The Residence Time of Focal Adhesion Kinase (FAK) and Paxillin at Focal Adhesions in Renal Epithelial Cells is Determined by Adhesion Size, Strength and Life Cycle Status.

Sylvia E. Le Dévédec¹, Bart Geverts², Hans de Bont¹, Kuan Yan³, Fons J Verbeek³, Adriaan B. Houtsmuller²,⁴, Bob van de Water¹,⁴,⁵.

¹ Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, Gorlaeus Laboratoria, P.O. Box 9502, 2300 RA LEIDEN, The Netherlands.
² Department of Pathology, Josephine Nefkens Institute, Erasmus MC, University Medical Center Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
³ Imaging & BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

⁴A.B.H. and B.v.d.W. contributed equally to this work.

Address of correspondence:
⁵Bob van de Water, Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratoria, P.O. Box 9502, 2300 RA LEIDEN, The Netherlands,
Phone: 31-71-5276223, Fax: 31-71-5274277, e-mail: b.water@lacdr.leidenuniv.nl

Running title: Half-FRAP study of adhesion protein dynamics

Keywords: focal adhesion, FRAP, FLIP
Abstract

Focal adhesions (FAs) are specialized membrane associated multi-protein complexes that link the cell to the extra-cellular matrix and enable cell proliferation, survival, and motility. Despite the extensive description of the molecular composition of FAs, the complex regulation of FA dynamics is largely unclear. Here, we have applied photobleaching assays on the whole cell to allow the determination of protein dynamics in every single focal adhesion. We identified that the focal adhesion proteins FAK and paxillin exist in two different states: a diffusive cytoplasmic pool and a transiently immobile FA-bound fraction with variable residence times. Interestingly, the average residence time of both proteins increased with focal adhesion size. Moreover, increasing integrin clustering by modulating surface collagen density increased residence time of FAK but not paxillin. Finally, this approach was applied to measure FAK and paxillin dynamics using nocodazole treatment followed by washout. This revealed an opposite residence time of FAK and paxillin in maturing and disassembling FAs, which depends on the ventral and peripheral cellular position of the FAs.
Introduction

Focal adhesions (FA) are transient structures essential in cell adhesion, spreading and migration as well as signaling for cell proliferation and survival (Berrier and Yamada, 2007; Webb et al., 2002a; Webb et al., 2003a; Zaidel-Bar et al., 2004a; Zamir and Geiger, 2001a). At FAs the extracellular matrix (ECM), including fibronectin and collagen, is linked to the actin cytoskeleton through clustered integrins and a complex network of cytoskeletal, adapter, and signaling proteins, suggested to exist of at least 150 components, together referred to as the ‘integrin adhesome’ (Berrier and Yamada, 2007). Steady-state and motile cells can exhibit different types of adhesion such as focal adhesions, fibrillar adhesions or focal complexes (Zamir and Geiger, 2001b). Matrix adhesion sites are highly dynamic which is manifested by their assembly, disassembly and translocation (Webb et al., 2002b; Webb et al., 2003b). Since most components of FAs contain multiple binding sites for other components, the molecular complex may be assembled in numerous different ways giving rise to many different supramolecular structures but their function and kinetics are still unknown (Zaidel-Bar et al., 2004b; Zamir and Geiger, 2001b).

The non-receptor tyrosine kinase associated with FAs (focal adhesion kinase; FAK) and the adapter protein paxillin are two well-known focal adhesion-associated proteins that are crucial in cell adhesion, migration and invasion (Webb et al., 2004). Both proteins are thought to have numerous interactions within the ‘integrin adhesome’ network (Zaidel-Bar et al., 2007a). Upon integrin binding to the ECM, FAK is recruited to FAs and autophosphorylated at tyrosine residue 397 and subsequently phosphorylated by Src at other tyrosine residue, thereby enabling dynamic restructuring of FAs (Schaller et al., 1994). Paxillin is a structural adaptor protein important in integrin signaling and interacts with FAK and, similar to FAK, with numerous other FA assembly proteins (Turner, 2000a; Turner, 2000b). It is phosphorylated on different Ser, Thr and Tyr residues, of which phosphorylation by the FAK/Src complex is essential in cell migration (see review (Deakin and Turner, 2008)). Given the importance of both FAK and paxillin in FA organization and dynamics, further understanding of the molecular behavior of these proteins in individual focal adhesions and the physical-chemical factors that determine the dynamics is important.

