Plk4 *trans*-autophosphorylation regulates centriole number by controlling βTrCP-mediated degradation

Gernot Guderian1,2,*; Jens Westendorf1,*; Andreas Uldschmid1 and Erich A. Nigg1,2,‡

1Department of Cell Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
2Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland

*These authors contributed equally to this work
‡Author for correspondence (erich.nigg@unibas.ch)

Summary
Centrioles are the main constituents of the mammalian centrosome and act as basal bodies for ciliogenesis. Centrosomes organize the cytoplasmic microtubule network during interphase and the mitotic spindle during mitosis, and aberrations in centrosome number have been implicated in chromosomal instability and tumor formation. The centriolar protein Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis and is crucial for maintaining constant centriole number, but the mechanisms regulating its activity and expression are only beginning to emerge. Here, we show that human Plk4 is subject to βTrCP-dependent proteasomal degradation, indicating that this pathway is conserved from *Drosophila* to human. Unexpectedly, we found that stable overexpression of kinase-dead Plk4 leads to centriole overduplication. This phenotype depends on the presence of endogenous wild-type Plk4. Our data indicate that centriole overduplication results from disruption of Plk4-*trans*-autophosphorylation by kinase-dead Plk4, which then shields endogenous Plk4 from recognition by βTrCP. We conclude that active Plk4 promotes its own degradation by catalyzing βTrCP binding through *trans*-autophosphorylation (phosphorylation by the other kinase in the dimer) within homodimers.

Key words: Plk4, Autophosphorylation, βTrCP, Centriole duplication

Introduction
Centrioles are the main constituents of the mammalian centrosome and act as basal bodies for ciliogenesis (Nigg and Raff, 2009). Centrosomes organize the cytoplasmic microtubule network during interphase and the mitotic spindle during mitosis, and aberrations in centrosome number have been implicated in chromosomal instability (Gam et al., 2009) and tumor formation (Nigg and Raff, 2009; Zys and Gergely, 2009). Furthermore, mutations in genes coding for centriolar and/or centrosomal proteins are linked to a variety of human diseases, notably brain diseases and ciliopathies (Nigg and Raff, 2009). Thus, centrosome assembly as well as centriole biogenesis and duplication are crucial processes requiring accurate control (Bornens, 2002; Doxsey et al., 2005; Strnad and Goleczy, 2008; Nigg and Raff, 2009). A central role in the control of centriole biogenesis and duplication has been attributed to Polo-like kinase 4 (Plk4; also known as SAK) (Bettencourt-Dias et al., 2005; Habedanck et al., 2005; Nigg, 2007). Echoing earlier studies in invertebrate model organisms (Kirkham et al., 2003; Delattre et al., 2006; Pelletier et al., 2006; Kilburn et al., 2007; Nakazawa et al., 2007; Rodrigues-Martins et al., 2007; Dammermann et al., 2008; Song et al., 2008), Plk4-induced centriole biogenesis in human cells involves the sequential assembly of several essential proteins, including human Sas-6, Cep135, CPAP (human Sas-4) and CP110 (Kleylein-Sohn et al., 2007). Recent studies have shown that the levels of *Drosophila* Plk4 are regulated by the ubiquitin-proteasome pathway through the E3 ubiquitin ligase SCF*β*TrCP (SKP1–CUL1–F-box protein; Slimb and βTrCP are homologous F-box proteins in *Drosophila* and humans, respectively) (Cunha-Ferreira et al., 2009; Rogers et al., 2009). Here, we have addressed the issue of how Plk4 stability is controlled in human cells. In particular, we have explored a possible relationship between Plk4 phosphorylation and βTrCP-dependent degradation. Our results lead us to conclude that Plk4 undergoes autophosphorylation in *trans* and that this modification is crucial for Plk4 stability and the maintenance of a constant centriole number.

Results and Discussion
To complement a previously described U2OS cell line that allows the tetracycline-inducible expression of myc-tagged wild-type Plk4 (U2OS:myc–Plk4-WT) (Kleylein-Sohn et al., 2007), we generated a comparable cell line for the expression of myc-tagged kinase-dead Plk4, which is incapable of autophosphorylation (U2OS:myc–Plk4-KD; supplementary material Figs S1, S2). When we compared the ability of wild-type Plk4 and kinase-dead Plk4 to induce centriole overduplication, we observed robust centriole overduplication in both cell lines (Fig. 1A). This observation was unexpected, because centriole overduplication induced by transient transfection of Plk4 had previously been reported to depend on kinase activity (Habedanck et al., 2005; Sillibourne et al., 2010). These early results have been confirmed both in this study (supplementary material Fig. S3) and elsewhere (Holland et al., 2010). Therefore, we conclude that stable overexpression of Plk4-KD produces more extensive centriole overduplication than transient transfection. Possibly, higher expression levels of Plk4-KD produce pleiotropic effects, such as displacement of endogenous Plk4 from centrioles.

