Epithelial re-organization and dynamics of progression through mitosis in *Drosophila* separase complex mutants

Rahul Pandey, Stefan Heidmann and Christian F. Lehner*

BZMB, Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany

*Author for correspondence (e-mail: chle@uni-bayreuth.de)

Accepted 24 November 2004

Journal of Cell Science 118, 733-742 Published by The Company of Biologists 2005
doi:10.1242/jcs.01663

Summary

Separase cleaves a subunit of the cohesin complex and thereby promotes sister chromatid separation during mitotic and meiotic divisions. *Drosophila* separase associates with regulatory subunits encoded by the *pimples* and *three rows* genes. Three rows and Pimples, the *Drosophila* securin, are required for sister chromatid separation during mitosis. Budding yeast separase provides other functions in addition to cohesin subunit cleavage, which are required for spindle organization and temporal regulation during exit from mitosis. Therefore, using time-lapse imaging in live embryos, we have carefully analyzed progression through mitosis in *pimples* and *three rows* mutants. We demonstrate that despite the total failure of sister chromatid separation, exit from mitosis, including a complete cytokinesis, proceeds with only a minor temporal delay in the epidermal cells of these mutants. Interestingly, however, pronounced defects in the epithelial organization develop in the following interphase, indicating that the separase complex is not only important for genetic stability but also and perhaps indirectly for epithelial integrity.

Key words: Cytokinesis, Centrosome, Junctional dynamics, Mitotic exit network (MEN), Cdc fourteen early anaphase release (FEAR), Separase

Introduction

Separase is a thiol protease that cleaves α-kleisin subunits (Sccl/Mcd1/Rad21/Rec8 family members) of cohesin complexes and thereby contributes to sister chromatid separation during mitotic and meiotic divisions (Buonomo et al., 2000; Uhlmann et al., 1999; Uhlmann et al., 2000). Before anaphase onset, protease activity is inhibited by securin, a protein that binds to separase during interphase. However, at the metaphase-to-anaphase transition securin is degraded after ubiquitination by the anaphase-promoting complex/cyclosome (APC/C) (Ciosk et al., 1998; Cohen-Fix et al., 1996; Funabiki et al., 1996; Uhlmann et al., 2000; Zou et al., 1999).

Apart from α-kleisin cleavage, budding yeast separase has been shown to function in an additional pathway during exit from mitosis (Stegmeier et al., 2002; Tinker-Kulberg and Morgan, 1999). Interestingly, protease activity does not appear to be required in this FEAR (Cdc fourteen early anaphase release) pathway. Catalytically inactive separase versions are sufficient to trigger Cdc14 release from the nucleolus during early anaphase (Sullivan and Uhlmann, 2003). The released active Cdc14 phosphatase promotes exit from mitosis (Jaspersen et al., 1999; Shou et al., 1999; Stegmeier et al., 2002; Visintin et al., 1998). The inner centromere protein Sli15 is dephosphorylated by Cdc14, resulting in the transfer of Sli15-Ipl1(Aurora) kinase complexes from a centromeric chromosomal localization to the central spindle (Pereira and Schiebel, 2003). Sli19, another yeast protein, which transfers to the central spindle during exit from mitosis, is also regulated by separase. Slik19 associates with separase following securin degradation. Sli19 and its cleavage by separase enhances the stability of anaphase spindles (Sullivan et al., 2001; Ross and Cohen-Fix, 2004). Moreover, Slik19 co-operates with separase in the early anaphase release of Cdc14. In addition to regulating spindle and mitotic exit dynamics, FEAR has recently been shown to promote sister chromatid separation in the nucleolus by stimulating the binding of condensin complexes to the rDNA region (D’Amours et al., 2004; Sullivan et al., 2004).

The FEAR pathway, however, does not appear to be absolutely essential. Completion of mitosis is only transiently delayed by about 30 minutes in separase mutants, but eventually cells exit from mitosis because Cdc14 release in budding yeast can also be triggered by an additional regulatory system, the mitotic exit network (MEN). In wild-type cells, MEN activation is controlled by the mitotic spindle position and it maintains Cdc14 activity after the initial release by FEAR (Bardin et al., 2000; Stegmeier et al., 2002).

It is not yet clear whether pathways comparable to budding yeast FEAR and MEN operate in higher eukaryotes that also express Cdc14 homologues. Some, but not all of the other pathway components can also be identified in higher eukaryotes, but it remains to be determined whether Cdc14 and the other apparent homologues provide the same function as in yeast. In particular, it is not known whether separase provides FEAR-like functions in higher eukaryotes. Cytokinesis and
exit from mitosis are not delayed after RNAi-mediated separase elimination in *C. elegans* (Siomos et al., 2001). In contrast, completion of cytokinesis appears to depend on separase function in human cells (Hauf et al., 2001; Waizenegger et al., 2000).