Advances in fluorescent probes including genetically encoded fluorescent fusion proteins and imaging technologies have opened the door to studying dynamic cellular processes in living
cells. Ideally, for each molecular entity in the cell, one would like to know its concentration, aggregation state, interactions and dynamics in different locations within the cell at different times. Fluorescence Recovery After Photobleaching (FRAP) is an imaging technique that can be used to measure protein mobility in living cells, including binding and unbinding rate constants from immobile structures like e.g. focal adhesions or chromatin (Phair and Misteli, 2001) (Houtsmuller and Vermeulen, 2001). FRAP is often used to measure protein exchange dynamics at cell-substrate adhesions but generally report only the half-time of fluorescence recovery ($t_{1/2}$).

Here we applied a powerful and reliable photobleaching methodology that provides both spatial and temporal information on protein dynamics in FAs in a single cell. We employed simultaneous FLIP (fluorescence loss in photobleaching)-FRAP (Mattern et al., 2004), combined with Monte-Carlo simulation to fit the data and extract protein mobility parameters including diffusion rate and residence times at focal adhesions (Mattern et al., 2004). We applied the protocol to quantitatively assess FAK and paxillin protein mobility parameters in non-migrating renal proximal tubular epithelial cells. Although FAK and paxillin have an equal bound fraction at the focal adhesions, FAK resided for a shorter period (60 seconds) in focal adhesions than paxillin (100 seconds). Classification of FAs by size showed that residence time for both proteins increased in larger FAs. Furthermore, increasing integrin ligand interaction by modulating collagen density significantly prolonged the residence time of FAK while for paxillin the residence time decreased on high collagen concentration. Finally the use of nocodazole to initiate the assembly and maturation of focal adhesions and its removal to induce adhesion disassembly revealed the different behavior pattern of FAK and paxillin in ventral and peripheral located FAs, indicative for a complex regulation of protein dynamics.
Results

Mobility of GFP-FAK and GFP-paxillin in the cytosol and at focal adhesions of living cell

Focal adhesion dynamics is observed during acute renal ischemia/reperfusion injury in proximal tubular cells (Alderliesten et al., 2007). To further study the dynamics of the focal adhesion associated proteins FAK and paxillin, we used the renal epithelial cell line LLC-PK1, a well characterized cell line adherently growing on rigid planar substrate characterized by prominent matrix adhesions that are abundant and quite large in shape (van de Water et al., 2001). To study the behavior of FAK and paxillin in matrix adhesions, we generated LLC-PK1 cell lines ectopically expressing either GFP-FAK or GFP-paxillin, in which expression levels were similar to the endogenous counterparts and predominantly located at focal adhesions in living cells, showing their functionality in presence of the GFP-tag (Suppl. Fig. 1A-B). LLC-PK1 cells expressing GFP or GFP-actin were used as controls. Importantly, live cell imaging demonstrated that GFP-FAK and GFP-paxillin containing FAs remain stable over a time period of 15 min (Suppl. Fig. 1C), allowing a reliable time scale of 5 minutes to study the kinetics of GFP-FAK and GFP-paxillin by FRAP.

First we investigated the cytoplasmic mobility of GFP-FAK and GFP-paxillin by photo-bleaching a thin strip spanning the width of the cytoplasm and recording the recovery of fluorescence in that strip (e.g. (Houtsmuller, 2005)). Analysis of the resulting recovery curves revealed that the majority of GFP-FAK and GFP-paxillin molecules were freely and equally mobile in the cytoplasm, but slower than GFP only (Suppl. Fig. 2A). Next, association of GFP-FAK and GFP-paxillin with focal adhesions was assessed by bleaching a small region covering a single focal adhesion (Suppl. Fig. 2B,C). The recovery curves indicated fast but different exchange rates of FAK and paxillin with focal adhesions. This is in sharp contrast to the dynamics of GFP-actin, which showed hardly any recovery even after 1 min (Suppl. Fig. 2B).

