Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages

Anke Di*, Tomohiro Kiya*, Haixia Gong, Xiaopei Gao and Asrar B. Malik‡

ABSTRACT

Acidification of macrophage phagosomes serves an important bactericidal function. We show here that the redox-sensitive transient receptor potential (TRP) channel TRPM2 is expressed in the phagosomal membrane and regulates macrophage bactericidal activity through the activation of phagosomal acidification. Measurement of the TRPM2 current in phagosomes identified TRPM2 as a functional redox-sensitive cation channel localized in the phagosomal membrane. Simultaneous measurements of phagosomal Ca\(^{2+}\) changes and phagosome acidification in macrophages undergoing phagocytosis demonstrated that TRPM2 was required to mediate the efflux of cations and for phagosome acidification during the process of phagosome maturation. Acidification in phagosomes was significantly reduced in macrophages isolated from Trpm2\(^{-/-}\) mice as compared to wild type, and acidification was coupled to reduced bacterial clearance in Trpm2\(^{-/-}\) mice. Trpm2\(^{+/+}\) macrophages treated with the vacuolar H\(^+-\)ATPase inhibitor bafilomycin showed reduced bacterial clearance, similar to that in Trpm2\(^{-/-}\) macrophages. Direct activation of TRPM2 using adenosine diphosphate ribose (ADPR) induced both phagosomal acidification and bacterial killing. These data collectively demonstrate that TRPM2 regulates phagosomal acidification, and is essential for the bacterial killing function of macrophages.

KEY WORDS: Bactericidal activity, Ion channel, Phagosome

INTRODUCTION

Macrophages, upon ingesting invading micro-organisms, have the primary function of killing bacteria through maturation of phagosomes as defined by their acidification (Russell et al., 2009; Vieira et al., 2002). The mature phagosome is also rich in proteolytic enzymes, ensuring effective degradation of internalized microbes (Kinchen and Ravichandran, 2008). During phagosome maturation, phagosomes recruit vacuolar proton (H\(^+\))-ATPases (vATPases) that transfer H\(^+\) into phagosomes (Flanagan et al., 2009). To optimize H\(^+\) accumulation, efflux of cations and influx of anions such as chloride (Hara-Chikuma et al., 2005) are needed to dissipate the development of a restrictive electrical gradient induced by the H\(^+\) influx (Steinberg et al., 2007a). However, the identity of these channels remains unclear (Steinberg et al., 2010).

Transient receptor potential melastatin 2 (TRPM2), a redox-sensitive non-selective cation channel localized in the plasma membrane (Hara et al., 2002; Knowles et al., 2013; Perraud et al., 2001, 2005; Syed Mortadza et al., 2015; Toth and Csanady, 2010), plays an important role in bacterial clearance due in part to its ability to activate cytokine generation (Knowles et al., 2011; Qian et al., 2014). Impaired production of cytokines in Trpm2\(^{-/-}\) mice led to high mortality following Listeria monocytogenes (LM) challenge (Knowles et al., 2011). TRPM2 may also control the killing of internalized Escherichia coli through its role as a plasma membrane Ca\(^{2+}\)-influx channel and induce phagosome-lysosome fusion (Zhang et al., 2017). Because of the importance of macrophages in killing bacteria, here, we addressed the question of whether TRPM2 is expressed in phagosomal membrane of macrophages and whether it functions as an efflux of cation channel to regulate phagosomal pH and thereby bacterial killing.

RESULTS

TRPM2-mediated killing of bacteria in macrophages

Studies using TRPM2-knockout (Trpm2\(^{-/-}\)) mice have previously shown that the protective role of TRPM2 in polymicrobial sepsis (Qian et al., 2014) and Listeria monocytogenes (LM) infection (Knowles et al., 2011) is mediated by TRPM2-dependent bacterial clearance. However, the question remains as to whether TRPM2 is expressed in phagosomes of macrophages and whether its phagosomal expression contributes to bacterial killing. Here, we studied the role of TRPM2 in phagosomes of macrophages for killing of the gram-negative bacteria Pseudomonas aeruginosa (PA), a common pathogen mediating respiratory infection (Sadikot et al., 2005). We first examined the role of TRPM2 in mice challenged intra-tracheally with PA. We observed markedly augmented lung PA retention in Trpm2\(^{-/-}\) compared to in Trpm2\(^{+/+}\) mice (Fig. 1A). Mortality was also greater in Trpm2\(^{-/-}\) relative to Trpm2\(^{+/+}\) mice in response to intra-tracheal administration of PA as well as to cecal ligation puncture (CLP), a model of polymicrobial sepsis (Fig. 1B,C). We next determined whether TRPM2 in isolated macrophages contributed to killing of PA. Upon infecting mouse bone marrow-derived macrophages (BMDMs) with either gram-negative PA bacteria or gram-positive Staphylococcus aureus (SA) bacteria, we observed significantly greater bacterial survival in BMDMs from Trpm2\(^{-/-}\) mice exposed to PA or SA than BMDMs from Trpm2\(^{+/+}\) mice (Fig. 1D,E).

