Membrane and actin reorganization in electropulse-induced cell fusion

Günter Gerisch1,*, Mary Ecke1, Ralph Neujahr1,‡, Jana Prassler1, Andreas Stengel1, Max Hoffmann2, Ulrich S. Schwarz2 and Eberhard Neumann3

Introduction

Membrane fusion in lipid vesicles and living cells can be induced by dehydration causing close apposition of the membranes (Yang and Huang, 2002; Kozlovsky et al., 2004), by proteins that reduce the energy for membrane curvature and hydrophobic interaction (Chernomordik and Kozlov, 2008; Kozlov et al., 2010; Qian and Huang, 2012), or by electric pulses, which temporarily distort the lamellar arrangement of lipids (Neumann et al., 1989). Initial studies showed that electric pulsing is an efficient method of fusing plant protoplasts (Senda et al., 1979), Dictyostelium cells (Neumann et al., 1980) and various mammalian cells (Zimmermann and Vienken, 1982). This method has been applied to produce hybridomas for monoclonal antibody production (Lo et al., 1984) and to generate hybrids of malignant tumor cells with dendritic cells for their use as a cancer vaccine (Kjaergaard et al., 2003).

In general, the fusion of two lipid membranes is initiated by local hydrophobic contact between two merging bilayers (Qian and Huang, 2012). During this state, splayed lipids are proposed to bridge with their hydrophobic tails the apposed leaflets of the two bilayers (Smirnova et al., 2010). This transition state is followed by a metastable intermediate called the stalk state (Yang and Huang, 2002; Kozlovsky et al., 2004; Markin et al., 1984; Markin and Albanesi, 2002; Shillcock and Lipowsky, 2005). In this state the two contacting leaflets of the lipid bilayer membranes merge, resulting in a hemifusion diaphragm that separates the two aqueous compartments. Only after the formation of pores in this bilayer, the boundary separating the compartments will become permeable for aqueous solutes such as the GFP used in the present paper.

As revealed by molecular dynamics simulations (Smirnova et al., 2010; Shillcock and Lipowsky, 2005) and by imaging the electric-pulse induced fusion of phosphatidylcholine vesicles with a temporal resolution of 50 μseconds (Haluska et al., 2006), the fusion of closely apposed lipid membranes is a fast process proceeding in the micro- to millisecond range. In SNARE-mediated membrane fusion experiments, the delay between docking of a vesicle to a planar membrane and its fusion was about 120 milliseconds (Kiessling et al., 2010). In contrast, membrane fusion in erythrocyte ghosts can be delayed for several seconds or minutes after electric pulsing (Dimitrov and Sowers, 1990). This means, the electric pulses initiate a sequence of processes that, after termination of the electric field, continue to produce a long-lived fusogenic state that precedes mixing of the membranes (Sowers, 1986).

In comparison to the fusion of lipid vesicles, the fusion of living cells is complicated by the presence of an actin network that is anchored to the membrane. The actin cytoskeleton may influence fusion by virtue of its membrane bending activity, and it may positively or negatively influence membrane resealing after electroporation (Teissie and Rols, 1994). Early work on mammalian cells showed that microtubules disassemble concomitantly with cell fusion, but these studies revealed no gross changes in the organization of actin (Blangero et al., 1989).

Electric pulsing is an established technique of fusing the membranes of lipid vesicles and of fusing entire cells to produce...
giant multinucleate cells with no need for any chemical treatment. The electric pulses are short-lived, and the sequence of alterations in the plasma membrane initiated by them proceed after cessation of the stimulus autonomously up to complete membrane fusion. Because of the high conductivity of the cytoplasm relative to the plasma membrane, the strength of the electric field peaks at the cell surface, thus minimizing damage to the interior of the cell. To explore the generation of membrane curvature and the role of the actin cytoskeleton in electric-pulse induced cell fusion, we have combined electron microscopy of early fusion stages with quantitative fluorescence microscopy. Electron microscopy revealed clusters of highly bent membranes in the area of fusion. The formation of pores was monitored during the fusion of GFP-expressing with non-expressing cells. Live-cell imaging of filamentous actin revealed the accumulation of actin at the site of fusion, bridging the gaps in the fragmenting membranes and retarding complete fusion.