To understand how Plk4-KD induces centriole overduplication, we first carried out siRNA rescue experiments to determine whether this phenotype depends on endogenous Plk4. U2OS:myc–Plk4-WT and U2OS:myc–Plk4-KD cells were transfected for 24 hours with siRNA oligonucleotides targeting the 3′-untranslated region (siPlk4 3′-UTR) or control oligonucleotides (siGL2) and then arrested in aphidicolin before myc-Plk4 (WT or KD) expression
was induced. As expected, the transfection of control siRNA duplexes did not inhibit Plk4-induced centriole overduplication in either cell line (Fig. 1B,C). Likewise, 80% of cells overexpressing myc–Plk4-WT still exhibited centriole overduplication even after depletion of endogenous Plk4 (Fig. 1B, left panel; Fig. 1C). By stark contrast, centriole overduplication was reduced to 14% of cells upon concomitant expression of myc–Plk4-KD with siPlk4 3’-UTR (Fig. 1B, right panel; Fig. 1C). A similar reduction of centriole overduplication was observed even when myc–Plk4-WT or myc–Plk4-KD were overexpressed in cells lacking human Sas-6 (Fig. 1B,C), as expected (Kleylein-Sohn et al., 2007). These results demonstrate that myc–Plk4-KD is only able to induce centriole overduplication in the presence of endogenous wild-type Plk4.

While this work was in progress, *Drosophila* Plk4 was shown to be degraded in an SCF^{Slmb}/βTrCP-dependent manner (Cunha-Ferreira et al., 2009; Rogers et al., 2009). Consequently, depletion of the SCF ubiquitin ligase Slmb (mammalian βTrCP) led to stabilization of Plk4 and to centriole overduplication (Cunha-Ferreira et al., 2009; Rogers et al., 2009). As expected for a proteasome-dependent degradation mechanism, human Plk4 protein levels also increased upon proteasome inhibition with 1 μM MG132 for 16 hours (supplementary material Fig. S4) and similar results were independently reported by others (Holland et al., 2010; Sillibourne et al., 2010). This prompted us to speculate that Plk4-KD might cause centriole overduplication by interfering with the βTrCP-mediated degradation of endogenous Plk4. To explore this notion, we first investigated whether human Plk4 protein levels are also controlled by βTrCP. Asynchronously growing U2OS cells were depleted of βTrCP by siRNA transfection and centriole numbers monitored by immunofluorescence microscopy. Upon depletion of βTrCP, Plk4 protein levels at the centrosome increased about sevenfold compared with those of control cells (Fig. 2A,B). Moreover, βTrCP-depleted cells exhibited centriole overduplication, partially in a rosette-like arrangement of procentrioles, reminiscent of Plk4 overexpression in human cells (Kleylein-Sohn et al., 2007) and earlier work in *Drosophila* (Cunha-Ferreira et al., 2009; Rogers et al., 2009). To directly demonstrate a role of Plk4 in the observed phenotype, we analyzed the effects of βTrCP depletion in the absence of Plk4. Whereas 48% of βTrCP-depleted control cells exhibited overduplicated centrioles, virtually no centriole overduplication was observed after co-depletion of βTrCP and Plk4, similar to results observed after depletion of Plk4 alone (Fig. 2A,C). Instead, these latter treatments increased the proportion of

Fig. 1. Kinase-dead Plk4 causes centriole overduplication. (A) U2OS:myc–Plk4-WT or U2OS:myc–Plk4-KD cells were arrested with aphidicolin for 24 hours before expression of myc–Plk4-WT or myc–Plk4-KD was induced for 16 hours. No tetracycline was added to controls. Cells were fixed and stained with antibodies for the myc epitope (green), CP110 (red) and Cep135 (blue).

(B) U2OS:myc–Plk4-WT or U2OS:myc–Plk4-KD cells were transfected for 24 hours with siRNA oligonucleotides targeting GL2, the 3’-UTR of Plk4 or human Sas-6 prior to induction of Plk4 expression (myc–Plk4-WT or myc–Plk4-KD) for 16 hours. Cells were stained for the myc epitope (green), CP110 (red) and Cep135 (blue).