Distribution of TRPM2 in phagosomes

Although TRPM2 is known to be expressed in the plasma membrane of macrophages (Di et al., 2011), its distribution in phagosomes is unclear. We identified marked TRPM2 immunostaining in human alveolar macrophages (Fig. 2A–C, green). We also demonstrated, by feeding human alveolar macrophages latex beads, that TRPM2 was specifically distributed in the phagosome membrane (Fig. 2D). Furthermore, TRPM2
staining was seen in phagosomes of BMDMs from Trpm2+/+ but not in Trpm2−/− mice (Fig. 2E–I). Since lysosomes contribute to phagosomal maturation (Flannagan et al., 2009; Vieira et al., 2002), we next determined whether TRPM2 is present in lysosomes. Macrophages were immunostained with anti-TRPM2 antibody and antibody against the lysosome marker lysosomal-associated membrane protein 1 (LAMP1) (Meikle et al., 1997). However, we observed that TRPM2 staining was absent in lysosomes (Fig. S1).

Activation of TRPM2 in phagosomes

We next used patch clamping to monitor the current in phagosomes isolated from BMDMs (Samie et al., 2013). ADP-ribose (ADPR; 200 µM) was added to the patch pipette solution to activate TRPM2 (Perraud et al., 2001). ADPR activated a non-selective phagosomal cation current with a linear current–voltage plot, and isosmotic replacement of external Na+ with the impermeant organic cation N-methyl-D-glucamine (NMDG) abolished the inward current (Fig. 3A–C). Phagosomes from Trpm2−/− BMDMs failed to respond to ADPR (Fig. 3C). ADPR added to the bath solution also failed to activate a current (Fig. 3A–C). These findings demonstrated the intra-luminal localization of the TRPM2 C- and N-terminals. Since TRPM2 is a redox-sensitive channel (Hara et al., 2002; Perraud et al., 2005), it can also be activated by oxidants (Wehage et al., 2002). We showed that H2O2 (100 µM) added into phagosomes via the micropipette elicited a non-selective cation current in Trpm2+/+ BMDMs and isosmotic replacement of external Na+ by NMDG significantly reduced the inward current, but not the outward current (Fig. 3D–F). However, the H2O2-induced current was significantly reduced in Trpm2−/− BMDMs.

Since there is uncertainty about whether oxidants and oxidant-mediated production of ADPR activate TRPM2 (Knowles et al., 2013), we next examined whether H2O2-induced activation of TRPM2 occurred secondary to production of ADPR. We observed that 8-Br-ADPR (an antagonistic analog of ADPR; Partida-Sanchez et al., 2007) reduced H2O2-induced current in Trpm2+/+ BMDMs to the level seen in Trpm2−/− BMDMs (Fig. 3D–F). However, 8-Br-ADPR did not modify the H2O2-induced current in Trpm2−/− BMDMs (Fig. 3D–F), consistent with the essential role of generation of H2O2 in activating phagosomal TRPM2 secondary to ADPR generation.

We next addressed the postulated mechanism by which reactive oxygen species (ROS) induced production of ADPR in phagosomes. The mechanism involves H2O2-induced generation of ADPR through the oxidant sensitive-enzyme NADase (also known as NAD glycohydrolase), which catalyzes hydrolysis of NAD into ADPR (Albeniz et al., 2004), and poly(ADP-ribose) polymerase (PARP), which binds single-stranded and double-stranded DNA breaks and catalyzes breakdown of NAD into poly-ADPR (Fonfria et al., 2004; Hecquet and Malik, 2009). We observed in patch clamp experiments that included nicotinamide, an inhibitor of NADase (Alano et al., 2010), along with H2O2 in the intra-phagosomal pipette solution did not show a H2O2-activated...
current (Fig. 3E,F). Thus, oxidant-induced ADPR generation in phagosomes involved oxidant-sensitive transition of NAD into ADPR mediated by NADase.

Coupling of phagosomal TRPM2 activation and phagosomal acidification in macrophage during phagosome maturation

Since phagosomal TRPM2 faces the inner aspect of the phagosome, as evident by the electrophysiological measurements described above (Fig. 3), we next determined the relationship between TRPM2 recruitment to the phagosome and phagosomal acidification during phagosome maturation. In this study, we simultaneously monitored both phagosomal TRPM2 activation and acidification. Intra-phagosomal Ca\(^{2+}\) was determined using fluo3 and phagosomal acidification was determined using the pH-sensitive fluorescent dye pHrodoRed (hereafter pHrodo) conjugated to SA (Fig. 4). We observed greater intra-phagosomal Ca\(^{2+}\) accumulation (a green fluorescence increase) in \textit{Trpm2}\(^{+/+}\) mouse (m)BMDMs compared to \textit{Trpm2}\(^{−/−}\) mBMDMs during phagosomal acidification (Fig. 4A,C; Movies 1,2). Further, we observed weaker increase in intensity of fluorescence from pHrodo in \textit{Trpm2}\(^{−/−}\) mouse (m)BMDMs as compared to \textit{Trpm2}\(^{+/+}\) mBMDMs (Fig. 4A,D; Movies 1,2), indicating decreased phagosomal acidification in \textit{Trpm2}\(^{−/−}\) macrophages. These findings thus demonstrate that TRPM2 activation, as reflected by efflux of Ca\(^{2+}\) in \textit{Trpm2}\(^{+/+}\) BMDMs, occurred in parallel with phagosomal acidification.

