
from our quantitative live-cell imaging experiments show that the

loss of cell polarity in endothelial cells with Nck depletion is
linked to dysregulation of the spatiotemporal activation of Cdc42,
a master regulator of cell polarity (Nelson, 2009). Based on these

findings we hypothesize that Nck regulates polarity pathways
during vascular morphogenesis.

A number of vascular endothelial cell functions are regulated

by activation of VEGF receptor 2 (VEGFR-2/Flk-1). Previous
studies have involved Nck in VEGF-dependent activation of p21
GTPase-activated kinase Pak and regulation of endothelial cell
migration (Lamalice et al., 2006; Stoletov et al., 2004; Stoletov

et al., 2001). The second SH3 domain of Nck mediates the
association with Pak (Galisteo et al., 1996), and this interaction is
important for the localization of Pak to the plasma membrane (Lu

et al., 1997). Pak, an important cytoskeletal effector downstream
of the small GTPases Rac and Cdc42 (Bokoch, 2003), regulates
cell migration by coupling leading-edge actin dynamics and focal

adhesion turnover (Delorme-Walker et al., 2011). Our dynamic
imaging studies disclose that, in addition to the loss of a front–
rear axis of polarity, the unproductive migration of Nck-deficient
cells is due to critical deficiencies in the coordination of

cytoskeletal mechanics including i) the formation of unstable,
multidirectional protrusions, ii) altered cell–matrix adhesion
turnover including impaired maturation of protrusion-associated

adhesions, iii) reduced integrin a5b1-fibronectin adhesion force
and iv) decreased formation of F-actin into stress fibers and
reduced cell stiffness. Consistent with these findings, Nck-

depletion was associated with an altered pattern of
spatiotemporal activation of the Rho GTPases characterized by
increased, delocalized activation of Cdc42 and Rac and

suppression of RhoA activation. Inhibition or depletion of Pak
induces displacement of myosin IIA from the cell edge and a
decrease in adhesion maturation (Delorme-Walker et al., 2011).

Given that the complex Nck-Pak-Pix-PKL is recruited to focal

adhesions (Brown et al., 2005), we hypothesize that Nck

coordinates the recruitment of Pak to nascent adhesions and

focal complexes in protruding areas, its activation by Cdc42/Rac,

and the subsequent maturation of cell–matrix adhesions through

combinatorial signaling from Pak- and RhoA-dependent

pathways that regulate the localization and activation of

myosin II.

RhoA-induced cytoskeletal tension correlates positively with

stress fiber formation, integrin activation, and myosin II

phosphorylation (Lim et al., 2012). That the abrogation of Nck

signaling leads to a substantive decrease in myosin II

phosphorylation constitutes a novel mechanistic insight

provided by this study. Considerable work demonstrates that,

by virtue of its actin filament cross-linking and contractile

activities, myosin II plays an essential role in cell adhesion and

migration (Vicente-Manzanares et al., 2009). Importantly,

accumulating evidence suggests that myosin II contractility

mediates the establishment of polarity in migrating cells through

a mechanism whereby the local depletion/dislodging of the Rho

guanine nucleotide exchange factor b-Pix (and others) decreases

Rac activation, limits protrusiveness, and promotes RhoA-

dependent adhesion maturation (Kuo et al., 2011; Vicente-

Manzanares et al., 2011). In line with these observations, our

results suggest that the Nck deficiency phenocopies – to a

significant extent – the inactivation/depletion of myosin II which

is characterized by increased protrusiveness, reduced adhesion

maturation, and loss of cell polarity (Vicente-Manzanares et al.,

2011; Vicente-Manzanares et al., 2007).

The FRET Raichu probes (Aoki and Matsuda, 2009) used in

our study monitor the activity balance between GEFs and GAPs.

We hypothesize that several aspects of the phenotype induced by

Nck depletion result from an altered subcellular distribution and/

or activity balance between critical GEFs and GAPs controlling

the Rho GTPases. Consistent with this hypothesis, a recent study

shows that the formation of unstable protrusions is linked to

impaired directional motility in cells with SH3BP1 deficiency, a

GAP that restricts Rac activation at the leading edge (Parrini

et al., 2011). The present study lays the foundation for future

work aimed at identifying which specific GEFs/GAPs are

modulated by Nck adaptors and the elucidation of underlying

molecular mechanisms.

In sum, these results highlight a central role for Nck in

regulating critical aspects of cytoskeletal dynamics that drive

vascular morphogenesis. Our findings lend support to a working

model (Fig. 7C) underscoring Nck as a central node orchestrating

the spatiotemporal activation of the Rho GTPases that, in turn, is

required for the coordination of protrusion dynamics, adhesion

turnover, and the establishment of a front–rear axis of polarity.

