Myf5 haploinsufficiency reveals distinct cell fate potentials for
daughter skeletal muscle stem cells

Barbara Gayraud-Morel1, Fabrice Chrétien1, 2###, Aurélie Jory1###*, Ramkumar Sambasivan1###,
Elisa Negroni3, Patricia Flamant, Guillaume Soubigou4, Jean-Yves Coppée4, James Di Santo5,
Ana Cumano6, Vincent Mouly3, and Shahragim Tajbakhsh1, *

1Stem Cells & Development, Dept. of Developmental Biology, Institut Pasteur, CNRS URA 2578,
25 rue du Dr. Roux, 75015 Paris, France.
3Université Pierre et Marie Curie/Paris 6/Inserm UMR S 974, Institut de Myologie, Groupe Hospitalier
Pitié-Salpêtrière, Paris, France.
4Unité Transcriptome et Epigénome, 5Unité d’Immunité Innée,
*present address: Columbia University Medical Center, 701 W168th Street, HHSC 1104,
New York, NY 10032.

equal contributing authors

Tel: 33 1 40 61 35 20
Fax: 33 1 45 68 89 63
e-mail: shaht@pasteur.fr

*Corresponding author: Dr. Shahragim Tajbakhsh
Stem Cells & Development,
Dept. of Developmental Biology,
Institut Pasteur, CNRS URA 2578,
25 rue du Dr. Roux,
75015 Paris, France.

Running title: Myf5 levels regulate distinct muscle stem cell fates

Key words: satellite cell, myogenic regulatory factors, Myf5, Pax7,
regeneration, stem cell, heterogeneity, transcriptional priming,
haploinsufficiency
Summary
Skeletal muscle stem cell fate in adult mice is regulated by critical transcription factors, including the determination genes *Myf5* and *Myod*. The precise role of *Myf5* in regulating quiescent muscle stem cells has remained elusive. Here we show that most, but not all quiescent satellite cells express *Myf5* protein, but at varying levels, and that resident *Myf5* heterozygous muscle stem cells are more primed for myogenic commitment compared to wild type satellite cells. Paradoxically however, heterotypic transplantation of *Myf5* heterozygous cells into regenerating muscles results in higher self-renewal capacity compared to wild-type stem cells, whereas myofibre regenerative capacity is not altered. In contrast, *Pax7* haploinsufficiency does not show major modifications by transcriptome analysis. These observations provide a mechanism linking *Myf5* levels to muscle stem cell heterogeneity and fate by exposing two distinct and opposing phenotypes associated with *Myf5* haploinsufficiency. These findings have important implications for how stem cell fates can be modulated by critical transcription factors while generating a pool of responsive heterogeneous cells.
Introduction

Vertebrate organogenesis, growth and regeneration rely on tissue specific stem cell populations that generate committed precursors and differentiated cells while maintaining a reservoir of stem cells for long term tissue maintenance in the adult. Distinguishing how these decisions are balanced is a major topic of interest in stem cell biology. Recent studies have suggested that some tissues might harbour multiple stem cell entities, or stem cells with distinct states of commitment and potential (Li and Clevers, 2010; Lugert et al., 2010; Mitchell et al., 2010; Tajbakhsh, 2009). It has been proposed also that in the blood, intestine and hair follicle lineages, a more engaged stem cell population could serve to function in routine repair whereas a more primitive, infrequently dividing fraction might assure progeny, stem and committed cells for longer periods (Li and Clevers, 2010; Wilson et al., 2008).

Adult skeletal muscle stem (satellite) cells, reside between the myofibre plasmalemma and the surrounding basement membrane, and they are in a reversible quiescent state. They enter the cell cycle after muscle injury to produce myoblasts which fuse to the existing myofibres, or generate *de novo* myofibres to effect tissue repair. Muscle stem cell self-renewal and commitment are controlled by a genetic network of transcription factors including the paired-box/homeodomain proteins *Pax3* and *Pax7*, and basic helix-loop-helix muscle regulatory factors (MRFs), *Myf5*, *Mrf4*, *Myod* and *Myogenin* (Kassar-Duchossoy et al., 2004; Relaix et al., 2005; Rudnicki et al., 1993; Tajbakhsh et al., 1997). *Myf5*, *Mrf4* and *Myod* act as the obligate determinants for the acquisition of myogenic cell fate (Kassar-Duchossoy et al., 2004; Rudnicki et al., 1993), whereas *Myogenin* functions as a differentiation factor (Hasty et al., 1993; Nabeshima et al., 1993). Unlike *Pax3*, which is downregulated in most muscles from fetal stages, *Pax7* expression marks stem/progenitors from the early embryo to adult satellite cells, hence it is currently the most reliable marker for satellite cells (Bosnakovski et al., 2008; Relaix et al., 2006; Seale et al., 2000). In addition, mice null for *Pax7* have no overt deficits in myogenesis prenatally, but they are severely deficient in muscle satellite cells after birth (Kuang et al., 2006; Oustanina et al., 2004; Relaix et al., 2006; Seale et al., 2000). Notably however, *Pax3*:*Pax7* conditional double mutants do not compromise adult satellite cell self-renewal and differentiation, hence it remains unclear which genes regulate adult muscle satellite cell self-renewal and fate (Lepper et al., 2009).

Other markers of satellite cells include the *Myf5*\textsuperscript{\textit{\textasciitilde lacZ}} mouse, and the cell surface markers M-Cadherin, Syndecan-3 and -4, CD34, \(\alpha \)7-integrin, CXCR4, and SM/C2.6 antigen (Vcam) (Beauchamp et al., 2000; Cerletti et al., 2008; Cornelison et al., 2004; Fukada et al., 2007; Gnocchi et al., 2009; Kuang and Rudnicki, 2008). Although Myod protein is expressed
in a minor fraction of quiescent satellite cells, a hallmark for activated satellite cells is the robust expression of this protein prior to the first cell division (Kanisicak et al., 2009; Zammit and Beauchamp, 2001; Zammit et al., 2002). Systematic detection of Myf5 protein in quiescent and freshly activated satellite cells has been less clear (Beauchamp et al., 2000; Day et al., 2010; Dhawan and Rando, 2005; Gayraud-Morel et al., 2007; Gayraud-Morel et al., 2009; Zammit et al., 2006). *Pax7* expression declines during myogenic commitment, but it is maintained in self-renewing satellite cells which also lose Myod protein expression (Dhawan and Rando, 2005; Zammit et al., 2004; Zammit et al., 2006).

Heterogeneity among adult muscle stem cells has been suggested by different experimental approaches. For example, satellite cells have different developmental origins and consequently, those found in the head have distinct molecular signatures that reflect in part their developmental ontology (Harel et al., 2009; Sambasivan et al., 2009). *In vitro* heterogeneity of satellite cells was illustrated by their different clonal sizes and capacity to differentiate into myotubes (Cooper et al., 1999; Day et al., 2010; Lagord et al., 1998; Ono et al., 2010). Other studies reported that some, but not all, satellite cells (7-50%) perform biased DNA segregation during mitosis where one daughter cell inherits older template strands and the other daughter cell newly replicated DNA strands (Conboy et al., 2007; Shinin et al., 2006). Although the precise reason for this phenomenon remains unclear (Tajbakhsh and Gonzalez, 2009), it underscores a phenotypic difference among satellite cells which might have functional consequences. In other studies, Syndecan4+/Sca1+/Abcg2+ (3% satellite cells) (Tanaka et al., 2009) or CXCR4 (80% satellite cells) (Cerletti et al., 2008) were used as markers to distinguish satellite cell subpopulations with reported differences in engraftment potential.