Impaired phagosomal acidification in \textit{Trpm2}\(^{−/−}\) macrophage causes defective killing of bacteria

To further evaluate the role of TRPM2 in regulating phagosomal pH, we also measured phagosomal pH using dual fluorescence flow cytometry (Sokolovska et al., 2012). SA was conjugated to ratiometric fluorescent dyes containing both the pH-sensitive component Oregon Green 488 (OG), having a low pK\(_a\) (4.8) (Han and Burgess, 2010), and the acidification-insensitive component carboxy-tetramethyl-rhodamine (TAMRA) (Sokolovska et al., 2012) (Fig. 5A). The intensity ratios of OG and TAMRA versus pH were obtained by flow cytometry. Calibration of fluorescence was interpolated on a standard curve for the intensity ratios of OG and TAMRA versus pH determined in vitro using a series of buffers (Fig. 5A,B). BMDMs containing SA from \textit{Trpm2}\(^{−/−}\) mice showed...
greater pH values (6.53±0.28, mean±s.e.m.) in phagosomes containing SA than the Trpm2+/+ BMDMs (5.32±0.01) measured after phagocytosis (Fig. 5C). Trpm2+/+ BMDMs treated with diphenyleneiodonium (DPI; an inhibitor of NOX) (Cross and Jones, 1986), however, showed increased phagosomal pH (6.71±0.46) similar to the pH value (6.87±0.12) of phagosomes from Trpm2−/− BMDMs treated with DPI (Fig. 5D). These findings together show the central role of oxidant-mediated TRPM2 activation in the mechanism of phagosomal pH drop.

To address whether defective phagosomal acidification was responsible for the PA-killing defect seen in Trpm2−/− macrophages (Fig. 1), we next determined PA killing following treatment of BMDMs with bafilomycin, which inhibits H+ influx (Lukacs et al., 1990). Bafilomycin-treated macrophages from Trpm2+/+ mice showed significantly greater PA survival than control untreated cells, and moreover, the level of bacterial killing was similar to Trpm2−/− BMDM (Fig. 5E).

We next examined phagosomal acidification and bacterial killing in the presence of 8-Br-ADPR, an analog of ADPR (Partida-Sanchez et al., 2007) that does not activate TRPM2. Phagosomal pH and bacterial survival increased in Trpm2−/− BMDMs treated with 8-Br-ADPR to the same extent as seen in Trpm2−/− phagosomes to the same level seen in Trpm2−/− phagosomes (red). 8-Br-ADPR did not affect the H2O2-induced current in Trpm2−/− phagosomes (blue).

To further test whether phagosomal acidification is mediated by TRPM2, we examined phagosomes from Trpm2−/− mice that lack TRPM2. Phagosomes from Trpm2−/− mice showed similar pH values (6.32±0.12) to those from Trpm2+/+ mice (6.47±0.12) measured after phagocytosis (Fig. 5F). These findings together show that oxidant-mediated TRPM2 activation is essential for phagosomal pH drop and thereby for bacterial killing by macrophages (Fig. 5H).
staining with pHrodo. We then examined the strength of lysosome fluorescence (Alexa Fluor 488) of each phagosome containing pHrodo fluorescence (Fig. S2). However, we did not observe any difference in the fluorescence intensity distribution of the lysosomal dye (Alexa Fluor 488) for each phagosome containing pHrodo, or a difference in proportion the phagosomes positive for dextran–Alexa-Fluor-488 staining as a percentage of all phagosomes detected between Trpm2+/+ and Trpm2−/− mBMDMs (Fig. S2G,H). Phagosomes containing SA from Trpm2+/+ and Trpm2−/− mBMDMs showed similar loading of dextran (Fig. S2G,H). These studies demonstrated no fusion defect in either group.

DISCUSSION

Macrophages serve as an essential host-defense function in killing invading bacteria secondary to phagosomal maturation and decrease in pH (Vieira et al., 2002). We previously showed that TRPM2 in phagosomes but not in lysosomes of macrophages displayed the same defects in phagosomal acidification and bacteria killing as seen in Trpm2−/− macrophages. These results collectively demonstrated an essential role of phagosomal TRPM2 in killing bacteria secondary to phagosomal acidification.

Zhan et al. have also observed defective *E. coli* killing in stimulated peritoneal Trpm2−/− macrophages, which they ascribed to defective phagosome–lysosome fusion resulting from impaired Ca2+ influx via the plasma membrane-localized TRPM2 (Zhang et al., 2017). In the present study however, on carefully examining the distribution and function of TRPM2, we observed localization of TRPM2 in phagosomes but not in lysosomes of macrophages derived from bone marrow. We demonstrated that the impaired phagosomal acidification and bacteria killing of Trpm2−/− macrophages were due solely to the lack of counter conductance for proton influx. Furthermore, phagosome–lysosome fusion in both Trpm2−/− and Trpm2+/− BMDMs was similar, indicating that the defective phagosome–lysosome fusion in the present study cannot explain the impaired killing defect of Trpm2−/− macrophages. The reasons for the discrepancy in the findings are not clear. One possibility is that the stimulated peritoneal macrophages used by Zhang et al. (2017) may have been activated prior to their use, and thus this favored fusion of phagosomes and lysosomes.