Results
Shape and performance of electrofused cells
When starved cells of D. discoideum develop, they become elongated and acquire adhesiveness to assemble into streams directed toward aggregation centers (compare Fig. 1A with Fig. 1E). To see whether electrofused cells maintain their developmental capacities, we have fused cells either at the beginning of starvation (Fig. 1B–D) or after development to the aggregation-competent stage (Fig. 1F–H). The undeveloped cells displayed smooth portions of their surface as well as portions covered with protrusions such as filopodia (Fig. 1B). Some of the cells formed multiple fronts (Fig. 1C) and broad, sub-divided leading edges (Fig. 1C, top of the cell). Individual fronts exerted protrusive activities on the glass surface, resulting in traction-mediated fission of the cell (Fig. 1D).

At the aggregation-competent stage, giant cells cohered with smaller ones, forming aggregates of cells with extremely heterogeneous sizes (Fig. 1F). Adhesion between giant cells was strong enough for pulling out long extensions that connected them (Fig. 1G). Compact clusters of giant and smaller cells resembled aggregation centers (Fig. 1H). These data indicate that the giant cells produced by electric fusion keep the characteristics of their developmental stage.

GFP transfer through fusion pores as a function of time
To record the time course of fusion, GFP-expressing cells were mixed with unlabeled or differently labeled cells. Flow of GFP from the donor to the acceptor cell was determined by scoring fluorescence intensities at intervals of about 0.5 seconds in one confocal plane through the pair of cells. In the example shown in Fig. 2A, the GFP-expressing donor cell (green) is displayed on the left and the acceptor cell on the right. The acceptor cell is labeled with mRFP-LimEΔ for filamentous actin (red). This actin label marks the fusion zone while the GFP diffuses from the donor into the acceptor cell. The diffusion of GFP is shown, separate from the actin label in supplementary material Movie 1.

A non-fusing cell on top of the fusing pair serves as a reference. In this particular case the transport of GFP through the fusing membranes became detectable at 6 seconds after electric pulsing.

In order to determine concentrations of we scanned fluorescence intensities I, i.e. quantities of n GFP molecules in arbitrary units per volume element (voxel). We have normalized I to the highest value in our data set, such that all values are between 0 and 1. The mean fluorescence intensity I within the confocal plane of each cell was taken as an estimate of the mean GFP concentration I in the respective cell. Fig. 2B shows the decrease of I(t) in the donor cell and its increase in the acceptor cell as a function of time t after electric pulsing.

Release of GFP into the extracellular space as a result of electroporation was estimated by calculating the average of total fluorescence intensities in the donor and acceptor cell. These average intensities slowly declined, beginning with electric pulsing (Fig. 2C).

The rate of the GFP flow can be calculated from the decrease of I(t) in the donor cell and also, with opposite sign, from its increase in the acceptor cell. To plot the rate of outflow from the donor and the rate of inflow into the acceptor cell in terms of comparable quantities of GFP molecules, the mean concentration I was multiplied with the volume of the corresponding cell. Estimates of the volumes of donor and acceptor cell were obtained by z-scanning through the entire pair of cells at the end of fusion. The rates of flow are then the time derivatives of GFP quantities that leave the donor or enter the acceptor cell (Fig. 2D). To minimize the influence of leakiness, we calculated the average changes of fluorescence intensities in the donor and acceptor cell (Fig. 2E).