Using *Myf5Cre* crossed with a *Rosa*^{Stop-YFP} reporter mouse, a subset of postnatal *Pax7* expressing satellite cells were found to be YFP⁻ (about 10%) suggesting that they were less committed (Kuang et al., 2007). Functional transplantation studies into *Pax7* null muscle suggested that YFP⁻ cells have a reduced tendency to form myofibres but a greater capacity to replenish the stem cell niche compared with cells which have been expressing *Myf5* (Kuang et al., 2007). Another study showed that YFP⁻ cells were enriched for the receptor *Tie2* mRNA that was shown to favour cellular quiescence (Abou-Khalil et al., 2009). By contrast, when *MyodCre* mice were crossed with *Rosa*^{Stop-YFP} reporter mice, virtually no YFP⁻ stem cells were observed (Kanisicak et al., 2009). Thus some genetic tools have exposed heterogeneities among muscle stem cells, yet the functional consequences of these differences remain unclear.
Collectively, these studies have prompted a closer examination of the skeletal muscle stem cell population to understand the nature of the heterogeneity, and whether their potential can be revealed functionally during tissue repair. Reconciling the reported differences in stem cell properties as well as their biological relevance can provide important insights in how cell fate in this paradigmatic stem cell population is regulated. Here we show that although heterozygous Myf5 \(^{+}\) satellite cells are transcriptionally primed for commitment, they regenerate skeletal muscle and replenish the satellite cell niche more efficiently than wild-type satellite cells after transplantation. This differential effect was not observed with heterozygous Pax7 stem cells. These findings underscore the importance of using different phenotypic readouts to identify distinct stem cell states, and they provide insights into how Myf5 acts as a modulator of muscle stem cell fate.

Results

Expression of Myf5 protein in quiescent satellite cells

Our previous studies, and those from other laboratories, showed that the majority (~90%), but not all satellite cells are labelled with Myf5\(^{\text{lacZ/}}\) mice (Beauchamp et al., 2000; Day et al., 2010; Zammit et al., 2002). It remains unclear whether genetic reporters, which are relatively stable compared to transcription factors, reflect endogenous Myf5 protein levels, an important point in assessing the myogenic commitment state of muscle stem cells. Furthermore, the expression of Myf5 protein has not been systematically assessed in quiescent and activated satellite cells, due in part to difficulties in using anti-Myf5 antibodies, hence the role of this protein in quiescent satellite cells remains poorly defined.

To investigate the quiescent satellite cell population, we used two different Pax7 reporter mice: transgenic Tg:Pax7-nGFP mice (Sambasivan et al., 2009) and knock-in mice Pax7\(^{\text{nGFP/+}}\). Immunostaining of satellite cells with anti-Pax7 and anti-GFP antibodies on freshly isolated extensor digitorium longus (EDL) fibres showed 100% co-expression between endogenous Pax7 protein and the nGFP reporter for both Tg:Pax7-nGFP and Pax7\(^{\text{nGFP/+}}\) mice (Sambasivan 2009; Sup. Fig. 1A). This was also the case for satellite cells on sections of Tibialis anterior (TA) muscle (Sup. Fig. 1A). Isolated single myofibres can be cultured in suspension for several days and this paradigm permits the monitoring of distinct cell states from the quiescent muscle stem cell, to the generation of myoblasts, and finally self-renewal or commitment cell fates in the absence of cell fusion with the myofibre (Zammit et al., 2004). To validate our findings, this model and directly cultured primary myogenic
cells were evaluated. In experiments with floating myofibres at 72h and with 1 week cultured
myoblasts, we found that the nGFP reporter from Tg:Pax7-nGFP mice faithfully reproduced
endogenous Pax7 expression (Fig. S1B, C). GFP expression was essentially absent, or
weakly expressed, in differentiated Myogenin\(^+\) cells and absent in myonuclei (Fig. S1B, C).
Isolation of satellite cells by FACS from Tg:Pax7-nGFP mice showed that they were
phenotypically small in size and exhibited low cellular granularity as previously reported for
satellite cells isolated using other markers (Fig 1A) (Bosnakovski et al., 2008; Kuang et al.,
2007; Montarras et al., 2005). Under our gating conditions, Pax7\(^+\) cells represented about 2% of all mononucleated cells from fore- and hind-limb muscle extracts. In general, 5-10 \(10^5\)
quiescent satellite cells were isolated from Tg:Pax7-nGFP fore- and hind-limbs.

Immunolabelling followed by FACS showed that Pax7\(^nGFP+/+\) and Tg:Pax7-nGFP populations were negative for CD45, CD31 and Sca1, but positive for CD34 and \(\alpha_7\)-integrin as shown previously for freshly isolated satellite cells (Fig. S2A (Bosnakovski et al., 2008; Cerletti et al., 2008; Joe et al. 2010; Montarras et al., 2005)). To investigate the purity and myogenic potential of these populations, GFP\(^+\) cells were isolated, plated overnight and stained with anti-Pax7 and anti-Myod antibodies. All GFP\(^+\) cells were positive for Pax7 and/or Myod (n=100 cells, n=3 animals for each model; data not shown). Purity and myogenicity of GFP\(^+\) cells were tested further by clonal analysis of single cells in 96 well plates. After 1 week in culture, clones varied in size, and they were all myogenic expressing Myod and/or Myogenin, with some cells undergoing fusion at this stage (Fig. S2B). Therefore, Pax7\(^nGFP+/+\) and Tg:Pax7-nGFP faithfully recapitulate Pax7 expression in quiescent satellite cells and they permit the isolation of highly pure muscle stem cells.

Given that only satellite cells are GFP\(^+\) in skeletal muscles of Tg:Pax7-nGFP adult muscle, quiescent satellite cells were isolated by FACS and examined by Western blot for Myf5 protein. Robust expression of Myf5 was observed, and this expression was specific as Myf5 null satellite cells isolated by FACS from Tg:Pax7-nGFP::Myf5\(^{loxP/loxP}\) or Tg:Pax7-nGFP::Myf5\(^{loxP/lacZ}\) were negative for this protein (Fig. 1B). The specificity of the antibody was confirmed further by immunostainings on control and Myf5 null cryosections (Sup. Fig S3A). Interestingly, immunostaining showed that the level of expression varied in individual wild-type cells either on single myofibres (Fig. 1C, a-i) or frozen tissue sections (Fig. 1C, j-o). Quantitation revealed that the majority of satellite cells expressed Myf5 protein (Fig. 1D; n=4 mice, 12-24 myofibres/mouse). A significant upregulation was observed in myoblasts after satellite cell activation and proliferation (Fig. 1E). As expected, Myf5 protein expression was downregulated during myogenic differentiation (Myogenin\(^+\) cells; Fig. S3B).
Myf5 heterozygous muscle stem cells are transcriptionally primed for commitment

The varied expression of Myf5 protein suggested that this might be related to the heterogeneous behaviour of satellite cells. To determine the functional role of Myf5, mice with one compromised allele of Myf5 were examined using several approaches. Western blot analysis showed that $\text{Myf5}^{\text{loxP}/+}$ and $\text{Myf5}^{\text{GFP-P}+/+}$ satellite cells, whether taken as the entire cell population, or a subpopulation based on GFP positivity, expressed approximately half of the levels of Myf5 protein compared to wild type satellite cells (Fig. 2A, B). This suggests that no significant mono-allelic or cross-allelic regulation of the two Myf5 alleles takes place in Myf5 heterozygous mice.