In a previous study addressing the role of TRPM2-mediated inhibition of ROS generation (Di et al., 2011), augmented *E. coli* killing was observed in lungs and blood of Trpm2−/− compared to Trpm2+/+ mice after a 4 h period of infection, whereas there was no difference between Trpm2+/+ and Trpm2−/− mice seen at 24 h after infection. In the study using mice infected with *LM*, the liver and spleen bacterial killing in Trpm2−/− was less than in Trpm2+/+ mice.
The Trpm2−/− peritoneal macrophages, however, showed normal killing of LM (Knowles et al., 2011). In the present study, we clearly showed an essential role for TRPM2 localized in phagosomes for killing of both gram-positive bacteria SA and gram-negative bacteria PA. It appears from these disparate observations that the role of TRPM2 in mediating bacterial killing is complex. A possible explanation is that TRPM2-mediated bactericidal mechanisms vary depending on bacteria type, the state of activation of macrophages, the type of macrophages used for the study and the distinct functions of TRPM2 present in the plasmalemmal versus in the phagosome.

Our patch clamp results in isolated phagosomes showed the luminal orientation of the TRPM2 termini in phagosomes. That the N- and C-terminal regions of TRPM2 did not face the outer side of phagosomes suggests that phagosomal TRPM2 did not originate from the plasma membrane after phagocytosis. Our results on the timecourse of phagosome maturation showed that phagosomal TRPM2 activation and acidification occurred together, thus indicating that the recruitment of TRPM2 was directly coupled to phagosome maturation.

Fig. 5. TRPM2 regulates phagosomal acidification and the bacterial killing function of macrophages. (A–C) BMDMs from Trpm2−/− mice show a distinct phagosomal acidification defect. Phagosomal pH was determined by flow cytometry in BMDMs containing SA. (A) Histogram of flow cytometry measurements of Trpm2+/+ BMDM containing SA conjugated to OG and TAMRA. pH-sensitive OG was excited at 488 nm and pH-insensitive TAMRA is excited at 561 nm under different pHs. The right shift of OG fluorescence is evident, but there is no change in TAMRA fluorescence, when pH changes from a lower (pH 4) to a higher (pH 7) value. (B) In situ calibration of pH with SA conjugate of OG and TAMRA from measurements as described in A. Data are fitted to a Boltzmann equation. (C) Timecourse of phagosomal pH. In these experiments, Trpm2+/+ and Trpm2−/− BMDMs are incubated with TAMRA and OG double-labeled SA as described in A for 10 min, and this is followed by flow cytometry measurements. Results are means±s.e.m. (n=5). Phagosomal pH is determined based on the standard curve shown in B. *P<0.05 (t-test) as compared with BMDM. (D) NOX inhibition increased phagosomal pH. Trpm2+/+ BMDMs treated with DPI showed an increased pH, similar to the pH observed in phagosomes of Trpm2−/− BMDMs treated with DPI (n=3). (E) Defective acidification impaired PA killing in BMDMs. BMDMs from Trpm2+/+ and Trpm2−/− mice were pretreated with bafilomycin (0.1 μM) for 10 min before exposure to PA (MOI of 20) for 30 min and cultured for 120 min with the same concentration of bafilomycin at 37°C. Bars indicate means±s.e.m. (n=3). *P<0.05 (t-test). (F,G) ADPR antagonism increases phagosomal pH and bacterial survival in Trpm2+/+ BMDMs. BMDMs were pretreated with 8-Br-ADPR (10 μM) for 10 min at 37°C before exposure to SA conjugated to pH-sensitive OG and pH-insensitive TAMRA for pH measurements, or before they were exposed to PA for bacterial survival analysis. Bars indicate means±s.e.m. (n=3,F; n=4,G). n.s., not significant; *P<0.05 (t-test). (H) Model of oxidant-mediated TRPM2 activation regulating phagosomal acidification and bacterial killing. Upon bacterial challenge, NOX is activated and ROS are released. Oxidant stress results in increased formation of ADPR, which activates TRPM2. TRPM2 activations gates the flux of cations (Na+ and Ca2+) from phagosomes, which are regulated by cation concentrations (Lundqvist-Gustafsson et al., 2000) and phagosomal membrane potential (Steinberg et al., 2007b). Cation efflux (cation counter flux) and H+ influx decreases phagosomal pH and thus favors bacterial killing.