To elucidate the role of separase during completion of mitosis in further detail, we describe phenotypic analyses in *Drosophila*. During the evolution of *Drosophila*, the separase gene has apparently become two genes, *three rows (thr)* and *Separase (Sse)* which encode the N-terminal regulatory domain and the C-terminal protease domain, respectively (Jäger et al., 2001; Jäger et al., 2004). *Drosophila* separin is encoded by the *pimples (pim)* gene (Leismann et al., 2000; Stratmann and Lehner, 1996). SSE, THR and PIM form a trimeric complex during interphase. After degradation of PIM at the metaphase-to-anaphase transition, SSE promotes sister chromatid separation and also cleaves the associated THR subunit, a process that contributes to timely SSE inactivation (Herzig et al., 2002). We have previously shown that a loss of PIM, THR or SSE function results in a failure of sister chromatid separation during mitosis (D’Andrea et al., 1993; Jäger et al., 2001; Stratmann and Lehner, 1996). In addition, non-cleavable THR versions were shown to interfere with cellularization (Herzig et al., 2002), which corresponds to a modified form of cytokinesis converting the syncytial into the cellularized blastoderm during interphase of cycle 14.

Here, we describe time-lapse analyses of progression through mitosis in live *pim* and *thr* mutant embryos. These analyses indicate that *Drosophila* separase is primarily required for sister chromatid separation. Cytokinesis and exit from mitosis appear to be surprisingly normal in the mutants. Cleavage furrows do not revert because of the non-separated chromatin mass present in these mutants. Interestingly, however, we find that the epithelial organization is severely affected in these mutants.

Materials and Methods

Fly stocks

Fly stocks with the mutant alleles *pim1*, *thr1*, *dup1*, *pbl10* and *pbl10D* have been described previously (Lehner, 1992; Stratmann and Lehner, 1996; Whittaker et al., 2000). A *pim1 dup1* double mutant chromosome was obtained by meiotic recombination. The *pim1 pbl10* double mutant embryos were obtained by crossing males heterozygous for *pim1* and *pbl10* with females heterozygous for *pim1* and *pbl10D*. We used blue balancer chromosomes, which allowed the distinction of homozygous mutant from sibling progeny derived from heterozygous parents by anti-β-galactosidase labeling. *G147* carries a gene trap insertion in CG31363, resulting in expression of a microtubule-binding GFP fusion protein (Morin et al., 2001). *Spider* carries a gene trap insertion in *gilgamesh*, resulting in expression of a GFP fusion protein marking the cell cortex (Morin et al., 2001). The *His2AvD-mRFP* transgene driving expression of histone H2AvD fused to mRFP1 (Campbell et al., 2002) was constructed analogously to the *His2AvD-GFP* transgene (Clarkson and Saint, 1999) and will be described in detail elsewhere. A *His2AvD-mRFP* insertion on chromosome III was recombined meiotically with either the *G147* or the *Spider* gene trap insertion and crossed into the *pim1*, *thr1* or *pim1 dup1* mutant background.

In vivo imaging

Eggs were collected on apple juice agar plates and aged to the desired stages. Embryos were dechorionated, aligned and immobilized on coverslips according to standard procedures. After covering embryos with halocarbon oil, confocal laser scanning microscopy on an inverted Leica DM IRBE microscope equipped with a TCS SP1 system was used for time-lapse imaging of GFP and mRFP1 fluorescence signals at 22-24°C in a temperature-controlled room. Light damage was prevented by minimizing the laser intensity and opening the pinhole. Frames were acquired at intervals of 10 or 30 seconds. Representative examples of time-lapse movies are provided as supplementary material.

Immunolabeling

Embryos aged to the desired developmental stages were fixed according to standard procedures. For immunofluorescent staining we used mouse anti-γ-tubulin GTU-88 (Sigma) at 1:500, rabbit anti-Bazooka (kindly provided by E. Knust, University of Düsseldorf, Germany) at 1:600, rabbit anti-phospho-histone H3 (Upstate) at 1:800, mouse anti-α-spectrin 9A (Dubreuil et al., 1987) at 1:50, rabbit anti-cyclin B (Jacobs et al., 1998) at 1:2000 and mouse (Promega) and rabbit (Cappel) anti-β-galactosidase at 1:250 and 1:1000, respectively. In addition, secondary goat antibodies conjugated to Alexa488 (Molecular Probes), Cy3 or Cy5 (Jackson Immuno Research Laboratories) were applied. DNA was labeled with either Hoechst 33258 (1 µg/ml) or propidium iodide (1 µg/ml) for confocal microscopy. Terminal transferase dUTP nicked-end labeling (TUNEL) assays of apoptotic cells was performed essentially as described previously (Wang et al., 1999). For comparisons of the density of nucleated cells and of the numbers of mitotic cells, we analyzed three and ten pairs of fixed mutant and sibling wild-type embryos, respectively, which were carefully matched with regard to developmental stage and orientation. Fields of identical size from identical regions of the epidermal cell layer were imaged with a 63x objective and used for the determination of cell and nuclear counts.