Materials and Methods
Reagents

Human umbilical vein endothelial cells (HUVEC), EBM2/EGM2 culture medium,
HBSS, Trypsin-EDTA and TNS were purchased from Lonza (Walkersville, MD).
Antibodies were purchased from BD Biosciences (mouse anti-Nck, mouse anti-
GM130), Sigma (mouse anti-b actin), Invitrogen (mouse anti-GAPDH), Cell
Signaling (mouse anti-phospho-myosin light chain2), Bender Med System (rabbit
anti-VE-cadherin polyclonal), and Santa Cruz Biotechnology (goat anti-mouse
IgG-HRP and goat anti-rabbit IgG-HRP). Other reagents were purchased from the
following sources: DAPI (Sigma), fibronectin (Calbiochem/Invitrogen),
recombinant human VEGF 165 (R&D systems), MatrigelH (BD Biosciences),
Texas Red phalloidin (Invitrogen), Lipofectamine 2000 (Invitrogen), DMEM
(HyClone), fetal bovine serum (BenchMark), Superscript III One-Step RT-PCR
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System with Platinum Taq DNA polymerase (Invitrogen), RNeasy Plus kit
(Qiagen), and Alexa Fluor 488 protein labeling kit (Invitrogen).

Cell culture

NIH 3T3 fibroblasts and Nck-deficient (deletion of Nck1 and Nck2) mouse
embryonic fibroblasts were cultured in DMEM supplemented with antibiotics and
10% super calf serum. HEK293T cells were cultured in DMEM supplemented with
antibiotics and 10% fetal bovine serum. HUVEC were cultured in dishes pre-
coated with fibronectin (10 mg/ml) in endothelial cell EGM-2 complete medium
with 2% fetal bovine serum, in an atmosphere of 5% CO2/95% air. When required,
cells were cultured in EBM-2 basal media supplemented with 0.2% fetal bovine
serum as starvation media.

Plasmids and viral transduction

Viruses were generated in HEK293T cells transfected by calcium phosphate
precipitation with p.Super.puro/YFP/Cherry carrying different oligonucleotide
sequences (shRNA) targeting human Nck1 or Nck2 (protein knockdown). For
protein expression, the pMSCV retroviral vector carrying a cDNA of mouse Nck2,
human Nck2-YFP, human Nck-1, human b-actin-mCherry, or mouse paxillin-YFP
was utilized. Each of these plasmids was cotransfected with pHCMV-G and
pMD.gag.pol plasmids. Medium containing virus was harvested within 48 hours of
transfection and stored at 280 C̊ in aliquots for later use. Target cells (HUVEC)
were virally transduced essentially as described (Rivera et al., 2009). Two
successive round of infection were done to increase the expression of shRNAs. The
efficiency of transfection, judged by the expression of the fluorescent protein
marker (YFP or mCherry), was consistently .90%. This strategy allowed
population- and cell-based determinations without prior selection of a
subpopulation of cells.

Western immunoblotting

Cells were harvested in ice-cold kinase lysis buffer (25 mM Tris, pH 7.4, 150 mM
NaCl, 5 mM EDTA, 10% glycerol, 1% Triton X-100, 10 mM b-glycerophosphate,
1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 10 mg/ml aprotinin
and 1 mM PMSF) and the supernatant was collected following high-speed cold
centrifugation. For western immunoblotting, protein content from samples was
determined by the Bradford Assay (Bio-Rad), and equal amounts of protein were
subjected to SDS/PAGE. After transfer to nitrocellulose membranes and blocking
in 0.5% nonfat dry milk, blots were probed with primary antibody followed, after
several washes, by secondary antibody. Washed membranes were incubated in
enhanced chemiluminescence substrate (NEL 100001EA, PerkinElmer Inc.,
Waltham, MA) for film exposure and development. All antibodies were diluted
in 0.5% nonfat dry milk as 1:5000 for mouse anti-Nck (610099, BD Biosciences),
1:10000 for mouse anti-GAPDH (437000, Invitrogen), 1:2500 for mouse anti-b-
Actin (A1978, Sigma) and 1:10000 for goat anti-mouse IgG-HRP (sc-2055, Santa
Cruz Biotechnology). Images were analyzed using EMBL ImageJ software.

Imaging

Brightfield images and differential interference contrast (DIC) images were
captured using an Olympus IX70 inverted microscope equipped with 106and 206
dry DIC objectives. For membrane dynamics (kymography), a Zeiss Stallion
microscope equipped with a Photometrics CoolSnap HQ or a Zeiss TIRF 3
microscope (Carl Zeiss Microimaging, Thornwood, NY) equiped with
Photometrics Quant EM 512SC EMCCD camera was used. Time-lapse images
were captured using a Plan-Apochromat 636/1.40 oil DIC objective. Fluorescence
images of fixed cells for gelatin matrix degradation and VE-cadherin cell–cell
junction analysis were collected on a Zeiss LSM 510 Meta confocal microscope
using a Plan-Neofluar 406/1.3 oil objective. Time-lapse series of adhesion
structures were captured by TIRF microscopy using the Zeiss TIRF 3 microscope
equiped with a Plan-Apochromat 1006/1.46 oil objective lens. FRET imaging was
performed on the Zeiss Stallion microscope configured with CFP-YFP FRET
module.