In Fig. 3A the spatial profiles of the fluorescence intensities I(x) are shown, where I(x) reflects the GFP concentrations c(x) along the scan displayed in the first frame of Fig. 2A. The curves of I(x) refer to various times from the beginning of fusion to almost complete equilibration in the two cells. At the cell–cell boundary, the profiles of I(x) reveal a quasi-linear section, from which the steepest portion of the gradient ΔI(x)/Δx for each time point can be obtained (Fig. 3B). The temporal evolution of the fluorescence profiles is displayed in the right panel of supplementary material Movie 1. The slope of the gradients plotted in Fig. 3C proved to be a sensitive indicator of the diffusion of GFP from one cell to the other. These data indicate that it took 8 seconds from the onset of GFP exchange up to decline of the slope of the gradient down to −0.1 Δ/μm at the cell–cell boundary, i.e. to almost complete equilibration of GFP between the fusing cells (Fig. 3C).

![Fig. 1. Shape, size and behavior of electrofused cells in comparison to control cells.](image)
Electrofusion of cells

In our simulations we modeled the donor and acceptor cells as rectangular boxes with a length of 8 and 9 μm, respectively, in agreement with the approximate cell lengths in the experiment shown in Fig. 2A. The other two dimensions have been chosen such that the volumes of the two boxes correspond to the experimentally determined cell volumes $V_{\text{donor}} = 374 \, \mu m^3$ and $V_{\text{acceptor}} = 638 \, \mu m^3$. Assuming, for reasons of simplicity, a single fusion pore, we simulated four different dependencies of the pore radius r on the time t: $r = r_1 t^{1/2}$, $r = r_t$, $r = r_f^{1/2}$, and $r = r_f$. Three screenshots of the simulation assuming $r = r_t$ are shown in Fig. 4A.

In Fig. 4B we show the mean flow rates for the four simulations. The onset of noticeable flows and the shape of the graphs differ between the different simulations. Noticeable flow occurs first for the $r = r_{1/2}$ dependency as there is a large initial change in the pore radius, in contrast to the $r = r_f$ dependency where noticeable flow occurs only very late, because in the initial phase of pore opening the radius increases slowly. In general, the difference between the opening dynamics is remarkably small. In Fig. 4C we fit the data of simulation to the experimental results. The linear and the quadratic opening dynamics fit the experimental data best, however, also the graphs for the other two opening scenarios are not too far off. This reflects the general challenge that diffusion leads to broad distributions in space and time, thus making it difficult to estimate the exact dynamics. These results are not dependent on whether cubic or spherical cells are used in our simulations.

In Fig. 4D we show simulations of the spatial distributions of GFP in the donor and acceptor cell for $r = r_t$ at different times of pore opening. Near the boundary between the donor and acceptor cell, gradients as in the experimental data can be identified. However, the simulated gradients are much steeper at the contact zone due to the assumption of a perfectly planar and vertical membrane between the donor and acceptor cell.

Variability of delay times and asynchronous multiple fusions

Fig. 2 shows that cell fusion induced by electric pulses can be divided into two phases: (1) a delay between the end of exposure to the electric field and the beginning of GFP diffusion from one cell to the other, (2) the opening and widening of pores that allow GFP to permeate, up to complete dispersal of the membranes that had separated the cells. The duration of the first phase proved to be highly variable. Table 1 provides an overview of delay times, which varied from less than 1 second to 25 seconds. These data indicate that the primary changes in the membranes of electrically stimulated cells can rest for half a minute before pores start to form that allow GFP to pass. The opening period of pores from the first detectability of GFP flow to its maximal rate varied in six fusions with an average and standard deviation of 4.7 ± 2.2 seconds.

Intermediate stages of membrane fusion

In sections of cells fixed within 3 minutes after electric pulsing, abundant plasma membrane fusion is evident. Fig. 5A shows continuity of the cytoplasm in a syncytium displaying nine nuclei in the plane of the section. At this stage, cytoplasmic bridges are of variable sizes, and the fused portions of the syncytium are not yet condensed into a compact cell body.