(Knowles et al., 2011). The Trpm2−/− peritoneal macrophages, however, showed normal killing of LM (Knowles et al., 2011). In the present study, we clearly showed an essential role for TRPM2 localized in phagosomes for killing of both gram-positive bacteria SA and gram-negative bacteria PA. It appears from these disparate observations that the role of TRPM2 in mediating bacterial killing is complex. A possible explanation is that TRPM2-mediated bactericidal mechanisms vary depending on bacteria type, the state of activation of macrophages, the type of macrophages used for the study and the distinct functions of TRPM2 present in the plasmalemmal versus in the phagosome.

Our patch clamp results in isolated phagosomes showed the luminal orientation of the TRPM2 termini in phagosomes. That the N- and C-terminal regions of TRPM2 did not face the outer side of phagosomes suggests that phagosomal TRPM2 did not originate from the plasma membrane after phagocytosis. Phagosomal maturation requires spatial and temporal orchestration of proteins (for a review, see Levin et al., 2016). During the formation of phagosomes, proteins such as transferrin receptor are shuttled back to the plasma membrane whereas proteins such as the GTPase Rab5 are recruited into phagosomes (Levin et al., 2016). Other phagosomal proteins undergo retrograde traffic to the trans-Golgi network via tubulovesicular structures (Levin et al., 2016). The mechanism of TRPM2 positioning in phagosomes is not known. Our results on the timecourse of phagosome maturation showed that phagosomal TRPM2 activation and acidification occurred together, thus indicating that the recruitment of TRPM2 was directly coupled to phagosome maturation.
We also addressed the proximal basis of TRPM2 activation in phagosomes. Since TRPM2 is a redox-sensitive channel (Hara et al., 2002; Perraud et al., 2005), a possible mechanism of phagosomal TRPM2 activation may involve generation of oxidants and the subsequent production of ADPR (Hara et al., 2002; Knowles et al., 2013; Perraud et al., 2005; Syed Mortadza et al., 2015; Toth and Csanady, 2010; Wehage et al., 2002). We observed that the H$_2$O$_2$-activated current in Trpm2$^{−/−}$ BMDMs treated with an antagonist analog of ADPR was reduced to the level seen in Trpm2$^{+/−}$ BMDMs, suggesting that H$_2$O$_2$ activated phagosomal TRPM2 through ADPR generation. The production of ADPR from mitochondria and nuclei (DNA) is considered to be primarily responsible for oxidative stress-induced TRPM2 activation (Hecqquet and Malik, 2009). In phagosomes containing bacteria, DNA from nuclei may be the source for ROS-induced and NADase-mediated generation of ADPR (Bricker et al., 2002; Huang et al., 2009). Since NADase is ROS sensitive (Krapp et al., 1997; Ziegler et al., 1997), a tenable presumption is that H$_2$O$_2$ induces ADPR generation through activating NADase (Albenz et al., 2004). This was confirmed by the observation that nicotinamide (an inhibitor of oxidant-sensitive NADase) (Alano et al., 2010) prevented H$_2$O$_2$-induced current, suggesting that ADPR generation in phagosomes involved the oxidant-sensitive transition of NAD into ADPR. Thus, our results support the model that ROS generation activated during phagocytosis mediated ADPR generation, and thereby signaled TRPM2 activation in phagosomes.

Phagosomes acquire an antimicrobial arsenal during the course of phagosomal maturation (Flanagan et al., 2009). This includes recruiting the vATPase that pumps H$^+$ into phagosomes, and assembly and activation of phagosomal membrane NADPH oxidases (NOXs) that produce ROS (Russell et al., 2009). In light of the role of ROS in bacteria killing (Pollock et al., 1995; Segal, 1996; Segal et al., 2000), the previous observation that the NOX-inhibiting function of TRPM2 promoted bacterial killing during phagocytosis at the plasma membrane (Di et al., 2011; Zhang et al., 2017) led us to consider the possibility that TRPM2 could also mediate bacterial killing through a phagosomal acidification mechanism. Phagosomal acidification in macrophages is essential for activation of lysosomal proteases, microbe killing and protein degradation (Aronson and De Duve, 1968; Coffey and De Duve, 1968; Pillay et al., 2002; Savina et al., 2006). The role of the ROS and NOX pathway in intra-phagosomal bacterial killing has been proposed in part based on findings in chronic granulomatous disease (CGD) (Pollock et al., 1995; Segal, 1996; Segal et al., 2000). CDG is characterized by severe, protracted and fatal infection (CGD) (Pollock et al., 1995; Segal, 1996; Segal et al., 2000); however, it was later discovered that defective bacterial killing in CDG neutrophils was secondary to dysregulated phagosomal acidification mechanism (Dri et al., 2002; Geisz et al., 2001; Henriet et al., 2013; Segal et al., 1981; Thrasher and Segal, 2011).

In summary, we demonstrated that TRPM2 localized in phagosomes is required for mediating bacterial killing through facilitating acidification of phagosomes in macrophages. This finding suggests that strategies aimed at activating TRPM2-mediated cation efflux, such as through ADPR generation, might enhance acidification and thereby the bactericidal function of macrophage.