Results

Mitosis 16 but not mitosis 15 is severely prolonged in *pim* mutants

The *Drosophila* separin PIM not only functions as an inhibitor of SSE, it also provides a positive function which is absolutely required for sister chromatid separation during mitosis (Stratmann and Lehner, 1996). Nevertheless, initial development of embryos homozygous for *pim* is normal as long as the maternal *pim* contribution to the egg provided by the heterozygous mothers is sufficient. However, starting with mitosis 15, this maternal contribution is no longer sufficient for successful divisions. Sister chromatids are therefore not separated during mitosis 15 in *pim* mutants (Stratmann and Lehner, 1996). The mutation present in *pim* affects a splice junction (Stratmann and Lehner, 1996) and we have failed to detect protein products expressed from this allele in immunoblotting experiments (data not shown). To complement our previous characterization of fixed embryos by live analyses, we collected eggs from a *pim1/CyO* stock carrying two transgenes that result in expression of a red fluorescent histone H2AvD variant (*His2AvD-mRFP*) and a green fluorescent microtubule binding protein. Progression through mitosis 15 in both *pim* and *pim* sibling embryos was followed by time-lapse imaging of live embryos. Representative movies from these and the following analyses are available as supplementary material.

As expected from the previous findings with fixed *pim*
embryos, the first mitotic defects became apparent at the metaphase-to-anaphase transition (Fig. 1). Sister chromatids did not separate in pim1 mutants. However, the dynamic reorganization of the mitotic spindle that accompanies wild-type anaphase and telophase clearly occurred in pim1 mutants. The observed spindle behavior in pim1 mutants during exit from mitosis suggested that absence of separase activity does not have a prominent effect on microtubule stability, in contrast to the findings in budding yeast.

Since budding yeast separase accelerates the exit from mitosis significantly, we compared the speed of chromosome decondensation and spindle disassembly in pim1 and pim+ sibling embryos. These comparisons revealed only a minor delay during exit from mitosis in pim1 mutants (Fig. 1). The time from anaphase onset until the end of mitosis was determined as 4.8 minutes in pim1 mutant cells (n=10), a value that was only 1.2-fold higher than in the pim+ sibling embryos (n=7). In vivo imaging using His2AvD-mRFP in combination with a GFP fusion protein marking the cell cortex confirmed that progression through mitosis 15 occurs at normal speed in pim1 mutants except for the surprisingly minor delay during exit from mitosis (Table 1).

![Fig. 1](image-url) Exit from mitosis 15 after failure of sister chromatid separation in pim mutant embryos. Time-lapse in vivo imaging was used for the analysis of progression through the fifteenth round of mitosis during Drosophila embryogenesis in pim1 mutant (pim1) and pim+ (pim+) sibling embryos expressing red fluorescent histone H2AvD-mRFP and a green fluorescent microtubule-binding protein. Selected frames showing microtubule distribution (top) or merged color images (bottom) are shown. Numbers below the frames indicate the time in minutes relative to the last metaphase frame, which was set to zero. The appearance of prominent interpolar microtubules characteristic of anaphase is indicated by arrowheads. Central spindle and midbody during telophase are indicated by arrows. Bar in upper right frame, 5 µm.

<table>
<thead>
<tr>
<th>Genotype*</th>
<th>Stage†</th>
<th>n‡</th>
<th>Duration (minutes±s.d.)</th>
<th>Prophase and metaphase§</th>
<th>Meta/ana until onset cytokinesis**</th>
<th>Cytokinesis††</th>
</tr>
</thead>
<tbody>
<tr>
<td>pim+</td>
<td>M15</td>
<td>36</td>
<td>10.0±2.4</td>
<td>6.4±2.2</td>
<td>1.7±0.4</td>
<td>1.8±0.4</td>
</tr>
<tr>
<td>pim1</td>
<td>M15</td>
<td>36</td>
<td>9.9±1.5</td>
<td>6.1±1.2</td>
<td>1.5±0.5</td>
<td>2.4±0.6</td>
</tr>
<tr>
<td>thr1</td>
<td>M15</td>
<td>10</td>
<td>9.6±0.7</td>
<td>5.2±1.0</td>
<td>1.4±0.3</td>
<td>3.0±0.5</td>
</tr>
<tr>
<td>pim1</td>
<td>M16</td>
<td>20</td>
<td>7.4±0.7</td>
<td>4.2±0.6</td>
<td>1.6±0.3</td>
<td>1.6±0.5</td>
</tr>
<tr>
<td>pim1 dupa1</td>
<td>M16</td>
<td>23</td>
<td>24.2±5.2‡‡</td>
<td>21.5±5.1‡‡</td>
<td>1.4±1.0</td>
<td>3.2±0.9</td>
</tr>
<tr>
<td>thr1</td>
<td>M16</td>
<td>10</td>
<td>18.8±5.2‡‡</td>
<td>11.7±4.6‡‡</td>
<td>2.2±0.7</td>
<td>3.9±1.5</td>
</tr>
</tbody>
</table>