Characteristic of fusing cells are multiple complexes of interdigitated membranes with small radii of curvature (Fig. 5B). The radii of positive curvature vary in the electron microscopic images between 13 and 105 nm, half of them (11 out of 22 radii measured) are small between 13 and 33 nm. The radii

Simulation of GFP diffusion during fusion pore opening

In an attempt to deduce the kinetics of fusion pore opening from the experimental data, we employed computer simulation with the Smoldyn program (Andrews et al., 2010). Smoldyn is a particle-based stochastic simulation tool for reaction–diffusion systems in user-defined geometries. This tool has recently been used to simulate sequestration of CaMKII in neural dendritic spines (Khan et al., 2012) and to investigate diffusion constraints in the nuclear membrane of budding yeast during cell division (Boettcher et al., 2012).
Fig. 3. Spatial profiles of fluorescence intensities $I(x)$ along the scan displayed in the first frame of Fig. 2A. (A) Profiles representing the spatial distributions $I(x)$ normal to the plane of fusion. Time of the scans is color-coded as shown in the inset. Italicized numbers in the inset refer to the sections of the profiles shown in detail in B. (B) Profiles of fluorescence intensities around the boundary of the fusing cells; time is color-coded as in A. The first curve represents the apparent slope before permeabilization of the membranes. This slope reflects the limit of optical resolution, to which deviation of the membranes from verticality and planarity may contribute. Single scans are shown in the right panel of supplementary material Movie 1. (C) Apparent gradients near the boundary between the fusing cells, determined from the profiles of fluorescence intensities in B. Slope of the gradients is presented as a function of time. Zero time refers to the end of electric pulsing.

Fig. 4. Simulated rates of flow and spatial profiles of GFP molecules during the opening of a fusion pore. (A) Illustration of the GFP distributions (green) in the donor (left) and acceptor (right) cells. The size of the fusion pore (red) is displayed at three points of time after electric pulsing, assuming $r-t$ and a delay of 5 seconds before the onset of pore opening. (B) Rates of flow of GFP out of the donor cell calculated on the basis of $r-t$ (orange), $r-t$ (blue), $r-t^2$ (purple) or $r-t^4$ (grey). In all four simulations, pore opening is assumed to start at 5 seconds. (C) Fit of the simulations shown in B to the experimental data (white circles). The four simulations are individually shifted along the time axis, and the maxima are normalized to the experimental rate of flow. Both modifications are allowed because the beginning of pore opening is not defined in the experiments and the amplitudes of the simulated flow rates depend on the chosen number of particles. (D) Spatial distributions simulated for $r-t$. Time after the end of pulsing is color-coded as indicated in the inset. The data are aligned with the experimental results along the x-axis using the border between the two cells as a reference position.
of negative curvature vary between 21 and 95 nm, the smaller ones (9 of 17) between 21 and 41 nm. These complexes of membranes surround halos of cytoplasm that is free of organelles and depleted of ribosomes (Fig. 5C,D), as it is typical of the actin-rich cell cortex (Medalia et al., 2002). It appears, therefore, that portions of the fusing plasma membranes bend and eventually vesiculate, underlayed by an actin sheet derived from the disrupted cell cortex. In the following, we will localize actin-coated, vesiculating membranes to the fusion zone.

Reorganization of the actin cortex during cell fusion
To explore the fate of the actin cortex during and after membrane rupture in live cells, we double-labeled cells with the membrane-integrating styryl dye FM4-64 and with LimE Δ-GFP as a label for filamentous actin. The cells were transferred to a microchamber that allows imaging of individual cells before and during the fusion. An overview on multiple fusions is provided in supplementary material Movie 2.