Quantitative analysis of photobleaching experiments

Photobleaching experiments on single FAs are time consuming, and only a limited amount of FAs can be measured in one single cell. In order to obtain a sufficiently large data set to be able to quantitatively analyze FRAP experiments, we performed complementary simultaneous FLIP (Fluorescence Loss in Photobleaching)-FRAP bleaching assays, (half-FRAP) which has been
previously used to study protein exchange in small structures inside the cell nucleus in whole cells (Essers et al., 2002; Farla et al., 2004; Farla et al., 2005; Mattern et al., 2004). Note that in contrast to other FLIP applications, we apply a single bleach pulse to half of the cell and after that monitor both the fluorescence recovery rate in the bleached zone (FRAP) and the loss of fluorescence in the non-bleached half (FLIP). This technique is not the standard FLIP where a region is subjected to continuous bleaching while the fluorescence loss is monitored in a non-bleached region (Essers et al., 2002; Mattern et al., 2004) and for review see (van Royen et al., 2009). This adapted method has the advantage that all the structures of interest in a single cell can be analyzed. Moreover, combined analysis of FLIP and FRAP curves limits potential errors due to loss of fluorescence by the bleached pulse and by monitor bleaching. We first applied FLIP-FRAP to GFP-FAK cells. In less than 6s half of the cell was bleached. Fluorescence recovery in the bleached half (FRAP) and loss of fluorescence in the unbleached half (FLIP) was monitored over a time period of 5 min with intervals of 6 seconds. Next, redistribution of fluorescence was analyzed at focal adhesions and in the cytoplasm of the GFP-FAK cells (Fig. 1A and Movie 1). Focal adhesions localized at the cell periphery only (peripheral FAs) were all selected by image segmentation for further analysis (see Suppl. Fig. 3A,B for analysis example). Each bleached and unbleached half of the cytoplasm was divided in three regions of 50 pixels each (Figure 1A and suppl. Fig. 3A). FLIP and FRAP curves of individual focal adhesions located in each region were then averaged (Fig. 1B and suppl. Fig. 3C) and the difference in relative fluorescence intensity between the averaged FLIP and the FRAP curves was then used for quantitative analysis (Fig. 1C). Typically, in one time-lapse series more than 50 focal adhesions in a single cell were analyzed in this way. The FLIP-FRAP curves decayed faster in the region close to the edge of the bleached region than in the distant regions, as expected (Fig. 1C).

FAK and paxillin diffuse similarly in the cytoplasm but associate with focal adhesion in two distinct kinetic pools

To further analyze and fit the experimental FLIP-FRAP data with Monte-Carlo simulation, we obtained several z-scans of living LLC-PK1 expressing different GFP-tagged proteins cells (Fig. 2A) to generate a schematic cell model which had an average length of ~60 µm, width of ~40 µm and height of ~30 µm (Fig. 2B). A cell model based on two ellipsoids was designed to represent cytoplasm and nucleus (where GFP-paxillin and GFP-FAK are considered not present) (Fig. 2C).
We also assigned a number of objects located in the 6 different regions (FRAP and FLIP at 0-50, 50-100, 100-150 pixels) that represent the focal adhesions at the bottom of the cell (Fig. 2C).

This LLC-PK1 cell model was used in Monte-Carlo computer simulation to generate curves in which diffusion as well as association and dissociation rates to and from focal adhesions were systematically varied. Recovery curves of the cytoplasmic fluorescence of both GFP-paxillin and –FAK indicate equal diffusion of both proteins (Fig.1C). Indeed, the GFP-FAK and GFP-paxillin data fitted best to simulated curves with a D_{eff} of 4 µm2/s. Free cytoplasmic GFP showed a faster recovery with a D_{eff} of 15 µm2/s, clearly higher than that of GFP-FAK and GFP-paxillin (data not shown). We then calculated the ratio between total focal adhesion and total cytoplasmic fluorescence. Indeed, our automated analysis of the movies provides us with the average pixel intensity for each segmented object (either FA or cytoplasmic regions manually drawn). Because GFP fluorescence intensity is proportional to GFP-FAK or GFP-paxillin concentration, this ratio should give a good estimate of the fraction of GFP-FAK and GFP-paxillin bound to the focal adhesions. The average intensity for GFP-FAK and GFP-paxillin at the focal adhesions although different from each other was both approximately 2.7 times higher than in the cytoplasm indicating that FAK and paxillin are present in similar quantities in focal adhesions.