*Eggs from parents heterozygous for pim1, thr1 or pim1 dupa1, which also carried a His2AvD-mRFP transgene and a gene trap insertion resulting in expression of a GFP fusion protein marking the cell cortex, were collected and used for time-lapse analysis. Homozygous mutant embryos were identified on the basis of the sister chromatid separation failure. pim1 are sibling embryos without sister chromatid separation failure.

†n-number of mitotic cells analyzed. These mitotic cells were from at least two different embryos.

‡Time from the onset of chromosome condensation until completion of cytokinesis.

§Time from the onset of chromosome condensation until end of metaphase.

**Time from the metaphase-to-anaphase transition (meta/ana, i.e. last metaphase frame) until the onset of cytokinesis (i.e. the first frame in which an equatorial constriction of the cortex was clearly apparent).

††Time from the onset until completion of cytokinesis (i.e. the time from onset until completion of the equatorial constriction of the cell cortex).

‡‡Because almost half of the mitotic cells did not complete mitosis within the analyzed period the given values indicate a minimal and not the actual duration.
Diplochromosomes delay the metaphase-to-anaphase transition

After exit from mitosis 15, pim\(^1\) mutants progressed through interphase 16 and entered mitosis 16 without apparent delays. However, during mitosis 16, we observed an extensive delay in the mutants both by in vivo imaging (Fig. 2, Table 1) and in fixed embryos (Fig. 3) where the mitotic index was found to be drastically increased. In pim\(^1\) mutants, mitosis 16 lasts on average at least four times longer than in pim\(^+\) siblings. Therefore in pim\(^1\) mutants mitosis 16 is substantially prolonged in contrast to mitosis 15, which is only slightly delayed.

We considered two potential explanations for the pronounced difference in the dynamics of mitosis 15 and 16 in pim mutants. In principle, the difference might reflect the dynamics of the exhaustion of the maternal pim\(^+\) contribution. The levels of residual maternally derived pim\(^+\) function during mitosis 15 might be higher than during mitosis 16. Alternatively, the unusual diplochromosomes, which are present during mitosis 16 in pim mutants as a consequence of the sister chromatid separation failure during the preceding mitosis 15 (Stratmann and Lehner, 1996), might trigger the mitotic spindle checkpoint because of difficulties in integrating these abnormal chromosomes in a regular bipolar manner into the mitotic spindle. In this latter case, the delay is expected to occur before the onset of cyclin B degradation which is known to be blocked by the mitotic spindle

Fig. 2. Metaphase delay during mitosis 16 in pim mutant embryos. Time-lapse in vivo imaging was used for the analysis of progression through the sixteenth round of mitosis during Drosophila embryogenesis in pim\(^1\) mutant (pim\(^1\)) and pim\(^+\) (pim\(^+\)) sibling embryos expressing red fluorescent histone H2AvD-mRFP and a green fluorescent microtubule-binding protein. Selected frames of merged images are shown. Numbers above and below the frames indicate the time in minutes relative to the last metaphase frame which was set to zero. Bar in upper right frame, 5 µm.

Fig. 3. Metaphase delay during mitosis 16 in pim mutants is caused by diplochromosomes. (A-E) Embryos were labeled with a DNA stain (red) and anti-phospho-histone H3 (PH3, green) at the stage of mitosis 16. (A-D) The number of PH3-positive mitotic cells in a defined epidermal region was counted in 10 embryos homozygous for pim\(^1\) (B), dup\(^{a1}\) (C), double mutant for both pim\(^1\) and dup\(^{a1}\) (D), as well as in pim\(^+\) embryos (A). The resulting average number of mitotic cells (E) in the mutant and the corresponding sibling embryos are indicated by white and black bars, respectively. dup encodes an initiation factor for DNA replication; dup\(^{a1}\) homozygosity inhibits S phase 16 (Whittaker et al., 2000), as well as the accumulation of mitotic figures in pim\(^1\) mutants during the subsequent mitosis (see text for further explanations). In metaphase cells with maximal PH3 labeling, chromosomes were arranged in metaphase plates in pim\(^1\) dup\(^{a1}\) double mutants (inset in D). In contrast, the single chromatid chromosomes present in dup\(^{a1}\) mutants failed to congress into a plate (inset in C), as previously described (Parry et al., 2003). Bar, 25 µm (A-D). (F) Labeling with anti-cyclin B (green) and a DNA stain (red) demonstrates that progression through mitosis 16 is delayed before cyclin B degradation in pim\(^1\) mutants. Bar, 10 µm.
checkpoint (Minshull et al., 1989; Whitfield et al., 1990; Minshull et al., 1994). In the former case, however, the delay is not expected to occur before cyclin B degradation because separase is thought to exert its functions only after cyclin B and securin degradation. Immunolabeling of pim mutant embryos fixed at the stage of mitosis 16 clearly revealed that the great majority of mitotic cells still contained high levels of cyclin B (Fig. 3F). Moreover, in vivo imaging confirmed that the delay occurred during metaphase, clearly before the onset of anaphase (Fig. 2).