Fig. 6 shows a pair (Fig. 6A–D) and a group of four (Fig. 6E–H) fusing cells. Fig. 6A,E displays in merged images the membrane (red) and the actin (green) labels; Fig. 6B,F shows the membrane label; and Fig. 6C,G the actin label separately. The merged images show in the fusion zones a conversion from predominantly red into green fluorescence. The separate labels indicate that this change is due to a decline of the membrane label as well as an increase in the actin label. In Fig. 6D,H the changes of the actin profile in relation to membrane disruption are quantified (see also supplementary material Movies 3, 4). In cross-sections through an incipient membrane gap, cortical actin (green) increased within an interval of 4 to 6 seconds to a peak while the membrane label (red) declined. These data demonstrate that actin accumulates in the zone of cell fusion, bridging the gap between the disrupted membranes.

To explore the influence of filamentous actin on fusion of the cells, we treated cells prior to electric pulsing with 5 or 10 μM latrunculin A. A concentration of 5 μM has been shown to inhibit the polymerization of actin efficiently (although not completely) (Gerisch et al., 2004). The rounded cells still fused after a delay. However, their fusion was distinguished from that of untreated cells by rapid rupture of the membranes in the fusion zone (see supplementary material Movie 5). Delays in the onset of cell fusion were not dependent on an intact actin network. In the presence of 5 μM latrunculin A, the delays between the end of electric pulsing and the beginning of visible membrane rupture were 29±14 (s.d. of 7 fusion events, a late fusion after 146 seconds not considered) and at 10 μM the delays were 20±1 (s.d. of 5 events).

Fate of the vesiculated plasma membrane
Residual membrane vesicles are displaced from the zone of cell fusion in the form of protrusions pointing into the cytoplasm. In supplementary material Movie 2, the arrow points to a vesicle that moves out of the zone in a straight line with an average velocity of 0.5 μm/second. No actin is seen to be associated with the moving vesicle, suggesting that the movement is microtubule-based. In fact, dynein has been shown to be associated with the plasma membrane.

<table>
<thead>
<tr>
<th>Number of fusion event</th>
<th>Delay [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>23.6</td>
</tr>
<tr>
<td>4</td>
<td>11.2</td>
</tr>
<tr>
<td>5</td>
<td>13.8</td>
</tr>
<tr>
<td>6</td>
<td>4.2</td>
</tr>
<tr>
<td>7</td>
<td>25.2</td>
</tr>
<tr>
<td>8</td>
<td>15.2</td>
</tr>
<tr>
<td>9</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Journal of Cell Science
and to pull on the microtubules of Dictyostelium cells (Koonce et al., 1999). Accordingly, an isolated piece of the membrane will be drawn towards the centrosome of one of the fusing cells.

Persistence of microtubules during fusion
Microtubules in Dictyostelium cells are distinguished from mammalian ones by their extraordinary resistance to Ca²⁺ (White and Katz, 1987). They are also resistant to any ionic changes in the cytoplasm that may be caused by the electric pulses. Fig. 7A shows microtubules that penetrate the fusion zone soon after the cells are connected. In giant cells formed at the end of fusion, microtubule complexes emanate from each centrosome (supplementary material Movie 6). These microtubules may become extremely long (Fig. 7B) and often cross each other (Fig. 7C).

Discussion

Interpretation of delay times in the formation of fusion pores
In this study we explore alterations in membrane organization and actin assembly during the electrically induced fusion of intact cells. In comparison to the fusion of lipid vesicles, the fusion of cells proceeded slowly, in the range of seconds, suggesting that retarding processes counteract the progression of membrane fusion in the compound system of lipid bilayer membrane and underlying actin network. Our data point to a local response in the actin system that results in the accumulation of filamentous actin at the sites of fusion pore formation.

According to the crystal structure of GFP, the molecule is a short cylinder of about 4.2 nm in length and 2.4 nm in diameter (Ormø et al., 1996; Yang et al., 1996). Therefore, the beginning of GFP diffusion between fusing cells indicates that pores in the contiguous membranes have reached a size of 2 to 3 nm diameter. The mixing of cells that express GFP in the cytoplasm with non-expressing cells enabled us to measure temporal profiles and flow rates of the fluorescent protein during opening of the fusion pores.