MATERIALS AND METHODS

Mice

Age (4–6 weeks) and sex (both male and female)-matched mice were used in these studies. TRPM2-knockout (Trpm2$^{−/−}$) mice used in these studies were generously provided by Dr. Yasuo Mori (Department of Technology and Ecology, Kyoto University, Japan; Yamamoto et al., 2008); these mice were generated by deleting exons corresponding to transmembrane (TM) spans 5 and 6, including the pore loop. C57BL6 mice were obtained from Charles River Laboratory. All mice were housed in the University of Illinois Animal Care Facility in accordance with institutional and NIH guidelines. All experiments were approved by the University of Illinois Animal Resources Center.

Cell culture and reagents

Mouse bone marrow-derived macrophages (mBMDMs) were induced and cultured as described previously (Zhang et al., 2008). *Pseudomonas aeruginosa* (PA) strain 103, was a gift from Dr Yuru Liu (University of Illinois, Chicago, IL) and *Staphylococcus aureus* strain USA 300 (SA) was a gift from Dr Nancy Freitag (University of Illinois, Chicago, IL). Bacteria were suspended in medium containing 20% glycerol, and frozen in aliquots at −70°C. Before each experiment, an aliquot was thawed and cultured in Luria-Bertani (LB) broth at 37°C with continuous shaking, and the exact number of bacteria was determined by plating serial dilutions onto LB agar plates for overnight culture. The original culture was kept at 4°C and was used for infection once the concentration of live bacteria was determined overnight (~12 h). Unlabeled SA (Wood strain without protein A) bio-particles (SA, S-2859), Oregon Green 488 carboxylic acid succinimidyl ester (OG, O6149), 6-carboxy-tetramethyl-rhodamine (TAMRA, C6122), Fluor-3-AM (F-14218), Fluor-3 pentapotassium salt (F3715) and pHrodo (A10010) were purchased from Life Technologies (NY). Rabbit anti-human TRPM2 antibody (ab11168) was purchased from Abcam (MA, USA) and used at 1:100. 8-Br-ADPR (B 051-05) was purchased from Biolog/Axxora, LLC (Enzo Life Sciences, Inc.). Bafilomycin (B1793), latex beads (3.0 µm, LB30), Nicotinamide (N3376) and other chemicals were purchased from Sigma (MO).

Human cell experiments

Use of human subjects for broncho-alveolar lavage was approved by the Institutional Review Board of University of Illinois Chicago Hospitals (Chicago, IL). Informed consent was obtained for all tissue donors and all clinical investigation have been conducted according to the principles expressed in the Declaration of Helsinki.

Polymicrobial sepsis model and survival

Mouse polymicrobial sepsis was induced by cecal ligation puncture (CLP) as described previously (Cuenca et al., 2010) using a 16-gauge needle. For survival studies, mice were monitored twice daily for 6 days.

Lung infection model, survival in mice, and lung bactericidal activity

Lung infection with *PA* was induced by intra-tracheal administration of *PA* (109 in 30 µl). For survival studies, mice were monitored twice daily for 6 days after *PA* administration. Bactericidal activity in lungs was assessed as described previously (Sadikot et al., 2006). Mice were killed and lungs were removed 48 h after *PA* administration. The lung was removed aseptically and placed in 1 ml of sterile HBSS. Lungs were homogenized in a tissue
homogenizer in a vented hood under sterile conditions. Serial dilutions of the homogenates were made and 10 µl of each dilution were plated in agar plates. Plates were incubated for 18 h at 37°C, and the number of PA colonies was counted.

Bactericidal activity assay

Bactericidal activity of macrophage was analyzed by performing a colony-forming unit (CFU) assay as described previously (Hamrick et al., 2000). *Pseudomonas aeruginosa* strain 103 (PA) and *Staphylococcus aureus* strain USA 300 (SA) were grown in tryptic soy broth for 14 h at 37°C, and bacteria concentrations were determined by serial dilutions and counting CFUs. In each sample, 2×10^7 macrophages on culture dishes were infected with bacteria at a multiplicity of infection (MOI) of 20 for PA or an MOI of 10 for SA for 30 min at 37°C. Cells were gently scraped off the bottom of the culture dish into the medium and centrifuged at 500 g for 10 min at 4°C. Then, supernatant was aspirated and pellets were re-suspended in DMEM with 10% fetal bovine serum (FBS). Non-internalized bacteria were killed by adding 100 µg/ml gentamicin to the medium and incubating for 1 h at 37°C. It was tested that a 1 h pulse with gentamicin is sufficient to kill these bacteria. Samples were centrifuged (500 g for 10 min), and the pellets were suspended in medium with 10 µg/ml gentamicin. Macrophage bactericidal activity was monitored at 37°C over several time points (0, 2 or 3 h). At each time point, cells were centrifuged at 500 g for 5 min and the cell pellet was re-suspended in 1% Triton X-100 in PBS. Cells were lysed for 2 min at room temperature (RT) and 50, 100 and 500 µl aliquots of lysate were spread onto agar plates. Surviving bacteria were grown for 16 h and the number of colony-forming units was tabulated.