(C) Percentage of cells, treated as described in B, that exhibited centriole overduplication. Data from three independent experiments (n=100) are shown. Error bars denote s.e.m. Scale bars: 1 μm.
cells with fewer than two centrioles to 67% and 73%, respectively (Fig. 2C). Hence, the centriole-overduplication phenotype produced by depletion of βTrCP clearly requires Plk4. To demonstrate that βTrCP modulates levels of Plk4 protein, we depleted βTrCP for 72 hours before inducing expression of myc–Plk4-WT for the last 24 hours of siRNA treatment. Compared with cells treated with control siRNA duplexes (siGL2), depletion of βTrCP led to a 1.5-fold increase in Plk4-WT protein (Fig. 2D). Also, Plk4 siRNA treatment (carried out for control) abolished Plk4 expression, as expected (Fig. 2D). Conversely, coexpression of βTrCP and Plk4-WT in 293T cells led to a decrease in Plk4 protein (Fig. 2E). Together, the above data demonstrate that βTrCP modulates Plk4 protein levels in human cells and thus contributes to the maintenance of correct centrosome number. This confirms and extends earlier work in Drosophila (Cunha-Ferreira et al., 2009; Rogers et al., 2009) and shows that the βTrCP-Plk4 pathway is conserved in Drosophila and mammals (see also Guardavaccaro et al., 2003; Holland et al., 2010; Sillibourne et al., 2010). Yet another recent study also demonstrates centriole overduplication in U2OS cells upon depletion of the SCF component Cul1, although a role for βTrCP was not emphasized (Korzeniewski et al., 2009).

To further explore our proposition that Plk4-KD might cause centriole overduplication by interfering with the degradation of endogenous (active) Plk4, we next investigated whether Plk4-KD is able to bind to βTrCP. Usually, βTrCP binds its substrates via a DSGxx[S/T] motif (DSG motif) in the substrate protein and this interaction is thought to be regulated by phosphorylation of two phospho-acceptor sites (S/T) within this so-called phosphodegron (Nakayama and Nakayama, 2006). Human Plk4 carries an evolutionarily conserved DSG motif spanning residues 284 to 289 (DSGHAT). Indeed, an interaction between human Plk4-WT and βTrCP could readily be demonstrated by co-immunoprecipitation and, as predicted, this interaction required an intact DSG motif (Fig. 3A; supplementary material Fig. S5). Both [serine/threonine]-to-alanine (Plk4-WT-DSGAA) and [serine/threonine]-to-glutamate (Plk4-WT-DSGDD) substitutions at positions 285 and 289 disrupted the interaction of Plk4 with βTrCP (Fig. 3A; supplementary material Fig. S5), indicating that aspartate did not mimic phosphorylation...
in this context. Importantly, under the exact same experimental conditions, Plk4-KD did not interact with βTrCP, strongly suggesting that Plk4 activity is required for this interaction. Confirming this conclusion, the Plk4-βTrCP complex could be disrupted by λ-phosphatase (λPase) treatment (Fig. 3B). Furthermore, Plk4-KD was ubiquitylated less efficiently than Plk4-WT and in this regard resembled Plk4-WT-DSG AA (Fig. 3C). Consistent results were obtained in vivo (Fig. 3C) and in vitro (supplementary material Fig. S6), arguing against co-precipitation of other ubiquitylated proteins with Plk4-WT. One would expect that lack of ubiquitylation should stabilize Plk4 by protecting it from degradation via the 26S proteasome. Indeed, whereas Plk4-WT was degraded in cells treated with cycloheximide, Plk4-KD 609-970 did not interact with βTrCP but does not dimerize owing to truncation of its C terminus, whereas Plk4-609-970 is able to dimerize with Plk4-WT but does not interact with βTrCP owing to truncation of the kinase domain. Remarkably, Plk4-609-970 caused strong centriole overduplication, occasionally resulting in a rosette-like arrangement of procentrioles, whereas Plk4-609-970 failed to do so (Fig. 4A). This reinforces the view that excess Plk4-KD is able to cause centriole overduplication, provided that its ability to dimerize with endogenous Plk4 is preserved.