From electric pulsing to the beginning of GFP diffusion into the acceptor cell there was a delay, which varied in our experiments from less than 1 second up to 25 seconds. One reason of this variation is certainly the irregular position and
orientation of fusing cells relative to the inhomogeneous electric field. Of interest are the long delays. They indicate that the electric pulses induce a propensity for fusion that can persist for tens of seconds before pores are formed of a size that allows GFP to pass. Assuming a pathway from hydrophobic contact through a stalk state and hemifusion diaphragm to the formation of fusion pores, it is the period from the stalk to a hemifusion diaphragm in which the membrane is proposed to exist in a metastable state that does not allow the passage of aqueous solutes (Kozlovsky et al., 2004; Smirnova et al., 2010). However, for energetic reasons cells may, by the tilting of lipids, directly pass from the stalk to a modified stalk and further, by expansion of a prepore, to a fusion pore (Kuzmin et al., 2001). Moreover, earlier studies on mammalian erythrocyte ghosts (Sowers, 1986) and CHO cells (Teissie and Ramos, 1998) have indicated that cells acquire a fusogenic state that can last for minutes before they are brought into contact, this means before hemifusion of apposed membranes has an opportunity to commence (Dimitrov and Sowers, 1990). In supplementary material Movie 5, the right pair of cells appears to lack contact for 18 seconds after electric pulsing before fusion commences. Therefore, cells may arrest either in a fusogenic state that is induced in a single bilayer membrane before close cell-to-cell contacts are formed, or may arrest after stalk formation in the state of a hemifusion diaphragm that prevents GFP from exchanging between the fusing cells. Eventually, vesiculation of the membranes opens pores much larger than required for GFP to pass (see Fig. 6; supplementary material Movie 2).

Membrane bending in cell fusion

The plasma membranes in the fusion zone are strongly bent and interdigitated (Fig. 5B–D). The close contact of membranes in this ‘fusion tangle’ will keep the cells together after cessation of the electric pulses, providing a high probability for stalk formation and hemifusion. Moreover, in these tangles the membranes are forced to assume alternately positive and negative curvatures. It is conceivable that bending of the membranes in different directions is accompanied by the redistribution of lipids and/or proteins (Roux et al., 2005; McMahon and Gallop, 2005; Lai et al., 2011), as a way of lowering the energies of the intermediate states of membrane fusion (Yang, et al., 2003).

The fusion efficiency of lipid vesicles depends on their size. Positive membrane curvature appears to be an optimal condition for fusion and progression to pore formation (Kozlov et al., 2010; Malinin et al., 2002). t-SNARE mediated fusion of giant vesicles is assisted by proteins that locally increase membrane curvature (Hui et al., 2009). Smaller vesicles with a radius of 13 nm show an enhanced formation of fusion pores relative to larger ones with a radius of 60 nm (Malinin et al., 2002). In the fusion tangles of Dicyostelium cells, the radii for positive membrane curvature varied between 13 and 105 nm. The smaller ones were within the

Fig. 7. Persistence of microtubules during cell fusion. The cells express GFP-α-tubulin to visualize microtubules and the centrosomes from which they emanate. (A) Three fusion stages. The arrowhead points to microtubules that cross the bridge between fusing cells. Numbers indicate seconds after the end of pulsing. The entire sequence is shown in supplementary material Movie 6. (B,C) Large cells at the end of fusion containing multiple centrosomes with associated microtubule complexes. The arrow in B points to a long microtubule, that in C to microtubules that cross each other. Scale bars: 10 μm.
A signal that elicits actin accumulation at the vesiculating plasma membrane might be the strong curvature of the vesicle surface as judged from electron micrographs (Fig. 5B–D). Studies on the phagocytosis of particles with complex surface geometry have provided evidence for the recognition of bent regions of the plasma membrane by an I-BAR protein and local induction of actin polymerization at those regions (Clarke et al., 2010).