TRPM2 immunostaining of macrophages loaded with beads

Bone marrow-derived macrophage (BMDMs) from both *Trpm2*+/+ and *Trpm2*−/− mice plated on 25 mm coverslips were treated with 3 µm latex beads at 37°C for 30 min. Phagocytosis was stopped by transferring coverslips to ice-cold PBS, and washing five times with PBS to remove any remaining external beads, and fixed for 20 min in 3% paraformaldehyde in HBBS. Macrophages were stained with anti-TRPM2 antibody for 1 h and localization of TRPM2 and phagocytosed beads were imaged with a Zeiss LSM 710 confocal microscope using 488 and 561 nm lasers and a 63× objective lens (NA 1.3). Images were acquired with LCS software and images were processed with Fiji software.

Phagosome current recording

Whole phagosome current was measured as described previously (Samie et al., 2013). Red blood cells (RBCs) opsonized with IgG were incubated with BMDMs at 37°C and 5% CO2 for 10 min to lead to the formation of phagosomes. To release phagosomes from cells, a patch pipette was used to open the cell by slicing the cell membrane. Currents from the isolated phagosome were elicited using a series of test pulses ranging from −110 to +110 mV (test pulses were 200 ms in duration and delivered at 2 s intervals). The holding potential was 0 mV. The pipette solution contained (in mM): 145 NaCl, 2 MgCl2, 0.5 CaCl2, 1 EGTA and 10 HEPES pH 7.4. ADP (200 µM) or H2O2 (100 µM) was included in the pipette solution to induce TRPM2 current. The bath solution contained (in mM): 145 NaCl, 2 CaCl2, 1 MgCl2 and 10 HEPES pH 7.4. Phagosomal current was analyzed using IGOR software (WaveMetrics, Lake Oswego, OR).

Determination of phagosomal acidification

Acidification of phagosomes containing SA was measured as described previously (Sokolovska et al., 2012). SA was labeled with both OG and TAMRA as above. Macrophages were cultured on a 96-well plate (Nunclon Delta surface, Thermo Scientific) at a concentration of 5×10^4 cells/well, and were incubated with labeled SA particles at a MOI of 5 for 10 min at 37°C for flow cytometry analysis. The ratio of the mean fluorescence from OG over mean fluorescence of TAMRA was determined by flow cytometry (LSR Fortessa, BD, NJ) with a 488 nm and a 561 nm laser. The intra-phagosome pH values were interpolated on a standard curve for SA fluorescence versus pH determined in vitro using a series of buffers as above. For phagosomal pH calibration, phagosome pH was equalized by incubating cells for 15–20 min at 37°C in calibration buffer (120 mM KCl, 20 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM HEPES with the pH adjusted from 4 to 8) containing the ionophores carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 µM), nigericin (10 µM) and the H+ vATPase pump inhibitor bafilomycin (0.1 µM). Changes in pH were measured by assessing the intensity ratio of OG to TAMRA in each phagosome. OG:TAMRA ratios were plotted against pH values and curves were fitted with the sigmoidal Boltzman equation. In each independent experiment, results from three samples (each containing about 5×10^4 cells) of the same group were averaged, and averaged results from six independent experiments (n=6) were presented.

Simultaneous recording of phagosomal TRPM2 activation and acidification during phagosome maturation

Cellular and intraphagosomal Ca^2+ was monitored with fluo3 as the Ca^2+ indicator (Minta et al., 1989), and phagosomal acidification was monitored by using the pH-sensitive fluorescent dye pHrodo conjugated to SA. BMDMs from both *Trpm2*+/+ and *Trpm2*−/− were first loaded with 5 µM fluo3-AM (membrane permeant) for 30 min at 37°C and cells were then infected with SA conjugated to the pH-sensitive fluorescent dye pHrodo (Han and Burgess, 2010) with a MOI of 10. The pHrodo dye has the property that its fluorescence increases as pH decreases from neutral to acidic (Inc., 2014); however, importantly it does not fluorescence outside the cell (Miksa et al., 2009) and therefore is useful in identifying particles internalized in phagosomes. Dye emission was determined with a Zeiss LSM 710 confocal microscope by using a 488 nm and a 561 nm laser, a 63× objective lens (NA 1.3) and an emission bandwidth of 500–535 nm and 600–680 nm. Images were collected every 10 s with LCS software and were processed and analyzed with Fiji software.

Data analysis and statistics

Images were analyzed using Fiji software (NIH). Summary data are expressed as mean±s.e.m. with the number of experiments listed in parentheses or indicated in the text. Significance between groups was determined using the Student’s t-test (two-tailed) and asterisks indicate values as shown.

Acknowledgements

We thank Dr Sergio Grinstein of Hospital for Sick Children and Nic Demarais of University of Geneva for insights into the work and Dr Balaji Ganesh (University of Illinois at Chicago) for flow cytometry experiment design and data analysis.

Competing interests

The authors declare no competing or financial interests.

Author contributions

A.D. and A.B.M. designed the study; A.D., T.Y., H.G. and X.G. performed experiments and data analysis; A.D. and A.B.M. wrote the paper with input from the other authors.