Simultaneous FLIP-FRAP analysis indicated that GFP-FAK is almost completely redistributed over bleached and unbleached focal adhesions within 5 minutes after bleaching (Fig. 1B,C). In contrast, GFP-paxillin redistribution is not complete within this time interval (Fig. 1C and Suppl. Fig. 3C). Fitting of the experimental GFP-FAK data to curves generated by computer simulation assuming simple binding kinetics, indicated a characteristic residence time of \sim60 s at the focal adhesions whereas GFP-paxillin had a characteristic residence time of \sim120s. These data show that although present in similar amounts, the dynamics of the partners FAK and paxillin are different from each other and that FAK has a faster turnover at FA sites than paxillin.

Increased residence time of FAK and paxillin is correlated with focal adhesion size

We then analyzed whether the mobility of FAK and paxillin is related to FA size (Fig. 3A). We categorized the focal adhesions in three sizes based on surface areas: 0 to 1 µm2, 1 to 3 µm2, 3 to 15 µm2. GFP-FAK and GFP-paxillin cells showed comparable FA size distributions (Fig. 3B). Analysis of the FLIP-FRAP curves (Fig. 3C-D) of FAK and paxillin in FAs of different sizes
showed a clear correlation between residence times and focal adhesion size. Interestingly, the residence time of FAK as well as paxillin in large focal adhesions was two-fold higher compared to the smaller adhesions (Fig. 3E). The residence time of paxillin was consistently higher than FAK at all adhesion areas (Fig 3E). These data show that in the periphery of the cell FAK and paxillin protein dynamics was much slower in large focal adhesions than in small ones.

Paxillin and FAK dissociation from focal adhesions correlates with adhesion strength

The number of focal adhesions, their size, distribution and dynamics is dependent on ECM composition and density (Katz et al., 2000). Here we determined whether ECM density affects the residence time of FAK and paxillin at focal adhesions (Katz et al., 2000; Li et al., 2005). LLC-PK1 cells expressing GFP-FAK or GFP-paxillin were plated on different collagen densities (1, 10, 100 µg collagen/ml, abbreviated C1, C10 and C100). At 100 µg collagen /ml, LLC-PK1 cells did not fully spread compared to the lowest 1 and 10 µg collagen /ml (Fig. 4A). Moreover, under these conditions, cells had only peripheral FAs that were large in size and always associated with thick peripheral F-actin bundles (Fig. 4A). There was no difference in number of adhesions from low to high collagen concentration except for GFP-FAK cells where the number of small adhesions was smaller on C1 than C10 (Fig. 4Ba,b). FLIP-FRAP experiments on both GFP-FAK and GFP-paxillin cells at 1, 10 and 100 µg collagen /ml concentrations showed that the residence time of paxillin was significantly affected by ECM substrate density especially on the high density where the paxillin dynamics was faster than on the low collagen concentration (Fig. 4Ca and Suppl. Fig. 4A,B). On the contrary, the residence time of FAK at focal adhesions increased with higher collagen density by two-fold (Fig. 4Cb), indicating that increasing adhesion strength correlates with a longer residence time of FAK. The localization of P-Tyr397-FAK at focal adhesions was similar on the three collagen concentration (Suppl. Fig. 5A). Yet the focal adhesion associated P-Tyr31/118-paxillin was not present on all focal adhesions (Suppl Fig. 5C). These data indicate that adhesion strength regulates focal adhesion proteins turnover with different regulatory components for FAK and paxillin.