To test whether the abnormal diplochromosomes are responsible for the delay during metaphase of mitosis 16 in pim mutants, we analyzed embryos with mutations in both the pim and the double-parked (dup) gene, dup encodes the Drosophila Cdt1 homolog and is required for DNA replication (Whittaker et al., 2000). As in pim mutants, a dup+ maternal contribution supports normal initial development. However, dup+1 mutant embryos are unable to replicate chromosomes during cycle 16 (Garner et al., 2001; Whittaker et al., 2000). pim1 dup+1 double mutant embryos therefore should not contain diplochromosomes at mitosis 16 and thus, if the mitotic delay in pim single mutants results from the presence of these abnormal chromosomes, it should not occur in the double mutants. Therefore, we analyzed the number of mitotic cells present at the stage of mitosis 16 in pim1 and dup+1 single and pim1 dup+1 double mutants. Compared to sibling control embryos (Fig. 3A,E), the number of mitotic cells was not only increased in pim1 mutants (Fig. 3B,E) but also in dup+1 mutants (Fig. 3C,E). The increased mitotic index in dup+1 mutants has previously been described and shown to result from the presence of single chromatid chromosomes, which cannot be stably integrated in a bipolar fashion into the mitotic spindle (Parry et al., 2003; Whittaker et al., 2000). The chromosomes therefore fail to congress into a metaphase plate during mitosis 16 in dup+1 mutants (Fig. 3C, inset) (Parry et al., 2003). Moreover, chromosomes are not exposed to tension within the centromeric region and therefore the mitotic spindle checkpoint remains active (Garner et al., 2001; Whittaker et al., 2000). In contrast to pim1 and dup+1 single mutants, we did not observe an increased number of mitotic cells in the pim1 dup+1 double mutants (Fig. 3D,E). In addition, chromosomes were found to congress into a metaphase plate (Fig. 3D, inset). These findings, therefore, indicate that the abnormal diplochromosomes are largely responsible for the delay observed during mitosis 16 in the pim1 single mutants. This conclusion was fully confirmed by in vivo imaging of the progression through mitosis 16 in pim1 dup+1 double mutants (Table 1).

The dynamics of mitosis is indistinguishable in pim and thr mutants

The protein encoded by the thr gene corresponds to the N-terminal regulatory domain of separase proteins of other eukaryotes (Jäger et al., 2001; Jäger et al., 2004). The maternal thr+ contribution present in thr1 mutants is sufficient for normal initial development until mitosis 15. However, just as in pim mutants, sister chromatid separation during mitosis 15 fails in thr1 mutants (D’Andrea et al., 1993). With our antibodies raised against the C-terminal third of THR, we were unable to detect protein products expressed from the thr2 allele, indicating that the mutant protein is either unstable or C-terminally truncated (data not shown). In vivo imaging allowed us to analyze whether the thr1 mutation affects the dynamics of exit from mitosis. However, as observed in the pim1 mutants, we detected only a slight delay during exit from mitosis 15 and 16 (Table 1). In addition, we also observed an extensive delay during metaphase 16 (Table 1). To date, neither in vivo imaging nor other analyses have revealed phenotypic differences in pim1 and thr1 mutants.

pim and thr are not required for centrosome duplication and cytokinesis

Our previous phenotypic characterizations of fixed pim and thr mutant embryos had suggested that cytokinesis during mitosis 15 is not completed in these mutants (D’Andrea et al., 1993; Stratmann and Lehner, 1996). Cleavage furrows pinching the undivided chromosomes were often observed in fixed mutant embryos at the stage of mitosis 15. However, at a later stage, during the following interphase 16, the nuclear density in the epidermal cell layer of fixed mutant embryos was found to be 1.6-fold lower than in sibling control embryos (D’Andrea et al., 1993; Stratmann and Lehner, 1996) (see below), suggesting that the cleavage furrows had failed to cut completely through the chromosomes during mitosis 15. The cleavage furrows were thus thought to have had aborted in most cells.