Since Myf5 acts as a determination gene in embryonic muscle progenitors, we reasoned that in the adult, Myf5 heterozygous satellite cells would be less committed. To test this notion, we performed quantitative reverse transcriptase PCR (RT-qPCR) for several markers specific to quiescence, activation or differentiation of total quiescent Myf5 heterozygous satellite cells isolated by FACS. Unexpectedly, in comparison to the total wild type population using Tg:Pax7-nGFP mice, significantly higher levels of Myod and Myogenin transcripts were observed in $\text{Tg:Pax7-nGFP:Myf5}^{\text{loxP}/+}$ cells (Fig. 2C). This committed status was underscored further by the increased level of mRNA for the structural protein of mature skeletal muscle, Troponin-T, a protein which is expressed well downstream in this lineage, in differentiated cells. Satellite cell-derived myoblasts were reported to express high levels of members of the Notch/Delta signalling pathway for myoblast proliferation prior to differentiation (Conboy et al., 2003; Sun et al., 2008; Waddell et al., 2010). Consistent with the notion that Myf5 heterozygous cells are more committed, we noted higher expression levels of the Delta-like1 ligand, which marks committed myogenic cells (Delfini et al., 2000; Kuang et al., 2007; Schuster-Gossler et al., 2007; Waddell et al., 2010). Pax7, which is expressed in quiescent and activated myogenic cells, did not show any significant difference in expression. Interestingly, Angiopoietin and its receptor Tie2, involved in satellite cell self-renewal, were both increased in Myf5 heterozygous cells. These findings were largely confirmed when a subpopulation of heterozygous satellite cells, marked by GFP expression from $\text{Myf5}^{\text{GFP-P}+/+}$ mice, was examined (Fig. 2D).

To validate and extend these findings, we performed Affimetrix GeneChip Microarrays of satellite cells from hind and forelimbs skeletal muscles (Fig. 2E). Several genes involved in the myofibre contractility machinery were up-regulated in heterozygous $\text{Myf5}^{\text{GFP-P}+/+}$ subpopulation of quiescent satellite cells such as skeletal actin (acta1, 3.7 fold),
Dystrophin (Dmd, 2.5 fold), isoforms of myosin heavy and light chains (Myh4, Mylpf, 3 and 3.5 fold, respectively), Troponin 1 (Tnni1, 5.1 fold), Tropomyosin (Tpm1, 2 fold) and Titin (Ttn, 4.7 fold). Accordingly, Myogenin expression was upregulated in these cells. A similar transcriptome analysis carried out between Pax7 heterozygous satellite cells from Pax\textsuperscript{\textit{nGFP/+}} knock-in mice and wild type satellite cells showed no significant variations in gene expression between the two populations (Fig. 2F), indicating that unlike Myf5, haploinsufficiency of Pax7 does not alter the transcriptional priming state of satellite cells. Taken together, these findings indicate that quiescent muscle stem cells are sensitive to Myf5 expression levels, where Myf5 heterozygous satellite cells are more transcriptionally primed for myogenic commitment.

Transplanted Myf5 heterozygous and wild-type satellite cells have equivalent regenerative potentials

To determine if the molecular signatures of cell commitment observed in Myf5 heterozygous quiescent satellite cells have functional consequences, we performed transplantation experiments with the totality or a sub-population of quiescent satellite cells heterozygous for Myf5. To collect all satellite cells \\textit{Tg:Pax7-\textit{nGFP}} were crossed with Myf5GFP-P/+ mice. Unlike, \\textit{Tg:Pax7-\textit{nGFP}} mice that express a nuclear GFP, the Myf5GFP-P expresses a brighter cytoplasmic GFP (Fig. 3A) (Kassar-Duchossoy et al., 2004; Sambasivan et al., 2009). Consequently, two GFP populations can be distinguished on the FACS profiles of satellite cells from simple (Fig. 3A) and compound crosses (Fig. 3B). Myf5GFP-P/+ EDL myofibres contain an expected average number of about 10 satellite cells per EDL myofibre and therefore Myf5 heterozygosity does not appear to affect satellite cell numbers as is the case also with Myf5\textsuperscript{\textit{nlacZ/+}} mice (Gayraud-Morel et al., 2007). However, only a subset (up to 20\%) of Pax7+ satellite cells co-expressed this GFP reporter (Fig. 3C, a-f), and this was not significantly improved by removal of the \textit{Puromycin} resistance cassette (data not shown). This is consistent with fewer fluorescent cells obtained by FACS (0.2 to 0.4\%) from Myf5GFP-P limb muscles and a reduced number of \textit{GFP}+ cells counted per EDL myofibre (Fig. 3A and C) compared to that obtained from control mice.

For the transplantation experiments, two additional transgenic mice were used to follow the fate of the transplanted cells \textit{in vivo}: i) \\textit{Tg:CAG-hPLAP} carrying the human placental alkaline phosphatase gene which is expressed ubiquitously (DePrimo et al., 1996); and ii) \\textit{Tg:MLC3F-nlacZ-2E} which marks differentiated myonuclei (Kelly et al., 1995). Therefore, triple (T) or quadruple genetically modified mice were generated for the
transplantations: \textit{Tg:Pax7-nGFP:Myf5^{GFP-P/+}:Tg:hPLAP::Tg:3F-nlacZ-2E} (hereafter called \textit{Tg:Pax7-nGFP::Myf5^{GFP-P/+}/T}), \textit{Tg:Pax7-nGFP::Tg:hPLAP::Tg:3F-nlacZ-2E} (hereafter called \textit{Tg:Pax7-nGFP/T}).

For the functional assays, 10^4 freshly isolated GFP^+ cells were transplanted into the TA muscle of Rag2^--/γC^-/- immunocompromised recipient mice (Colucci et al., 1999) where the muscle was previously injured by cryodamage (Silva-Barbosa et al., 2005). PLAP^+ myofibres were enumerated by immunostaining in combination with anti-laminin that outlines the surrounding basement membrane of each myofibre (Fig 3D). The majority of myogenic cells localised close to the site of injection, as reported previously (Schultz et al., 1988). Although the number of PLAP^+ myofibres generated from engrafted cells varied (from 40-700) between host animals as reported previously (Collins et al., 2005), individual animals responded similarly for the \textit{Tg:Pax7-nGFP:Myf5^{GFP-P/+}/T} and \textit{Tg:Pax7-nGFP/T} engrafted populations. On average, \textit{Tg:Pax7-nGFP:Myf5^{GFP-P/+}/T} and \textit{Tg:Pax7-nGFP/T} satellite cells generated 366 and 300 PLAP^+ myofibres respectively (n = 4 animals, p > 0.05; Fig. 3E). These findings show that Myf5 heterozygous and wild type satellite cells contributed equivalently to regenerating myofibres.

Similar results were obtained with the subpopulation of Myf5 heterozygous satellite cells isolated from \textit{Myf5^{GFP-P/+}/T}. The myogenic specificity of these cells was also evaluated by FACS and clonal analysis as described above for \textit{Tg:Pax7-nGFP} mice (Fig. S2A and B). The number of PLAP^+ myofibres generated from engrafted cells varied (from 20-700), yet individual animals responded similarly for the \textit{Myf5^{GFP-P/+}/T} subpopulation compared to the total \textit{Tg:Pax7-nGFP/T} engrafted population (Fig. 3F). On average, \textit{Myf5^{GFP-P/+}/T} and \textit{Tg:Pax7-nGFP/T} satellite cells generated 400 and 300 PLAP^+ myofibres respectively (n = 4 animals, p > 0.05; Fig. 3G). Four weeks after transplantation, cross sections of muscle contained centrally located X-gal^+ myonuclei and large clusters of PLAP^+ regenerating myofibres (Fig. 3F, e). Therefore using either the total Myf5 heterozygous cells, or a subpopulation, we found no significant difference in myofibre contribution compared to wild type satellite cells.