Mechanically, the actin network appears to prevent the sudden rupture of the membranes that separate the fusing cells, which is observed when actin is depolymerized (see supplementary material Movie 5). This rupture contrasts to the gradual opening of fusion pores in the presence of an intact actin system, as revealed by a delay of 5 seconds between the onset of GFP flow and its maximal rate within the pair of donor and acceptor cells shown in Fig. 2. The fast progression of fusion upon the depolymerization of actin brings the rate of cell fusion closer to the rate of giant lipid vesicles in which fusion pores, once induced, expand with a velocity of 5 cm/second (Halska et al., 2006). These data underscore the notion that in fusing cells, as compared to lipid vesicles, the actin cytoskeleton undergoing reorganization in response to electric pulsing, modulates the fusion of the plasma membranes.

In conclusion, the fusion of eukaryotic cells in response to electric pulses is complicated, relative to the fusion of lipid vesicles, by the membrane-anchored actin network. In the fusion zone, the apposed plasma membranes form tangles of highly positive and negative curvature, embedded into a network of actin filaments. This is due to the induction of actin polymerization at the sites of fusion, causing actin clusters to fill the holes within the fusing membranes. In the compound membranes of living cells, fusion is prevented for a variable number of seconds before pores are formed of about 3 nm diameter that allow GFP to pass. Eventually, the membranes vesiculate and the actin coat bridging the gaps disassembles.

Materials and Methods

Mass fusion of cells

Cells of Dictyostelium discoideum strain AX2-214 were cultivated in nutrient medium, washed in 17 mM K/Na-phosphate buffer, pH 6.0, and suspended in the buffer at a density of 1×10^7 cells/ml. To enhance cell contact, the cells were allowed to agglutinate under gentle shaking in a roller tube.

The experimental setup for mass fusion has been described (Neumann et al., 1980). After transfer into a chamber of 0.35 ml (Fig. 8A,B), the cells were exposed to impulses of the initial intensity E_0 = 5 kV/cm, decaying exponentially with time t according to E(t) = E_0 exp(−t/RC). The sample resistance R = 2×10^12 Ω and the discharge capacitance C = 21 nF yielded a field decay time constant of RC = 42 μseconds for each pulse. Our standard procedure consisted of three pulses at intervals of 3 seconds.

Electron microscopy

For scanning electron microscopy, fused cells of strain AX2 that migrated on a glass coverslip were fixed for 15–45 minutes on ice with a mixture of 1% glutaraldehyde and 0.02% OsO4 in 17 mM phosphate buffer, pH 6.0, and suspended in the buffer at a density of 1×10^8 cells/ml. To enhance cell contact, the cells were suspended in the buffer at a density of 1×10^7 cells/ml. To enhance cell contact, the cells were allowed to agglutinate under gentle shaking in a roller tube. After washing four times in the buffer, the cells were dehydrated in an acetone medium, washed in 17 mM K/Na-phosphate buffer, pH 6.0, and suspended in the buffer at a density of 1×10^7 cells/ml. To enhance cell contact, the cells were allowed to agglutinate under gentle shaking in a roller tube.

The experimental setup for mass fusion has been described (Neumann et al., 1980). After transfer into a chamber of 0.35 ml (Fig. 8A,B), the cells were exposed to impulses of the initial intensity E_0 = 5 kV/cm, decaying exponentially with time t according to E(t) = E_0 exp(−t/RC). The sample resistance R = 2×10^12 Ω and the discharge capacitance C = 21 nF yielded a field decay time constant of RC = 42 μseconds for each pulse. Our standard procedure consisted of three pulses at intervals of 3 seconds.