After such an inferred cytokinesis failure during mitosis 15 and subsequent duplication of centrosomes during cycle 16, mitotic spindles would be predicted to be tetrapolar during mitosis 16 in pim1 or thr1 mutant cells. In contrast to this expectation, we observed apparently bipolar mitotic spindles and normal metaphase plates during mitosis 16 in pim1 and thr1 mutants (Fig. 3F, and data not shown). Immunolabeling of centrosomal γ-tubulin demonstrated that the majority of the epidermal cells in pim1 and thr1 mutant embryos have only two and not four centrosomes at the stage of mitosis 16 (Fig. 4).

In contrast to pim1 and thr1 mutant embryos, in pebble (pbl)
mutants the centrosome number was found to increase to four during the cycle following a cytokinesis failure (Fig. 4, Table 2). pbl encodes a Rho-GEF required for cytokinesis (Hime and Saint, 1992; Lehner, 1992; Prokopenko et al., 1999). This apparent difference in centrosome behavior in pim and thr mutants, on the one hand, and pbl mutants, on the other, raised the question of whether the Drosophila separase complex might be required during mitosis for centrosome duplication in the following cell cycle. However, in pim pbl double mutants, centrosome number per cell was found to increase with each cycle (Fig. 4), indicating that centrosome duplication is not dependent on the function of the separase complex.

The observed behavior of centrosomes in pim and thr mutants would be readily explained, if these mutations did not interfere with completion of cytokinesis during mitosis 15. Therefore, we re-evaluated cytokinesis in pim mutants, this time by in vivo imaging of embryos expressing a green fluorescent cell cortex marker in addition to His2AvD-mRFP. Time-lapse recordings clearly demonstrated that cytokinesis is completed successfully during mitosis 15 in the great majority of the epidermal cells in both pim and thr mutants (Fig. 5, and data not shown). The dynamics of cytokinesis was only slightly slower in the mutants compared to sibling controls (Fig. 5, Table 1). The mass of non-separated chromosomes therefore is not a significant obstacle for cytokinesis. In about half of the cells, the cleavage furrow was observed to cut through the chromatin mass, resulting in two daughter cells, which frequently contained unequal amounts of chromatin. In the other half of the cells, the chromatin mass moved towards one pole and cleavage resulted in an enucleate and a nucleate cell pair. Cleavage furrows were not observed to revert after mitosis 15 even during extended observation periods. During the following mitosis 16 in pim and thr mutants, cytokinesis was considerably more abnormal and variable from cell to cell (data not shown). Cleavage furrows were rarely observed to cut through the chromatin mass and they appeared to revert occasionally.

Table 2. Centrosome number in pim, thr and pbl mutants

<table>
<thead>
<tr>
<th>Genotype*</th>
<th>Stage†</th>
<th>n</th>
<th>2 or less (%)</th>
<th>More than 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pim+</td>
<td>M15</td>
<td>49</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>101</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>M15</td>
<td>51</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>204</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>pim†</td>
<td>M15</td>
<td>94</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>282</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>thr‡</td>
<td>M15</td>
<td>52</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>M15</td>
<td>48</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>pbl11D</td>
<td>M15</td>
<td>92</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>pbl†</td>
<td>M15</td>
<td>89</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

*Embryos homozygous for either pim, thr, pbl11D, or pbl11D were identified by collecting eggs form heterozygous parents with blue balancer chromosomes and scoring for absence of lacZ expression. pim+ and pbl+ embryos represent lacZ-expressing sibling embryos.
†Embryos were aged to the stage of mitosis 14, 15 or 16 (M14, M15 or M16, respectively) before fixation and immunolabeling.

Progression through mitosis without separate function results in epithelial pseudostratification

Our finding that cytokinesis is completed successfully in pim and thr mutants, at least during mitosis 15, was a surprise in the light of the significantly lower densities of cells and nuclei within the superficial epidermal layer in these mutants during cycle 16. Based on our analysis of cytokinesis during mitosis 15, cell density before mitosis 16 should be comparable in pim and pim+ sibling embryos and the nuclear density should be 25% lower in the mutants. However, cell and nuclear densities were significantly below these expectations. Quantification of the nuclear densities revealed a 38% reduction in pim before mitosis 16. A comparable extensive decrease in the density of nucleated cells was also observed in thr mutant embryos.

In principle, this more extensive reduction might result from apoptosis of the aneuploid cells generated by cytokinesis despite sister chromatid separation failure in pim and thr mutants. To compare the rate of apoptosis in pim and pim+ sibling embryos we used the TUNEL assay, which detects nucleate apoptotic cells. We did not observe any difference in apoptosis between pim and pim+ mutant embryos. To quantify the cellular and nuclear densities in pim mutants