\textbf{Higher self-renewal capacity of Myf5 heterozygous compared to wild-type muscle stem cells}
As regeneration is completed and muscle homeostasis is re-established, the skeletal muscle niche is replenished with new quiescent muscle stem cells. Self-renewal of satellite cells was assayed for Tg:Pax7-nGFP::Myf5GFP-P/+T (Fig. 4A) or Myf5GFP-P/+T (Fig. 4B) mice to investigate the effect of Myf5 haploinsufficiency on stem cell behaviour. Engrafted satellite cells which were located under the basement membrane are positive for Pax7 staining (Fig. 4B, d and i) and were scored as GFP+ and PLAP+ (Fig. 4A, B). Only rare GFP+ satellite cells were found associated with PLAP− myofibres, in keeping with our findings above that the transplanted satellite cells did not disperse extensively. Quantifications showed that, unexpectedly, a higher number of GFP+ cells was associated with newly formed myofibres for Myf5 heterozygous satellite cells (Tg:Pax7-nGFP::Myf5GFP-P/+T donors) compared to wild type cells (Tg:Pax7-nGFP/T donors) (Fig. 4C; p <0.001).

Similarly, quantification of GFP+/PLAP+ satellite cells engrafted from Myf5GFP-P/+T mice (Fig 4B), where only the GFP+ subpopulation of satellite cells was transplanted, showed that haploinsufficiency of Myf5 affected the frequency of self-renewed cells (Fig 4D; p=0.004). To determine if the regenerative potential was proportional to the number of cells injected, similar experiments were done with 5 times less transplanted cells (2000 cells instead of 10⁴ cells, Table 1). For both donor populations, about twice fewer PLAP+ myofibres and four times fewer satellite cells were obtained. Thus, contribution to the number of regenerating myofibres by the injected cells was not proportional to the number of cells injected suggesting that a limited number of cells is required for myofibre contribution, and this could also be limited by the extent to which satellite cells can migrate. Notably, also in these experiments, more self-renewing cells were observed with Myf5 heterozygous transplanted satellite cells compared to the wild-type (Table 1).

Long term self-renewal capacity of Myf5 heterozygous and Tg:Pax7-nGFP satellite cells

To evaluate the capacity of Myf5 heterozygous and Tg:Pax7-nGFP satellite cells to self-renew after a second round of stem cell mobilisation, 3 weeks after the initial transplantation, the TA muscle was re-injured with notexin to provoke myofibre destruction and to trigger satellite cell activation. Neonatal myosin heavy chain (nMyHC), which marks regenerating myofibres (Collins et al., 2005), was co-expressed with PLAP indicating that muscle regeneration took place after the notexin injury (Fig. 5A). Large areas of PLAP+ myofibres were observed after the re-injury (Fig. 5B, a-b), and their quantification showed an equivalent number of PLAP+ myofibres for Myf5GFP-P/+T and Tg:Pax7-nGFP/T (p > 0.05; Fig. 5C). Quantification of GFP+ satellite cells associated with PLAP+ myofibres, showed
more GFP+ cells/section with Myf5GFP-P/+/T compared to Tg:Pax7-nGFP/T (p = 0.01, n=5 mice; Fig. 5D). Therefore, Myf5 heterozygous satellite cells continue to contribute robustly to muscle repair yielding more GFP+ satellite cells compared to wild type satellite cells.

Discussion

How stem cells regulate the balance between self-renewal and differentiation is a central question in stem cell biology. A variety of experimental approaches are used as readouts to assess these endpoints, such as cell transplantations and niche occupancy, as well as determination of the cell state using molecular readouts (Claudinot et al., 2005; Collins et al., 2007; Enver et al., 2009; Osawa et al., 1996; Sacco et al., 2008; Snippert and Clevers, 2011, Van Keymeulen et al., 2011). Skeletal muscle stem cells provide a model to address these questions, as the stem cell entity can be readily isolated and manipulated. Like many other tissues, however, the extent of heterogeneity in this population, and its functional relevance is not clear. To investigate these questions, we used genetic tools that permit a detailed phenotypic analysis of muscle stem cells. We present evidence that the levels of a determination gene Myf5 impact on muscle stem cell behaviour, and unexpectedly, with divergent phenotypic consequences depending on the assay employed to examine stem cell potential for commitment and self-renewal.

Although satellite cells play a crucial role in muscle growth and repair, outstanding questions remain regarding how heterogeneities reported in this population (Beauchamp et al., 2000; Cerletti et al., 2008; Collins et al., 2005; Ieronimakis et al., 2010; Kuang et al., 2007; Montarras et al., 2005; Ono et al., 2010; Tanaka et al., 2009) correlate with self-renewal and commitment decisions. The two genetic models characterised here, heterozygous \textit{Pax7}+/GFP and transgenic Tg:Pax7-nGFP mice, faithfully recapitulate the expression of the endogenous Pax7 gene and express cell surface markers reported previously (Bosnakovski et al., 2008; Kuang et al., 2007; Montarras et al., 2005; Silva-Barbosa et al., 2005). Interestingly, unlike Myf5, heterozygosity of Pax7 did not show significant differences with wild-type stem cells by transcriptome analysis. This was unexpected given that haploinsufficiency has been noted for the parologue of Pax7, Pax3, at least in neural crest derivatives (Goulding et al., 1991).

Genetic studies have underscored the importance of threshold levels of the critical myogenic determination factors in the regulation of cell fate during prenatal development (Kassar-Duchossoy et al., 2004; Rudnicki et al., 1993; Weintraub, 1993). However, the role of these genes in quiescent adult stem cells remained unknown. We report the unexpected
finding that muscle stem cells respond differentially to Myf5 for cell commitment, since heterozygous cells, either as a subpopulation from Myf5^{GFP-P} reporter mice, or the entire population, are more primed for myogenic commitment compared to total wild-type muscle stem cells. An additional unexpected outcome from our study was the observation that in spite of their more transcriptionally committed state, Myf5 heterozygous satellite cells assume a more stem-like phenotype after transplantation, since they show a higher frequency of self-renewal and niche occupancy. These findings indicate that for self-renewal after engraftment, the dose of Myf5 protein is critical for modulating this cell state, being more biased towards a stem-like phenotype in the heterozygous situation. Similar results were obtained after a second round of injury where engrafted donor muscle stem cells are mobilised from their niche to effect tissue repair, and subsequently self-renewing once again during homeostasis. Interestingly, this does not affect their ability to generate new myofibres. Consistent with these findings, Myf5 null muscle stem cells have a higher self-renewal and niche occupancy capacity than wild-type stem cells, however their ability to generate differentiated myofibres is reduced (BGM and ST, unpublished observations). These observations underscore the importance of the cell fate regulator Myf5 in modulating the balance between self-renewal and commitment. They also highlight unexpected differences in stem cell fate potential depending on the assay employed as was demonstrated recently for mammary stem cells (Van Keymeulen et al., 2011).

In differentiated cultures of the transformed muscle cell line C2C12, Myf5 protein is observed in mononucleated reserve cells, which share some characteristics with satellite cells including cellular quiescence, loss of Myod, and expression of Pax7 (Kitzmann et al., 1998; Yoshida et al., 1998). However, the expression of Myf5 protein in quiescent satellite cells had not been examined in detail and it has been debated extensively (Dhawan and Rando, 2005; Kuang et al., 2008; Tajbakhsh and Gonzalez, 2009; Zammit et al., 2002; Zammit et al., 2006). In the present study, Western blot and immunolabelling on tissue section and myofibres showed that Myf5 protein is present in the majority of quiescent satellite cells, unlike the other MRFs. By contrast, Myod and Myogenin proteins are detected in only a subset (7-11% and 1%, respectively) of quiescent satellite cells; (Beauchamp et al., 2000; Fukada et al., 2007; Zammit et al., 2002, data not shown). The third muscle determination factor Mrf4 is absent during quiescence and it is expressed after differentiation (Gayraud-Morel et al., 2007). These observations can now be considered in light of the present findings, where we show that reducing the gene dose of Myf5 to heterozygous levels in quiescent satellite cells promoted the transcriptional upregulation of commitment genes. Moreover, Myf5 expression
is markedly downregulated during differentiation (Beauchamp et al., 2000), and cells triple mutant for Myf5, Mrf4 and Myogenin do not differentiate (Valdez et al., 2000). The duality in the functional role of Myf5, as a promoter of muscle fate, and also as incompatible with differentiation, raises questions on the precise role of this transcription factor during different cell states in a myogenic lineage progression. Our findings with endogenous Myf5 heterozygous quiescent satellite cells indicates that Myf5 protein expression maintains the "stemness" state, and lowering the levels of this cell fate determinant genetically results in a myogenic commitment phenotype in this cell state. It appears that its role is distinct in activated satellite cells as the levels of Myf5 protein increase dramatically in the transit amplifying myoblast population.