AFM measurements

The integrated microscope system used for these studies combines AFM with
TIRF and spinning-disk confocal microscopy (Trache and Lim, 2009). AFM
experiments were performed with unsharpened silicon nitride cantilevers (MLCT,
Bruker Nano-Surfaces Inc., Santa Barbara, CA) coated with fibronectin (FN,
Invitrogen, 33016-015). After the cantilever is mounted on the glass holder, the tip
is washed, and incubated for 5 minutes with 10 mg/ml polyethylene glycol used to
cross-link FN onto tips at room temperature. The tip is then washed five times with
deionized water, and subsequently incubated for 1 minute with 1 mg/ml FN. The
tip is washed again five times with phosphate-buffered saline (Trache et al., 2005).
The AFM was operated in force mode, by driving the cantilever to touch and
retract from the cell surface over a known predefined distance in the z-axis. The z-
axis movement of the cantilever and the deflection signal from the cantilever were
recorded in a force curve. All force curves were acquired at positions midway
between the nucleus and the edge of the cell for 2–3 minutes and repeated for ten

cells in two separate experiments, for a total of ,2000 individual force curves. The
adhesion force was calculated by multiplying the change in deflection height
associated with the unbinding event by the spring constant of the cantilever
(k512.260.4 pN/nm). The local cell stiffness at the point of contact was
calculated as Young’s modulus of elasticity, by fitting the approach curve between
the initial point of cell contact and point of maximum probe displacement with
Sneddon’s modified Hertz model (Trache et al., 2005). Kernel density plots of the
distribution of force or elasticity measurements were generated using normal
reference bandwidths and Gaussian kernel functions (Silverman, 1986) in NForceR
software (Trzeciakowski and Meininger, NForceR: nanoscale force reader and
AFM data analysis package, copyright 2004). These density plots were then
analyzed using PeakFit (version 4.11, Systat Software Inc.) to provide accurate
estimates of the peak value and associated confidence intervals for each
distribution. For comparisons, peaks whose confidence intervals did not overlap
were considered significantly different (P,0.05) (Venables and Ripley, 1997).

Analysis of membrane dynamics by kymography

Sub-confluent HUVEC plated on fibronectin (10 mg/ml)-coated 35 mm glass
bottom MatTek dishes (MatTek corporation, Ashland, MA) were serum starved for
2 hours to monitor cellular responses to VEGF stimulation (50 ng/ml).
Alternatively, cells were treated with a sodium azide solution (PBS
supplemented with 0.1 g/l CaCl2, 0.1 g/l MgCl2 and 20 mM NaN3) for
30 minutes to induce ATP-actin monomer depletion and assess cellular
responses following glucose replenishment (Bear et al., 2002). Images were
collected every 15 seconds for various intervals as indicated for each particular
experiment. For image analysis, one pixel line was drawn along the cell membrane
and kymographs were generated using EMBL ImageJ. Quantitative parameters
derived from kymographs were calculated as previously described (Hinz et al.,
1999). Briefly, inspection of time-lapse series allowed the identification of
protruding areas. Subsequently a one pixel-wide line crossing the edge of the cell
perpendicularly at the location of the protrusion was traced. This lines records
protrusion dynamics relative to the substratum since the position of the region of
interest (the line) was fixed. Next, the snapshots corresponding to the line were
lined up according to the sequence of image acquisition. The resulting images were
displayed in a computer screen and shades of gray were used to identify protruding
and retracting segments by manually drawing ascending and descending lines with
a computer mouse using ImageJ segmented line tool. Dynamic data were
generated from these segmented lines using ‘read velocity tsp macro’ of ImageJ.
Raw data were transferred to an Excel spread sheet to calculate protrusion/
retraction persistence and velocity, and ruffling frequency.

Analysis of focal adhesion dynamics

HUVECs expressing EYFP-paxillin were seeded at a density of 106104 cells in 35-
mm MatTek dishes 24 hours before imaging. Following exposure to sodium azide as
detailed above, cells were washed and glucose-containing medium was replaced.
Time lapse TIRF images were collected every 15 seconds for 30 minutes to 1 hour.
Global assessment of focal adhesion dynamics was performed using a recently
developed analysis system for the automated detection, tracking, and quantification
of adhesion structures in living cells (Berginski et al., 2011). This is a unique tool
that allows the assessment of adhesion dynamics in a comprehensive, unbiased
manner. A total of 10–12 cells per experimental condition were analyzed. Spatially
restricted analysis, i.e. dynamics of newly formed adhesions in protruding areas was
determined by kymography as previously described (Webb et al., 2004). A total of
8–10 cells per experimental condition and 2–4 kymographs per cell were analyzed.
A three pixel-wide line was drawn on the protruding areas to generate kymographs
from fluorescence images using the software ImageJ. Following background
subtraction, mean pixel density of the entire kymograph and longevity of individual
adhesions were calculated. The elongation index was determined by ratio of the
maximal long and perpendicular axes adhesions (Webb et al., 2004).