![Fig. 5. Cytokinesis during mitosis 15 in pim mutants. Time-lapse in vivo imaging was used for the analysis of cytokinesis during the fifteenth round of mitosis during Drosophila embryogenesis in pim+ mutant (pim+) and pim+ sibling embryos expressing red fluorescent histone H2AvD-mRFP and a green fluorescent fusion protein marking the cell cortex. Selected frames of merged images are shown. Numbers above the frames indicate the time in minutes relative to the last metaphase frame which was set to zero. Bar in upper right frame, 5 μm.](image-url)
after mitosis 15, our initial attempts involved double labeling with a DNA stain and an antibody against the apical junction protein Bazooka (BAZ). In \textit{pim}+ sibling embryos, each cell displayed an apical ring of anti-BAZ above a centrally located nucleus, as expected. However, in \textit{pim1} mutants, nuclei were very frequently displaced relative to the apical ring of anti-BAZ staining, indicating that the cylindrical organization of the wild-type epithelial cells had been lost (data not shown). Double labeling of DNA and the cell cortex protein α-spectrin further confirmed that the epithelial organization in \textit{pim1} mutants had an abnormal pseudostratified appearance after mitosis 15 but not before (Fig. 7). While single confocal sections through the nucleus of every epidermal cell could readily be obtained in \textit{pim}+ sibling embryos before mitosis 16 (Fig. 7C), there were striking irregularities in the sections of \textit{pim1} mutants and they never included all of the nuclei of the nucleated epidermal cells present in other planes of the z stacks (Fig. 7D).

Discussion

To address whether \textit{Drosophila} separase complex subunits provide functions beyond sister chromatid separation during mitosis, we have further characterized the phenotypic consequences of mutations in \textit{pim} and \textit{thr}, which encode the \textit{Drosophila} securin and the equivalent of the N-terminal regulatory domain of non-dipteran separases, respectively.

Our time-lapse analyses of live embryos demonstrate that progression through mitosis 15, i.e. the first mitosis during which the maternal contribution is no longer sufficient for sister chromatid separation in the \textit{pim} and \textit{thr} mutants, is only marginally delayed. The duration of pro- and metaphase 15 did not appear to be affected and the time from anaphase onset until the start of cytokinesis was also not prolonged in the mutants. In contrast, completion of cytokinesis was slightly but significantly extended. This extension by about 1 minute in the \textit{Drosophila} mutants is less than the 20-30 minutes delay during exit from mitosis that results from mutations in the \textit{ESP1} separase gene in budding yeast (Stegmeier et al., 2002; Sullivan and Uhlmann, 2003). The difference in the extent of mitotic delays apparent in \textit{Drosophila} and budding yeast is reduced but not eliminated when expressed relative to the overall duration of exit from mitosis, which lasts about eight times longer in budding yeast.

While sister chromatid separation is largely inhibited during mitosis 15 in \textit{pim} and \textit{thr} mutants, one exceptional, apparently normal division could be observed in the hundreds of analyzed cells. Therefore, the maternal \textit{pim}+ and \textit{thr}+ contributions are unlikely to be completely eliminated in the mutants by the time of mitosis 15. As PIM and THR are degraded during mitosis (Herzig et al., 2002; Leismann and Lehner, 2003; Stratmann and Lehner, 1996) any residual maternal contribution, which is still present during mitosis 15, is expected to be further reduced at the
stage of mitosis 16. The slightly more extensive delay during cytokinesis and exit from mitosis that is observed in the mutants during mitosis 16 might therefore be taken as an indication that a complete elimination of PIM and THR might result in extensive delay. However, alternative explanations are not excluded. Exit from mitosis 16 might be kinetically abnormal not because of a further depletion of the maternal contribution but because of some indirect consequences of the mitosis 15 defects. Mutant cells appear to exit mitosis 16 after adaptation to a spindle checkpoint arrest resulting from mitosis 15 defects (see below). The adaptation mechanisms are unknown and they might have effects on mitosis exit dynamics, which are absent during normal mitosis 16. Such alternative, potential explanations for the slightly stronger delay during exit from mitosis 16 compared to mitosis 15 underscore the technical difficulties of experimental analysis after complete elimination of PIM and THR. In vertebrate systems, the effect of separase on mitotic exit kinetics has not yet been addressed. In C. elegans, elimination of separase to a level insufficient for sister chromatid separation does not significantly delay exit from mitosis in controlled osmotic conditions (Siomos et al., 2001).

Arguably the most striking effect on the dynamics of progression through mitosis observed in pim and thr mutants, i.e. the extensive delay during metaphase of mitosis 16, results indirectly from the failure of sister chromatid separation during mitosis 15. After replication of these non-separated chromatid pairs during S phase 16, pim and thr mutant cells enter mitosis 16 with abnormal diplochromosomes (Stratmann and Lehner, 1996). Here we demonstrate, with the help of mutations in Drosophila Cdt1/Dup, that inhibition of S phase 16 in pim mutants prevents most of the delay during metaphase 16. The metaphase extension observed in pim and thr mutants might therefore be caused by spindle checkpoint activation predominantly resulting from difficulties with bipolar integration of abnormal diplochromosomes into mitotic spindles. We do not understand why the delay during metaphase 16 is not completely reversed in the pim dap double mutants, but the residual delay might again reflect adaptation effects, in this case after incomplete inhibition of progression through the preceding S phase 16 (Garner et al., 2001).