Interestingly, the number of satellite cells negative for Myf5 protein is in the same range as that reported for YFP cells in a previous study (≤10%) obtained by crossing Myf5cre mice with RosaSTOP-YFP (Kuang et al., 2007). After satellite cell activation, Myf5 expression is upregulated and it is co-expressed with Pax7 and Myod. Notably, some quiescent and activated cells remain unstained for Myf5 protein (data not shown) as reported also using Myf5nlacZ+/ mice (Cooper et al., 1999). Taken together, satellite cell heterogeneity is clearly suggested by numerous studies, yet the mechanisms responsible for this heterogeneity have remained elusive. We show here that heterozygous levels of Myf5 can impact on cell fate for self-renewal, but not for cell commitment. One possibility is that cell fate decisions are deterministic and influenced by Myf5 protein levels when additional environmental cues are favourable for myogenic commitment. Another possibility is that all satellite cells exist in a state of flux with respect to the levels of this transcription factor, and cell fate decisions to commit or self-renew are decided stochastically. It is likely that in both scenarios, the level of Myf5 protein is a nodal point for how this decision is executed, as is suggested by our findings. In more recent studies, we showed that a subpopulation of quiescent satellite cells, corresponding to high levels of Pax7 expression, are in a deeper state of quiescence, or dormant. In addition, during muscle regeneration, a subpopulation of Pax7-high expressing cells performs template DNA strand co-segregation where older DNA strands are inherited by the self-renewing Pax7+ stem cell, and nascent DNA strands are inherited by the daughter cell expressing Myogenin (Rocheteau et al. 2012). The extent to which symmetric and asymmetric cell divisions also contribute to heterogeneity in the satellite cell pool remains to be explored.

Other studies have shown that the level of Nanog transcription factor in ES cells is critical for determining the state of the cell, either for favouring pluripotency (nanog-high) or
commitment (nanog-low) (Chambers et al., 2007). In another study, the Sca1 receptor in a blood cell line was used to show the stochastic behaviour of cells, and fluctuations of the expression of this gene at a population level. Interestingly, a Gaussian distribution of expression of Sca1 was re-established irrespective of the levels of expression of the isolated starting population (Chang et al., 2008). These and other studies such as Pax6 in eye development and aniridia (Hill et al., 1991), Tbx1 in pharyngeal arch arteries and in DiGeorge syndrome (Lindsay et al., 2001), Tcf4 in CNS and Pitt-Hopkins Syndrome (Brockschmidt et al., 2007), or RUNX2 in osteoprogenitors and cleidocranial dysplasia (Cohen, 2009) have highlighted the notion that cell fates are assumed based on the expression levels of critical factors when the opportunity arises. We propose that this is the case for Myf5 protein levels in quiescent muscle stem cells.

Our previous studies showed that the number of satellite cells was not altered in mice heterozygous or null for Myf5 up to 1 year of age, both in vitro and in vivo (Gayraud-Morel et al., 2007), indicating that the self-renewal and commitment decisions that are reported here are not due to alterations in cellular proliferation. Although a germ line null mutation in Myod results in twice more myogenic cells in vivo (Gayraud-Morel et al., 2007; Macharia et al., 2010), their self-renewal capacity after transplantation remains to be determined. Other factors which can affect regeneration efficiency are the type of injury model used (Gayraud-Morel et al., 2009; Ustanina et al., 2007), the number of transplanted cells, as fewer transplanted cells yield proportionally more self-renewing and differentiated cells, and the donor and recipient mouse strains used (Collins et al., 2005; Gross et al., 1999).

A recent study reported that satellite cell self-renewal is regulated by FGF (Shea et al., 2010) and Bmp (Wang et al., 2010) signalling, as well as the Angiopoietin receptor Tie2. Notably, less satellite cell self-renewal was reported in the absence of Tie2 (Abou-Khalil et al., 2009). Our study is in keeping with this observation since the levels of the Tie2 receptor, and its ligand Angiopoietin 1, were elevated in Myf5 heterozygous satellite cells, consistent with their tendency to self-renew more efficiently.

In summary, our findings point to a critical role for Myf5 in regulating muscle stem cell self-renewal after transplantation during regeneration, in spite of their capacity to assume a more committed state in the resident niche. These observations point to unexpected opposing phenotypes that underlie the flexibility in the muscle stem cell state, and they suggest that Myf5 is a key modulator of these cell states. As such, they provide insights into how self-renewal and differentiation are differentially modulated in muscle stem cells.
Materials and Methods

Ethics Statement

All animal work was performed according to national and European guidelines.

Mice

Myf5GFP-P, Myf5loxP and Myf5nlacZ were described earlier (Kassar-Duchossoy et al., 2004; Tajbakhsh et al., 1996). Briefly, Myf5nlacZ and Myf5GFP-P comprise a 122 aa deletion in exon 1 and thus lack the bHLH domain. The Myf5loxP allele contains about 124bp in the first exon of Myf5 and this insertion does not affect Mrf4 expression in muscle progenitors in the embryo (Kassar-Duchossoy et al., 2004). For the transgenic Pax7-nGFP reporter mice, Tg:Pax7-nGFP, a BAC containing approximately 200 kbp of mouse genomic DNA including the locus encoding Pax7 and sequences both upstream (~55 kbp with respect to Pax7 initiator ATG) and downstream (~60 kbp from terminator codon) was recombined in E. coli with a nuclear localised EGFP (nGFP). The targeting vector was designed to introduce nGFP into the first exon of Pax7 gene (Sambasivan et al., 2009). The Pax7nGFP mouse was derived from a parental Pax7nGFP-Puro/nlacZ knock-in mouse (nlacZ flanked by frt sites) that was crossed with a universal Flippase deleter mouse to place the nGFP reporter gene in the first exon of Pax7 (RS and ST, manuscript in preparation). To isolate pure populations of satellite cells, based on GFP epifluorescence by FACS, Myf5loxP, Myf5GFP-P/ and Myf5nlacZ were crossed to Tg:Pax7-nGFP. To permanently mark engrafted cells, Myf5 and Pax7 reporter mice were crossed to the Tg:CAG-hPLAP carrying the human placental alkaline phosphatase gene that is expressed ubiquitously (DePrimo et al., 1996); and to the Tg:MLC3F-nlacZ-2E that marks differentiated myonuclei (Kelly et al., 1995). For simplicity, mice carrying three to four genetic modifications, for example, Myf5GFP-P:Tg:CAG-hPLAP :Tg:MLC3F-nlacZ-2E or Tg:Pax7-nGFP:Myf5GFP-P:Tg:CAG-hPLAP :Tg:MLC3F-nlacZ-2E, are indicated as Myf5GFP-P/T, Tg:Pax7-nGFP:Myf5GFP-P/T or Tg:Pax7-nGFP/T (T, Triple). Engraftment experiments were performed with immunocompromised Rag2−/−:γC−/− recipient mice (Colucci et al., 1999).