Analysis of Rho GTPase activation by FRET

The Raichu-Cdc42, Raichu-Rac1 and Raichu-RhoA intramolecular FRET
biosensor used in this study has been described previously (Aoki and Matsuda,
2009). Raichu-Cdc42/Rac1/RhoA consist of truncated Cdc42/Rac1/RhoA and the
Cdc42/Rac1/RhoA-interactive binding (CRIB) domain, sandwiched between a pair
of green fluorescent protein (GFP) mutants, yellow fluorescent protein (YFP) and
cyan fluorescent protein (CFP). In the inactive GDP-bound form, CFP and YFP
remains apart from each other and excitation of CFP causes emission from CFP
only. Activation caused by GTP loading bound form causes binding with CRIB
domain and results in ,10 nanometer-scale proximity of CFP and YFP.
Consequently, excitation of CFP causes emission through YFP, hence FRET
signal. Therefore, the FRET/CFP ratio is conveniently used as a representation of
relative FRET efficiency. HUVEC plated on glass bottom MatTek dishes were
transfected with plasmid containing Cdc42, Rac1, or RhoA FRET probes using
lipofectamine 2000 (Invitrogen). After 24 hours of transfection, cells were washed
and starved for 30 minutes. Following addition of 50 ng/ml VEGF and 10 mM
HEPES in starvation medium, time-lapse images (CFP, FRET and YFP) were
taken every 1 minute for 1 hour using a Zeiss Stallion microscope equipped with
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the FRET module using a 636/1.40 oil objective. Images were analyzed using
EMBL ImageJ. Briefly, images were background corrected and a binary mask
derived from the YFP image was multiplied separately by the background
subtracted CFP and FRET images. Then FRET images were divided by CFP
images to obtain FRET/CFP ratio images. A rainbow2 color LUT was applied and
brightness and contrast were adjusted to display the ratio FRET images in an
intensity modulated fashion where red indicates high and blue indicates low FRET
efficiency, respectively. For quantitative analysis, background corrected and YFP
masked FRET and CFP images were thresholded to measure pixel intensity of each
individual image in the stack and FRET/CFP intensity ratios were calculated.

Analysis of cell polarity index
Confluent monolayers of HUVEC were grown on fibronectin-coated coverslips
and serum starved for 6 hours. A horizontal wound was created in the confluent
monolayer using a sterile 200 ml pipette tip. Following washing of cell debris with
HBSS, HUVECs were incubated in EGM-2 complete medium with 2% fetal
bovine serum at 37 C̊ in CO2 incubator for 2 hours. Subsequently, cells were fixed
in 3.7% paraformaldehyde in PBS for 10 minutes and permeabilized in 0.25%
Triton X-100 in PBS for 5 minutes followed by 1 hour blocking in 2% BSA in
PBS at room temperature. After blocking, cells were incubated for 1 hour in
primary antibody (GM130; 1:100 in 2% BSA in PBS). Cells were subjected to an
additional incubation of 1 hour with a mixture of a fluorescently-labeled secondary
antibody, DAPI and TX Red phalloidin at room temperature. Cells were washed at
least three times between each step. Following mounting, Images were captured
using an Olympus IX70 microscope with 106and 206dry objectives. The polarity
index was determined as previoulsy described (Etienne-Manneville and Hall,
2001). Briefly, cells in which the Golgi was located within the 120 C̊ angle facing
the major axis of the wound were scored as polarized. A total of 120–150 cells
from each of three independent experiments were analyzed to determine the
polarity index.

Analysis of actin area
Actin area was measured from projections of confocal images. Cell and actin area
were determined using the masking tool and image statistics tools available in the
SlideBook software (Intelligent Imaging Innovations, Denver, CO). For
comparisons, the protein area was normalized to the total cell area (Lim et al.,
2010).

Statistics
For each experiment two to three independent replicates were conducted.
Statistical comparisons among multiple groups were carried out by analysis of
variance (ANOVA) followed by suitable post HOC tests (e.g. Tukey’s test) using
Minitab 16. Data presented in bar diagrams correspond to mean 6 s.d. For data are
presented in box and whiskers diagrams, the bold central lines of box plots indicate
the median values whereas the top and bottom lines indicate the 3rd and 1st
quartiles respectively. The whiskers extend up to 1.5 times the interquartile range.
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