Adhesion protein turnover depends on the cellular location and the phase of the adhesion life cycle.
To determine how the kinetics of FAK and paxillin are affected during adhesion assembly and disassembly, we performed the so-called nocodazole assay that disrupts the microtubules thereby allowing local focal adhesion maturation, while upon nocodazole washout and microtubule built up, focal adhesions are disassembled (Ezratty et al., 2005) (suppl. Fig 6A). This assay was combined with our FRAP-FLIP approach. Cells exposed to 10 µM of nocodazole (NOCO) showed increased contractility while removal of nocodazole (washout, WO) resulted in decreased contractility of the actin cytoskeleton. Indeed, phalloidin staining in control (DMSO), NOCO and WO cells showed increase in F-actin stress fibres (thicker and shorter) than span over the ventral face of the cell and that will again disappear upon washout (= regrowth of the microtubules) of the nocodazole (Fig. 5A). Therefore, we added another category of adhesions: either localized at the cell periphery (peripheral) or on the ventral face of cells around the nucleus (ventral) (Fig. 5B). We sorted again the different FA structures based on their area (0 to 1 µm^2, 1 to 3 µm^2 and 3 to 15 µm^2). Immunolocalization of PY epitopes revealed the increased number and enlargement of the FA after microtubule disruption (Fig. 5A and Suppl. Fig 6C,D). The presumed NOCO-induced contractile switching of the cells was supported by Western blot analysis of p-Ser190MLC: NOCO exposure caused an increase of pSer190-MLC, and NOCO/WO caused a dephosphorylation of pSer190-MLC (Suppl. Fig. 6B). The localization of P-Tyr397-FAK at focal adhesions was similar during the assay while P-Tyr31/118-paxillin was absent at focal adhesions during WO (Suppl. Fig. 7). We performed our half-FRAP experiment on control cells exposed to DMSO, cells exposed to NOCO for 120 min and cells that received 30 min NOCO and washout. This resulted in a complex map of kinetics for both FAK and paxillin proteins at focal adhesion depending their size, location and treatment condition. Thus, on the ventral side of the cell FAK and paxillin showed in most cases a similar behaviour: faster turnover during NOCO and WO (Fig. 5Da,b). Of notice, FAK disassociation was as fast as diffusion when the medium adhesions disappeared during WO (Fig. 5Db). Large ventral focal adhesion were only observed during NOCO treatment, and most likely rapidly disassembled during WO. On the periphery of the cells, the 2-fold difference in residence time between FAK and paxillin was present under DMSO control conditions (Fig. 5Ca,b). Interestingly, NOCO treatment caused an increase in the residence time of FAK in peripheral small focal adhesions, while the paxillin residence time decreased to almost equal the residence time of FAK (Fig. 5Ca,b). Also in small peripheral focal adhesions, these opposite directional changes in the residence times of FAK and paxillin were
still observed during the WO phase. Yet for medium sized focal adhesions, the residence time of FAK was again drastically reduced (Fig. 5Cb). These data underscore the complexity of the regulation of proteins within focal adhesions, and highlight the importance to perform half-FRAP when unravelling mechanisms of protein dynamics at focal adhesions.
Discussion

Understanding the molecular mechanisms that orchestrate the dynamics of focal adhesions is necessary to improve our insight in fundamental processes such as cell survival, proliferation and migration. In the present study, we have developed and used a fast and reliable adapted photobleaching methodology (FLIP-FRAP) combined with Monte-Carlo simulation to determine the behavior of individual focal adhesion components at cell matrix adhesion complexes within living cells. We applied this technique to determine the dynamic behavior of FAK and paxillin, two important focal adhesion proteins, in the cytoplasm and within focal adhesions in stationary epithelial cells plated on collagen, on increasing adhesion strength and in dynamic focal adhesions after microtubule depolymerization (Ezratty et al., 2005). Our data indicate that: i) FAK and paxillin exist in 2 different states: a fast diffusing cytoplasmic pool in concordance with previous measurements (Digman et al., 2005; Wolfenson et al., 2009), and a transiently immobile FA-bound fraction with variable residence times; ii) residence time of both FA proteins increases with increasing FA size; iii) adhesion strength modified by modulating ECM ligand density increases the time of residence at FAs of FAK but not paxillin; and iv) the dynamics of FAK and paxillin can be modulated in different directions depending on the phase of the life cycle of focal adhesions.