Satellite cell preparation and Fluorescence Activated Cell Sorting and cytometry

Satellite cells are prepared from mouse hindlimb and forelimbs muscles. After removal of the major tendons, nerves and adipose tissue, muscle tissue was minced with scissors, then digested with a mixture of 0.1% Collagenase D (Roche) and 0.2% Trypsin (Invitrogen) in
DMEM (Invitrogen) for 5 consecutive cycles of 25 minutes at 37°C. For each round, the supernatant was filtered through a 100 and then 70 μm cell strainer and trypsin was blocked with 10% FBS (Invitrogen) on ice. Pooled supernatants from each digestion cycle were centrifuged at 1600 rpm for 15 minutes at 4°C. Pellets were washed at least 4 times with cold DMEM. Immediately prior to FACS, the cell suspension was filtered with a 40 μm cell strainer and resuspended in 2% FCS/DMEM. When necessary, propidium iodide was added at 1 μM final to eliminate dead cells during sorting. Isolation of cells was performed on a FACS Aria (BD Biosciences) or Moflow (Beckman Coulter) FACS machine. Satellite cells for single cell clonal analysis were sorted directly into 96 well plates with a 100 μM nozzle on the FACS Aria. For cytometry, single cell suspension from muscle extract were incubated 30 minutes on ice, with fluorescent primary antibodies (see Table S1), washed once with PBS and analyzed by flow cytometry (CyAn, Beckman Coulter). Quadrants were established by the negative threshold based on isotype controls. Data was analyzed post-acquisition by FlowJo.

Muscle injury and satellite cell transplantation

Immunocompromised Rag2^{−/−}:γC^{−/−} mice are subjected to freeze injury 2 days prior to cell engraftment. Briefly, mice are anesthetised with 0.5% Imalgene/2% Rompun. The TA muscle was frozen with three consecutive cycles of freeze-thawing by applying a liquid nitrogen cooled metallic rod. The skin was sutured and mice are kept on a warm plate until recovery. Satellite cells collected by FACS were centrifuged 15 minutes in an eppendorf centrifuge at 550g. The supernatant was carefully eliminated and the pellet was resuspended in a minimal volume to inject 5 to 10 μl of cell suspension per TA. Cell suspensions were enumerated using a Malassez counting chamber to adjust the concentration of cells injected to 2000 or 10000 satellite cells in pre-injured TA with a 10 μl Hamilton syringe. Four weeks after transplantation, mice were sacrificed by cervical dislocation and the tissue analysed. For re-injury experiments, 3 weeks after the transplantation, the TA are injected with 10 μl of notexin (Latoxan) and mice were sacrificed 14 days later for analysis.

Immunofluorescence and X-gal staining

The TA muscle was fixed in 1% paraformaldehyde/0.1% TritonX-100/PBS at 4°C for 2h, followed by on overnight incubation in 15% sucrose at 4°C. The muscle was frozen in liquid nitrogen in OCT and processed essentially as described (Gayraud-Morel et al., 2007). Cryosections (10μM) were collected on Superfrost slides (Thermo Scientific). Sections were
washed in PBS, incubated in 0.5% Triton/PBS for 5 minutes, washed with PBS and blocked with 10% heat inactivated goat serum. Primary antibodies (see Table S1) were incubated overnight at 4°C. After 3 PBS washes, Alexa or Cy3 conjugated secondary antibodies were added for 2h at room temperature, followed by several PBS washes and mounting of slides in 25% PBS/75% Glycerol. For Pax7 staining on frozen sections, the primary monoclonal antibody was incubated overnight in 0.5% Triton/PBS, which replaces the unmasking protocol described previously (Gayraud-Morel et al., 2007). Myoblasts and single fibres were immunostained as described (Gayraud-Morel et al., 2007). For X-Gal staining, frozen sections were rinsed with PBS and stained 2h with X-gal solution (Tajbakhsh et al., 1997) at 37°C. Pictures were taken with a Leica SPE confocal or Zeiss Observer microscope equipped with a Zeiss camera.

Quantification of myofibres and engrafted satellite cells

For quantifications, the entire TA muscle was sectioned and at least 4 different evenly spaced levels were stained and used for PLAP+ myofibre and GFP+ satellite cell enumerations after immunostaining. For myofibre quantification, the section with the maximum number of PLAP+ myofibres counted was considered for each animal. Graphs display the average for all animals tested. Quantification of the GFP+ satellite cells were expressed as the average number of GFP+ satellite cells counted in 3-4 cryosections obtained from 4 different levels in n = 4-5 mice. Graphs display average values of all animals tested ±SEM. Student t-test or Mann-Whitney tests were performed to evaluate the significance of the values (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).

Single fibre preparations and cell culture

Single fibres were isolated as described previously (Zammit et al., 2002). Briefly, EDL muscles were dissected and treated for 1h with 0.1% Collagenase (C-0130, Sigma) at 37°C. For time zero experiments, fibres were fixed for 5-10 min with 4% PFA/PBS at room temperature immediately after single fibre isolation. When required, single myofibres were incubated up to 72h in 20% FCS (Invitrogen)/Penicillin/Streptomycin in DMEM (Invitrogen)/MCDB201 (Sigma) (1:1) medium. For myoblast cultures, sorted cells were plated on Matrigel (BD Biosciences) coated dishes, and grown in medium containing 20% FCS (Invitrogen)/2%Ultroser/ Penicillin/Streptomycin in DMEM (Invitrogen)/MCDB201 (Sigma) (1:1) medium. For satellite cell quantification on myofibres at T(0h), 12-20 myofibres were counted for each animal, unless indicated otherwise.
Quantitative Real Time Reverse transcription-polymerase Chain Reaction

Extraction and preparation of RNA for QRT-PCR were realised as described earlier (Jory et al., 2009). Briefly, total mRNA were extracted with the RNAeasy Micro Plus purification kit (Quiagen) from 10000 to 100000 GFP⁺ satellite cells collected during FACS directly into the lysis buffer containing 1% β-mercaptoethanol as suggested by manufacturer. DNAse treated (400-600ng; Roche, Manheim, Germany) RNA were processed for random-primed reverse transcription using Superscript II protocol of Invitrogen (Carlsbad, CA). cDNAs were analysed using powerSYBR Green Universal Mix or Taqman universal Master Mix. Primers are listed in Table S2.

Western Blotting

Satellite cells were collected in 10% SVF+DMEM from the cell sorter, spun 10min at 8000rpm at 4°C. The pellet was resuspended in a minimal volume of lysis buffer (5mM EDTA, 50mM Tris pH8, 150 mM NaCl, 0.5% NP40, 0.1% SDS) with 2X Protein Inhibitors cocktail (Roche). Protein extracts were separated in 4-12% Nu-Page precast gels (Invitrogen). After protein transfer (20%Methanol, 80% Tris-Glycine-SDS buffer (Bio-Rad), the membrane was incubated with antibodies as described (Gayraud-Morel et al., 2007). To evaluate Myf5 content in quiescence and activated (3days in culture) cells, 5 X 10⁴ cells were loaded per lane.

GeneChip Microarrays

Transcriptome analysis will be described in detail elsewhere (Sambasivan and Tajbakhsh, in preparation). Briefly, satellite cell populations from Myf5⁵GFP⁺, and Tg:Pax7-nGFP, were collected from adult (6 to 8 weeks old) mice based on GFP expression and isolation by FACS. RNA extraction was done using a Qiagen RNeasy Micro kit. cDNA obtained from 100ng of RNA was amplified by using the GeneChip Expression Two-Cycle 3’amplification system (Affymetrix). Fragmented biotin-labeled cRNA samples were hybridized on GeneChip Mouse Genome 430_2 arrays (Affymetrix 430.2.0 mouse array that contains 45000 probe sets). For each experimental group three biological replicates were hybridized. The generation of cell intensity files and the quality control of hybridizations were performed with GeneChip Operating Software (Affymetrix). Raw data were pre-processed using the GC-Robust Multichip Analysis (GCRMA) algorithm in order to correct the background, to adjust the intensity distribution over the arrays and to convert probe intensity summarisation into a
unique probe set signal. Local Pooled Error (Jain et al., 2003) tests were performed in order to identify significant differences in gene expression between group. The Benjamini-Hochberg (Benjamini and Hochberg, 1995) multiple correction test was applied to control for the number of false positive with an adjusted 5% statistical significance threshold. Unbiased analysis of comparative enrichment of functionally related gene ontology categories were performed using DAVID (Huang da et al., 2009). Select candidates from two relevant enriched categories (skeletal muscle differentiation and development) are presented in this article.