The above data led us to conclude that excess Plk4-KD triggers centriole overduplication by virtue of its ability to (hetero-)dimerize with endogenous, active Plk4. If this is the case, the Plk4-KD polypeptide could potentially be phosphorylated in trans by the Plk4-WT polypeptide (but not vice versa), and phosphorylated Plk4-KD could then sequester SCFβTrCP by acting as a decoy. A corollary of this model is that autophosphorylation in trans should convert Plk4-KD to a βTrCP-binding species. To test this prediction, we expressed various combinations of myc- or FLAG-tagged Plk4 proteins differing in their activity status (WT or KD) and/or ability to be recognized by βTrCP (DSG-WT or DSG AA). In these experiments, the myc-tagged constructs served as bait for βTrCP binding, whereas the FLAG-tagged constructs, competent to dimerize with Plk4 but incompetent to bind βTrCP, provided kinase activity. The ability of the immunoprecipitated complexes to bind to βTrCP was then analyzed via an in vitro binding assay. Coexpression of FLAG–Plk4-KD-DSG AA with myc–Plk4-KD failed to restore βTrCP binding, as expected, considering the
absence of trans-autophosphorylation. By stark contrast, coexpression of FLAG–Plk4-WT-DSGAA with myc–Plk4-KD fully restored the binding of myc–Plk4-KD to \(\beta \)TrCP (Fig. 4B). This demonstrates that autophosphorylation in \textit{trans} is required to confer \(\beta \)TrCP-binding properties to Plk4. In excellent agreement with this conclusion, Plk4-WT was independently shown to promote destruction of Plk4-KD through intermolecular phosphorylation (Holland et al., 2010).

Whether autophosphorylation is not just required, but is sufficient for Plk4-\(\beta \)TrCP binding is not presently known. A priori, it is possible that Plk4 \textit{trans}-autophosphorylation directly activates the phosphodegron for \(\beta \)TrCP binding (Fig. 4C, model I). Alternatively, Plk4 might autophosphorylate in \textit{trans} on sites distinct from the phosphodegron that then serve to recruit a different kinase X, which in turn phosphorylates Plk4 on the phosphodegron or in close proximity to this motif (Fig. 4C, model II). In support of this latter possibility, we emphasize that degradation of several \(\beta \)TrCP targets, e.g. \(\beta \)-catenin (Liu et al., 2002), Wee1 (Watanabe et al., 2004) and Erp1 (Liu and Maller, 2005; Rauh et al., 2005; Hansen et al., 2006), involves recruitment of phosphodegron-directed kinases through phosphorylation-dependent docking sites.

In conclusion, our study shows that autophosphorylation controls \(\beta \)TrCP-mediated degradation of Plk4. In line with observations on the activation-dependent degradation of other protein kinases (Kang et al., 2000; Lu and Hunter, 2009), we propose that active Plk4 catalyzes its own degradation and that this provides a tight coupling between activity status and protein abundance. We further show that Plk4 degradation involves autophosphorylation in \textit{trans}, and this provides a rationale for the observation that excess Plk4-KD can trigger centriole overduplication through a mechanism requiring endogenous, active Plk4. Our data provide not only important mechanistic insight into the regulation of Plk4, but also raise interesting new questions. Most importantly, future research should aim at exploring the timing of Plk4 degradation during the cell cycle and the identification of a putative kinase X that is proposed here to control Plk4 stability.

Materials and Methods

Plasmids and antibodies

Cloning of Plk4 and \(\beta \)TrCP1 cDNA has been described previously (Habedanck et al., 2005; Chan et al., 2008). Sequence mutations in Plk4 were inserted by using the QuikChange site-directed mutagenesis kit (Stratagene) according to the manufacturer’s instructions using the following primers: Plk4 S285A/T289A 5'GAAGACCTCAA-
TTGATGCTGGGCGATGGCAGATTTCTACTGC-3'; Plk4 S285D/T289D 5'-GAA-GACTCAGGTGATAGCAGGCGCGATTTCTACTGC-3'. HA-ubiquitin was generously provided by Stefan Müller (Max-Planck Institute of Biochemistry, Martinsried, Germany).

An anti-Plk4 monoclonal antibody (IgG1) was generated against recombinant MBP-Plk4 (AA715-970) purified from Escherichia coli. Anti-myc (9E10) (Evan et al., 1985), anti-CP110 (Schmidt et al., 2009), anti-CAP350 (Yan et al., 2006), anti-CP110 (AA715-970) purified from mammalian cells. We used a deconvolution algorithm and projected into one picture using Softworx. For immunoprecipitations, the extracts were incubated with protein-G beads (GE Healthcare) and 10 µg of the appropriate antibodies for 1.5 hours at 4°C. Immunocomplexes bound to beads were washed three times with wash buffer (lysate buffer with 300 mM NaCl). Bound proteins were eluted by boiling in 2x SDS sample buffer, resolved by SDS-PAGE, and analyzed by immunoblotting.

We are grateful to Stefan Müller (Max-Planck Institute of Biochemistry) for sharing reagents. We thank Elena Nigg and Claudia Szalma for excellent technical assistance. We also thank all members of our laboratory for helpful discussions. This work was supported by the Max-Planck Society. G.G. was funded by a PhD fellowship from the Boehringer Ingelheim Funds.

Supplementary material available online at http://jcs.biologists.org/cgi/content/full/123/1/2163/DC1

References