For transmission EM of sections, 2.5 minutes after electric pulsing 300 μl of the cell suspension were added to 5 ml of fixative I on ice containing 1.5% glutaraldehyde and 0.03% OsO4 in 17 mM phosphate buffer, pH 6.0, mixed together immediately before use and kept in the dark. After 15 to 30 minutes, fixative I was replaced by fixative II, 2% glutaraldehyde, for 1 to 2 hours. After washing in phosphate buffer, cells were post-fixed with 1% OsO4 and embedded into agar. Dehydration with ethanol for embedding in Epon included block staining with 2% uranyl acetate at the 70% ethanol step. Thin sections (50 to 70 nm) were mounted on formvar-coated grids and stained with uranyl acetate and lead citrate.
Imaging of individual fusion events in a microchamber

Cell fusion was recorded in real time by fluorescence microscopy using a PerkinElmer UltraView spinning disc confocal microscope (Waltham, MA, USA). For visualizing GFP flow through fusion pores, AX2-derived cells expressing either GFP-α-DN or GFP were used. For membrane labeling, the styryl dye FM4-64 purchased from Invitrogen (Life Technologies Ltd, Carlsbad, California) was expressing LimE.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

64 purchased from Invitrogen (Life Technologies Ltd, Carlsbad, California) was expressing LimE.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

To determine the bleaching rate. In 14 cells from four recordings an average decay of 1.5% per second was observed. For membrane labeling, the styryl dye FM4-64 was used.

Movie 1. Diffusion of GFP from a donor (left) to an acceptor cell (right) after electric pulsing. A cell expressing GFP (green) fuses with a cell expressing mRFP-LimEΔ (red), the same cells as in Figure 2. Images on the left show the GFP channel (top), and merged images of GFP in green and the actin label in red (bottom). The graph on the right displays fluorescence intensities I(x) along the scan shown in the first frame of the top image. Seconds before and after electric pulsing are indicated. Bar, 10 µm.

Movie 2. Overview on the fusion of cells double-labeled with the membrane-integrating dye FM4-64 (red) and with LimEΔ-GFP for filamentous actin (green). Three cells show bent membranes prior to fusion, in two of them these membrane tangles are surrounded by polymerized actin. (The third of the cells, on bottom, does not express the actin label.) The arrow points to the straight movement of a membrane vesicle out of the fusion zone. Seconds indicate time before and after electric pulsing. Bar, 10 µm.

Movie 3. Membrane fragmentation and actin accumulation at the fusion zone. A pair of cells is double-labeled with FM4-64 for membranes (red) and LimEΔ-GFP for filamentous actin (green). Top panels: Merged images (left), membrane label (middle), and actin label (right). Bottom panel: Fluorescence intensities I(x) along the scan shown on top in the first frame, quantifying the increase of actin coincident with the decline of the membrane label. Seconds before and after electric pulsing are indicated. Bar, 10 µm. The movie shows the same recording as Fig. 6A-D.
Movie 4. Cluster of four cells fusing into one. Membranes and filamentous actin are labeled as in Movies 2 and 3. Top panels: Merged images (left), membrane label (middle), and actin label (right). Bar, 10 µm. Bottom panel: Quantification of the membrane (red) and actin (green) labels along the scan shown in the first frame on top. Seconds before and after electric pulsing are indicated. This movie focuses on the middle of Movie 2 and corresponds to Fig. 6E-H.

Movie 5. Fusion of two pairs of cells treated with 10 µM latrunculin A for the inhibition of actin polymerization. The membranes are labeled using FM4-64. As a result of lacking support by cortical actin, the cells are rounded up and their membranes extend into chains of “pearls”, as reported previously (Gerisch et al., 2004). Membranes of the left pair are already in contact before fusion commences, those of the right pair appear to stay separate and to fuse at 20 s of pulsing immediately after contact formation. Seconds indicate time before and after electric pulsing. Bar, 10 µm.

Movie 6. Microtubules in electric-pulse induced cell fusion. Cells expressing GFP-α-tubulin are induced to fuse. In these cells the centrosomes and microtubules are labeled. The magnification has been changed during the run, as indicated by the bars. Bars, 10 µm.