Acknowledgements

We thank C. Cimper for technical assistance and M. Nguyen, P-H Commere (PFC, Institut Pasteur, Paris), A. Henry and A. Guguin (IMRB, UFR de Médecine, Créteil) for cytometry and Béatrice Regnault for microarray data. We also thank G. Butler-Browne and members of the lab for critical comments and discussion, and acknowledge support from the Institut Pasteur, Association Française contre les Myopathies, Agence Nationale de la Recherche, MyoRes (EU Framework 7 project EuroSysStem), Optistem, and Fondation pour la Recherche Médicale.
References:

Macarola, R., Otto, A., Valasek, P. and Patel, K. (2010). Neuromuscular junction morphology, fiber-type proportions, and satellite-cell proliferation rates are altered in MyoD...

Mitchell, K. J., Pannerec, A., Cadot, B., Parlakian, A., Besson, V., Gomes, E. R.,

Marazzi, G. and Sassoon, D. A. (2010). Identification and characterization of a non-satellite
cell muscle resident progenitor during postnatal development. Nat Cell Biol 12, 257-266.

Montarras, D., Morgan, J., Collins, C., Relaix, F., Zaffran, S., Cumano, A.,

muscle regeneration. Science 309, 2064-2067.

Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I. and
Nabeshima, Y. (1993). Myogenin gene disruption results in perinatal lethality because of

satellite cells are a functionally heterogeneous population in both somite-derived and

lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell.
Science 273, 242-245.

Oustanina, S., Hause, G. and Braun, T. (2004). Pax7 directs postnatal renewal and
propagation of myogenic satellite cells but not their specification. Embo J 23, 3430-3439.

Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D.,
have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172, 91-
102.

Rochateau, P., Gayraud-Morel, B., Siegl-Cachedenier, I., Blasco, M. A. and
Tajbakhsh, S. (2012). A subpopulation of adult skeletal muscle stem cells retains all

Rudnicki, M. A., Schnegelsberg, P. N., Stead, R. H., Braun, T., Arnold, H. H. and
75, 1351-1359.

Sambasivan, R., Gayraud-Morel, B., Dumas, G., Cimper, C., Paisant, S., Kelly,
R. G. and Tajbakhsh, S. (2009). Distinct regulatory cascades govern extraocular and

satellite cells in whole muscle transplants. Anat Rec 222, 12-17.

differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1

Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P. and
Cell 102, 777-786.

Shea, K. L., Xiang, W., LaPorta, V. S., Licht, J. D., Keller, C., Basson, M. A. and
stem cell pool during regeneration. Cell Stem Cell 6, 117-129.

division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell
Biol 8, 677-682.

Figure Legends

Figure 1. Myf5 protein is expressed in adult quiescent satellite cells. A) FACS profiles of freshly isolated GFP+ satellite cells from Tg:Pax7-nGFP skeletal muscles. GFP+ cells correspond to a low granulosity (low side-scatter; SSC), small size cell (low forward scatter; FSC) population. Y-axis on left panel is uncompensated red fluorescence; PE, Phycoerythrin, 594 channel. B) Western blot of FACS-isolated quiescent GFP+ satellite cells from control Tg:Pax7-nGFP, and Myf5 null mice, Tg:Pax7-nGFP:Myf5loxP/loxP and Tg:Pax7-nGFP:Myf5loxP/lacZ. Satellite cells from Tg:Pax7-nGFP show a 37kDa band for Myf5 protein; note its absence in Myf5 mutants. Asterisk denotes non-specific band (Gayraud-Morel et al., 2007). C) (a-i) Immunostaining on freshly isolated (T0h) Tg:Pax7-nGFP EDL myofibres. Note heterogeneous Myf5 protein expression in Pax7+ population. Examples of robust (a-c), faint (d-f) or negative (g-i) staining obtained with Myf5 antibodies. (j-o) Immunostaining on wild-type TA frozen sections with anti-Myf5, Pax7 and laminin antibodies show a high (j-l) and a low (m-o) Myf5 expressing cell. D) Quantification of Myf5+ cells within Pax7+ satellite cells on Tg:Pax7-nGFP EDL myofibres at T0h (n = 3 mice). E) Western blot of quiescent and cultured (3 days) satellite cells. Myf5 is present in quiescent (Q.) satellite cells and upregulated in activated myoblasts (Act.). Scale bars, 20 µm for C.

Figure 2. Myf5 heterozygous satellite cells are primed for myogenic commitment. A) Western blot with Tg:Pax7-nGFP:Myf5loxP/+ and Tg:Pax7-nGFP, GFP+ sorted satellite cells. Note about half of Myf5 protein levels in heterozygous quiescent satellite cells. B) Western blot with Myf5GFP-P/+ and Tg:Pax7-nGFP, GFP+ sorted satellite cells. Expression of Myf5 protein is reduced in heterozygous quiescent satellite cells. C) Quantitative real-time RT-PCR. Results are expressed as a fold change (ΔΔCT) between GFP+ sorted cells from Tg:Pax7-nGFP::Myf5loxP/+ and Tg:Pax7-nGFP (n=5 mice). D) Quantitative real-time RT-PCR. Results are expressed as fold change (ΔΔCT) between GFP+ sorted cells from Myf5GFP-P/+ and Tg:Pax7-nGFP. (n) values for RT-qPCR represent number of animals from Tg:Pax7-nGFP and Myf5GFP-P/+ mice respectively: Myf5 (n = 10; 8), Myod (n = 4; 4), Myogenin (n = 10; 8), Pax7 (n = 4; 4), Troponin (n = 8; 7), Delta-like-1 (n = 7; 4), Desmin (n = 13; 5), Tie2 (n=8; 7), Ang1 (n=8; 7). E) Gene expression profiles of WT (from Tg:Pax7-nGFP) vs. Myf5GFP-P+. Heat map from Affimetrix GeneChip microarray analysis showing a cluster of genes involved in skeletal muscle contractile properties enriched in Myf5 heterozygous cells.
Figure 3. Equivalent regenerative capacity of transplanted Myf5 heterozygous satellite cells. A) FACS profile of satellite cells from Myf5GFP-P/+ or Tg:Pax7-nGFP or, B) compound Tg:Pax7-nGFP::Myf5GFP-P/+ mouse skeletal muscles. C) Quantification and immunostaining for Pax7 and GFP on EDL myofibres (T0h). In Tg:Pax7-nGFP and Pax7nGFP/+ mice all Pax7+ satellite cells are GFP+. In Myf5GFP-P/+ the majority of Pax7+ satellite cells are GFP− (a-c), only 10 to 20% of Pax7+ cells co-express GFP (d-f). D) Cryodamaged Rag2−/−:γC−/− mice were transplanted with 10⁴ freshly sorted satellite cells and analysed after 4 weeks. Representative area of Tg:Pax7-nGFP:Myf5GFP-P+/T and Tg:Pax7-nGFP/T donor-derived PLAP+ myofibres stained with anti-laminin antibody to outline the basement membrane. E) Average number of PLAP+ myofibres from Tg:Pax7-nGFP:Myf5GFP-P+/T (n = 4 recipient mice) and Tg:Pax7-nGFP/T (n = 4 recipient mice). Equivalent myofibre regeneration was noted (p > 0.05). F) a-d) Representative areas of Myf5GFP-P+/T and Tg:Pax7-nGFP/T donor derived PLAP+ myofibres stained with anti-laminin antibody to outline the basement membrane; e) Myonuclei generated from the transplanted cells are detected by X-gal+ staining. G) Average number of PLAP+ myofibres from Myf5GFP-P+/T (n = 4 recipient mice) and Tg:Pax7-nGFP/T (n = 4 recipient mice). Equivalent myofibre regeneration was noted (p > 0.05). Scale bars: C, 10μm; D and F, 300μm.