Funding

This work was supported by the National Institutes of Health (P01HL77806). T.K. was supported by Saiseikai Otaru Hospital, Japan. Deposited in PMC for release after 12 months.

Supplementary information

Supplementary information available online at http://jcs.biologists.orglookup doi:10.1242/jcs.196014.supplemental

Supplement Figure 1. Absence of TRPM2 in lysosomes of mouse MΦs. Bone marrow derived macrophages (BMDMΦs) are fixed with paraformaldehyde and then immunostaining and confocal imaging is carried out. Lysosomes are identified with anti-LAMP1 antibody (Santa Cruz, sc-19992) and TRPM2 is identified with anti-TRPM2 antibody (Abcam, ab11168). These images with more cells in a and fewer cells but with higher resolution in b show absence of TRPM2 staining (green) in lysosomes identified by LAMP1 staining (red) in the merged images (a – b, scale bar: 10 μm). More details are shown in c (scale bar: 2 μm), indicating TRPM2 is not present in lysosomes of mBMDMΦs.
Dextran-Alexa488
SA-pHrodoRed
Merged

Trpm2^{+/+}
Trpm2^{+/-}
Trpm2^{-/-}

Trpm2^{+/-}
Trpm2^{-/-}

Trpm2^{+/-}
Trpm2^{-/-}

Dextran-Alexa488
SA-pHrodoRed
Merged-1
Merged-2

Trpm2^{+/+}
Trpm2^{+/-}
Trpm2^{-/-}

Trpm2^{+/-}
Trpm2^{-/-}

Trpm2^{+/-}
Trpm2^{-/-}

Strength of Alex488 Per phagosome (au)

Alex488 containing phagosome of total phagosome (%)
Supplement Figure 2. TRPM2 is dispensable for phagosome-lysosome fusion. a - f. Confocal images showing fusion of lysosome (indicated by Alexa-488 conjugated-dextran) with phagosome (indicated by pHrodo-conjugated SA). Lysosomes were traced with Alexa-488 conjugated dextran (green) and phagosomes were labeled with pHrodo conjugated SA (red). BMDMΦs from both Trpm2^{+/+} and Trpm2^{-/-} mice were incubated with dextran and then further infected with SA-pHrodo for 30 min at 37°C and then confocal microscope measurements were made. a - b. Confocal images showing multiple BMDMΦs from Trpm2^{+/+} and Trpm2^{-/-} mice with phagosomes containing SA (red) being loaded with dextran (green), indicated by the yellow (indication of fusion of phagosome with lysosome). Scale bar: 10 μm. The fusion events are shown with higher resolution in c and d (scale bar: 5 μm) and also shown in more detail in e and f (scale bar: 1 μm). g - h. Quantification of fusion of phagosomes with lysosomes. There was no significant difference in either strength of lysosome fluorescence (Alex 488) per phagosome containing pHrodo fluorescence (g) or fusion shown as percentage of phagosomes with lysosomes containing Alex 488 over total phagosome containing pHrodo between Trpm2^{+/+} and Trpm2^{-/-} BMDMΦ(h). Bars indicate mean ± SEM (n = 3).
Supplemental Video

Supplemental Video 1: Monitoring intra-phagosomal Ca\(^{2+}\) changes in mouse bone marrow derived macrophage from *Trpm2*\(^{+/+}\) mice. Cellular and intra-phagosomal Ca\(^{2+}\) was monitored with fluo3 as Ca\(^{2+}\) indicator, and phagosomal acidification was monitored using pH sensitive fluorescent dye pHrodoRed conjugated to *Staphylococcus aureus* (SA). BMDMΦs from *Trpm2*\(^{+/+}\) were first loaded with 5 µM fluo3-AM (membrane permeant) for 30min at 37°C and cells were then infected with SA conjugated with the pH-sensitive fluorescent dye pHrodo with a MOI of 10. Dye emission was determined by a Zeiss LSM 710 confocal microscope using a 488 nm laser and a 561 nm laser, a 63X objective lens (NA=1.3), and an emission bandwidth of 500-535 nm and 600-680nm. Images were collected every 10s with LCS software and were processed and analyzed with Fiji software. Note the rapid appearance of the red fluorescence from pHrodo used as a marker for both phagosomes and phagosomal acidification, but the green fluorescence from fluo3 (Ca\(^{2+}\) signal) did not increase with time in the corresponding phagosomes. The merged video clearly shows the strong red color in phagosomes due to reduced phagosomal Ca\(^{2+}\) accumulation (green).

Supplemental Video 2: Monitoring intra-phagosomal Ca\(^{2+}\) changes in mouse bone marrow derived macrophage from *Trpm2*\(^{-/-}\). Cellular and intra-phagosomal Ca\(^{2+}\) and phagosomal acidification were monitored in BMDMΦs from *Trpm2*\(^{-/-}\) mouse with method as described in **Supplemental Video 1**. Green fluorescence increases (reflecting intra-phagosomal Ca\(^{2+}\) accumulation) in phagosomes labeled with pHrodo (red). The merged video shows the strong yellow color in phagosomes due to the combined effect of both acidification and Ca\(^{2+}\) accumulation.