Mutations in budding yeast ESP1, which abolish protease activity and prevent sister chromatid separation, do not necessarily eliminate activity in the FEAR pathway (Sullivan and Uhmann, 2003). Therefore the Drosophila separase protein which is still present in pim and thr mutants (Herzig et al., 2002) might be sufficient, in principle, to activate a putative FEAR pathway. Thereby Drosophila separase might prevent more extensive mitotic delays in pim and thr mutants. However, experiments in budding yeast have demonstrated that relatively minor N-terminal truncations abolish FEAR activity of Esp1 (M. Sullivan and F. Uhmann, personal communication). It appears unlikely, therefore, that Drosophila separase, which corresponds to the C-terminal protease domain of Esp1, should be able to function in a putative homologous FEAR pathway in a monomeric form without its usual complex partner THR, which corresponds to the N-terminal domain of Esp1.

In budding yeast, both the proteolytic and the FEAR activity of Esp1 contribute to spindle stability during anaphase, in part by recruiting the budding yeast INCENP-aurora B complex to the central spindle (Pereira and Schiebel, 2003; Ross and Cohen-Fix, 2004; Sullivan et al., 2001). In Drosophila, INCENP and aurora B still transfer to the central spindle in pim and thr mutants during mitosis 15 (A. Herzig and C.F.L., unpublished). Moreover, in vivo imaging has not revealed severe abnormalities in microtubule organization during exit from mitosis 15. Cytokinesis also proceeded surprisingly normally in pim and thr mutants. Despite an equatorial mass of undivided chromosomes, cleavage furrows contracted rapidly and completely in the mutants during mitosis 15. Therefore, non-separated equatorial chromosomes appear to affect completion of cytokinesis to a variable extent in different cell types. In Drosophila and fission yeast, cleavage furrows are definitely able to cut readily through the chromosomes (Uzawa et al., 1990) (Fig. 5). In contrast, in cultured human cells, eventual regression of the cleavage furrow has been observed after expression of mutant SCC1 versions, which cannot be processed by separase (Hauf et al., 2001).

The effects on cytokinesis and spindle organization in the mutants were more prominent during mitosis 16 compared to mitosis 15. Again, as discussed for the mitotic exit kinetics above, this increase in the severity of observed defects might reflect the progressive depletion of the maternal contributions and/or indirect consequences of earlier defects. A rather stochastic segregation of undivided chromosomes during mitosis 15 might generate phenotypic variability during mitosis 16. The observation that some cells exit mitosis 16 in a manner comparable to mitosis 15, while others are more severely affected, therefore argues for indirect consequences.

An interesting aspect of the pim and thr mutant phenotype revealed by our analyses concerns epithelial organization. Cellularization during wild-type embryogenesis results in a regular monolayer of cylindrical cells, which is maintained in the epidermis throughout the three postblastoderm division cycles, 14-16. In the mutants, this regular epithelial organization is lost after mitosis 15. The abnormal pseudostriatified appearance of the epidermis develops rapidly and long before apoptotic responses. The loss of epithelial organization is therefore unlikely to be a consequence of altered gene expression in the aneuploid cells. Rather the loss of separase complex function might affect epithelial organization via effects on the cytoskeleton. Since budding yeast separase has been shown to regulate microtubule stability, a similar role of the Drosophila separase complex remains an attractive explanation. Moreover, after mitosis 15, pim and thr mutant cells contain very variable amounts of chromatin. They contain either no nuclei or nuclei of variable sizes. Since the nucleus might function as a mechanical element within the cells, its variability might contribute to the epithelial disorganization in the mutants. In addition, even though cleavage furrows are able to cut through the undivided chromosomes quite effectively and central spindles as well as midbodies are formed, it is possible that these latter structures are not fully functional, resulting in an inhibition of the establishment of effective junctional contacts between the newly formed daughter cells. The rounding up of cells on the apical side, which occurs upon entry into mitosis, might provide a force that, in particular, displaces some of the already divided cells towards the basal side. Our phenotypic analyses in Drosophila embryos emphasize that a loss of separase function can have consequences that might be difficult to
observe with cultured cells. Loss of separase regulation, as for instance after overexpression of the oncogenic human securin PTGG (Melmed, 2003), might promote tumors, not only by increasing genetic instability but also by effects on tissue organization.

We thank A. Herzig for his help with experiments, X. Morin and A. Debec for providing Drosophila strains and E. Knust for antibodies. This work was supported by the Fonds der Deutschen Chemie and by grants from the Deutsche Forschungsgemeinschaft (DFG Le 9873-1, 3-2, 3-3).

References