Figure 4. Higher self renewal capacity of transplanted Myf5GFP/+ satellite cells. A) Immunostaining on cryosections of transplanted TA muscle showing PLAP+GFP+ engrafted satellite cells from Tg:Pax7-nGFP::Myf5GFP-P+/T (a-d) and Tg:Pax7-nGFP/T (e-h) located in the periphery of newly formed PLAP+ myotubes. GFP+ cells are located under the laminin+ basement membrane (d,h). B) Immunostaining on cryosections of transplanted TA muscle showing PLAP+GFP+ engrafted satellite cells from Myf5GFP-P+/T (a-e) and Tg:Pax7-nGFP/T (f-j) located in the periphery of newly formed PLAP+ myofibres. (a, f), low magnification of representative areas of PLAP+ regenerated myofibres. (b-d and g-i), high magnification of PLAP+ myofibres with Pax7+GFP+ associated satellite cells. GFP+ cells are located under the laminin+ basement membrane (e, j). C) Quantification of GFP+ cells 4 weeks after engraftment represented as an average number of GFP+ cells enumerated for all sections.

(continued)
(Tg:Pax7-nGFP::Myf5GFP-P+/T; n = 4 animals, 24 sections; Tg:Pax7-nGFP/T; n = 4 animals, 24 sections) (p < 0.001). D) Quantification of GFP+ cells 4 weeks after engraftment represented as an average number of GFP+ cells enumerated for all sections (Myf5GFP-P+/T; n = 4 animals, 43 sections; Tg:Pax7-nGFP/T; n = 4 animals, 35 sections) (p = 0.004). Scale bar: A and B, 20 µM.

Figure 5. Higher self-renewal capacity of Myf5 heterozygous satellite cells after second cycle of regeneration. A) Neonatal Myosin Heavy Chain (nMyHC) staining indicates newly regenerated myofibres from PLAP+ engrafted cells (Myf5GFP-P+/T). B) Immunostainings for PLAP, laminin and GFP show myofibres (a-b) and associated satellite cells (c-f), generated by engrafted satellite cells. C) Quantification of PLAP+ myofibres 14 days after reinjury with notexin in TA engrafted with Myf5GFP-P+/T (n = 5 recipient mice) and Tg:Pax7-nGFP/T (n = 5 recipient mice) (p > 0.05). D) Quantification of GFP+ satellite cells after notexin reinjury. Engrafted satellite cells from Myf5GFP-P+/T (n = 5 recipient mice, 55 sections) and Tg:Pax7-nGFP/T (n = 5 recipient mice, 46 sections) mice scored as GFP+PLAP+. Higher potential of Myf5GFP-P+/T cells to self-renew after notexin re-injury (p = 0.01). Scale bars: A and B, 200 µm.
Figure 1

A. Flow cytometry analysis of Tg:Pax7-nGFP::Myf5 loxP/loxP and Tg:Pax7-nGFP::Myf5 loxP/nlacZ cells. Representative dot plots showing PE (product) and SSC (side scatter) signals for GFP-expressing (GFP+) and non-GFP-expressing (GFP-) cells.

B. Western blot analysis of Myf5 and Tubulin expression in Tg:Pax7-nGFP::Myf5 loxP/loxP and Tg:Pax7-nGFP::Myf5 loxP/nlacZ samples. Proteins were detected at 37kDa and 50kDa, respectively.

C. Immunofluorescence microscopy images showing Myf5 and Pax7 expression in Tg:Pax7-nGFP::Myf5 loxP/loxP and Tg:Pax7-nGFP::Myf5 loxP/nlacZ samples. Images (a-i) are sequentially labeled with Myf5, Pax7, Myf5/Pax7, Hoechst DIC.

D. Bar graph showing the percentage of Myf5+ cells on EDL myofibers. The categories are T0h WT and T0h TA sections, with Pax7+ Myf5+ and Pax7+ Myf5- cells distinguished.

E. Western blot analysis of Myf5 expression in Tg:Pax7-nGFP, Tg:Pax7-nGFP::Myf5 loxP/nlacZ, and Tg:Pax7-nGFP::Myf5 loxP/loxP samples. Proteins were detected at 37kDa.
Figure 2

A. Western blot analysis showing proteins Pax7, Myf5, and Tubulin at their respective molecular weights of 57 kDa, 37 kDa, and 50 kDa. Samples include Tg:Pax7-nGFP, Tg:Pax7-nGFP::Myf5loxP, and Myf5loxP/+.

B. Similar Western blot analysis as in A, comparing Tg:Pax7-nGFP and Myf5GFP/P+ samples.

C. Bar graph showing fold change (ΔΔCT) for various proteins: Pax7, Desmin, Ang, Tie2, MyoD, Myogenin, and Troponin T. Red bars represent Tg:Pax7-nGFP and blue bars represent Tg:Pax7-nGFP::Myf5loxP/+.

D. Bar graph similar to C, comparing Tg:Pax7-nGFP and Myf5GFP/P+ samples.

E. Heatmap depicting Sk. Muscle differentiation and development. Downregulated genes are in dark red, while upregulated genes are in dark green. Gene names include Acta1, Dmd, Myh4, Myl5f, Myot, Myoz2, Tcap, Tnni1, Ttn, Mhypn, Tpm1, and Tpm2.

F. Similar heatmap as in E, comparing WT and Myf5GFP/P+ samples, with downregulated genes in dark red and upregulated genes in dark green. Gene names include Mbnl1, Pax7, Six4, Myf5, and Myog.
Figure 3

A

Myf5^{GFP-P/+} Tg:Pax7-nGFP

B

Tg:Pax7nGFP:: Myf5^{GFP-P/+}

C

% of cells on EDL myofibres

D

Tg:Pax7-nGFP:: Myf5^{GFP-P/+}

E

Max. number of PLAP+ myofibres

F

Myf5^{GFP-P/+} Tg:Pax7-nGFP

G

Max. number of PLAP+ myofibres

Figure 3
Figure 4
Figure 5
Table 1. Comparative engraftment with 2000 and 10000 cells injected in pre-injured TA.

<table>
<thead>
<tr>
<th>Injection of 2000 cells (n=3 mice)</th>
<th>Myf5<sup>GFP<sup>-T/Pax7-nGFP/T</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. number of PLAP<sup>T</sup> myofibres</td>
<td>226 ±91</td>
<td>122 ±24</td>
</tr>
<tr>
<td>Average number of GFP<sup>T</sup> satellite cells/section (n=33 sections)</td>
<td>4.7 ±0.94</td>
<td>2.1 ±0.39</td>
</tr>
<tr>
<td>Range of max. PLAP<sup>T</sup> myofibres/per animal</td>
<td>55 to 366</td>
<td>95 to 172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injection of 10000 cells (n=4 mice)</th>
<th>Myf5<sup>GFP<sup>-T/Pax7-nGFP/T</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. number of PLAP<sup>T</sup> myofibres</td>
<td>401 ±145</td>
<td>293 ±86</td>
</tr>
<tr>
<td>Average number of GFP<sup>T</sup> satellite cells/section (n=40)</td>
<td>18.5 ±1.96</td>
<td>9 ±1.46</td>
</tr>
<tr>
<td>Range of max. PLAP<sup>T</sup> myofibres/per animal</td>
<td>90 to 690</td>
<td>177 to 548</td>
</tr>
</tbody>
</table>