So far FRAP has been used to study adhesion protein kinetics to determine the t1/2 value at individual FA without integrating any spatial resolution (Cluzel et al., 2005; Edlund et al., 2001; Geuijen and Sonnenberg, 2002; Giannone et al., 2004; Hamadi et al., 2005; Lele et al., 2006; Pasapera et al., 2010). Our half-FRAP/Monte-Carlo simulation approach uses a 3-dimensional cell model derived from experimental data, and can be used to determine protein mobility parameters based on the majority of the focal adhesions in a single cell. This provides the possibility to map protein parameters according to the focal adhesion size and distribution over the cell body.

We showed that GFP-FAK and GFP-paxillin diffuses through the cytoplasm and did not detect any directed movement towards FAs. GFP-FAK and GFP-paxillin show the same diffusion coefficient suggesting that FAK and paxillin may move together in the cytoplasm in larger complexes but FRAP experiment cannot reveal direct binding. However, very recent ccRICS data obtained by Choi and colleagues demonstrated that in fact, fluorescently tagged
paxillin and FAK molecules diffuse independently in the cytosol and do not form complexes before entering adhesions. Wild type paxillin and FAK reside in complexes only within nascent adhesions and this association can be enhanced by phosphorylation of paxillin on residues Y31 and Y118 (Choi et al., 2011).

Our FRAP-data show that in resting renal cells FAK and paxillin are transiently immobilized to focal adhesions with residence time of approximately 60s and 120s, respectively. This fold difference in behaviour between FAK and paxillin is in the same order of magnitude as observed in capillary endothelial cells or in mouse embryonic fibroblasts using only FRAP and mathematical modelling (∼10 seconds for FAK and ∼25 seconds for paxillin (Lele et al., 2008; Pasapera et al., 2010)). Interestingly, we observed that FAK and paxillin have longer residence times in larger focal adhesions than in smaller focal adhesion. Despite the fact that FAK and paxillin both localize at focal adhesions, they clearly differ in their behaviour. This can be explained by the differences in the set of focal adhesion binding partners of both proteins (Zaidel-Bar et al., 2007a). Thus, while paxillin has strong interaction with various structural components in focal adhesions (more than thirty), including talin, ILK, Crk, PAK, tubulin and actin, FAK rather associates with signalling intermediates as well as some adapter proteins such as FAK itself, Src, p190Gap, calpain and others. Also, the binding property and kinase activity of FAK control its dynamics since FAK lacking its kinase domain shows increased exchange between FAs and cytosol (data not shown, (Giannone et al., 2004; Hamadi et al., 2005)). Interestingly, during NOCO and WO treatment these dynamic behaviors of FAK and paxillin drastically change (see Fig. 5) which is indicative for modified local interactions with other proteins, most likely controlled by phosphorylation as shown earlier for vinculin (Mohl et al., 2009).

Our data indicate that adhesion strength is directly associated with FAK and paxillin transient immobilization in focal adhesions which was also demonstrated for vinculin in migrating cells (Mohl et al., 2009). In our model system the degree of ECM ligand density seems to determine intracellular tension (Fig. 4B). Several studies demonstrate that tension is an important determinant for adhesion size and molecular (phospho-) protein composition of FAs. In human foreskin fibroblasts, the tension generated by a focal adhesion correlates with focal adhesion size and with the local accumulation of the focal adhesion adaptor protein vinculin (Balaban et al., 2001). Moreover, cytoskeletal stiffness mediates increase in focal adhesion size and density along with changes in their molecular composition (Goffin et al., 2006), while
localization and turnover of zyxin was tension-dependent (Yoshigi et al., 2005; Zaidel-Bar et al., 2007b). In our nocodazole assay we also observed enhanced actin cytoskeletal built up associated with increased phosphorylation of myosin light chain, indicative for tension formation. This was associated with changes in the dynamics of FAK (slower) and paxillin (faster) in small focal adhesions in the periphery. Yet, in maturing ventral focal adhesions that are associated with the actin cytoskeleton, FAK dynamics became faster. We propose that the actin cytoskeletal organization and tension is an important determinant for local signaling events that thereby drive the dynamics of the focal adhesion-associated proteins.

In conclusion, our combined FLIP-FRAP approach allowed us to analyze the majority of focal adhesions in an individual cell with respect to type, size and distribution which can be correlated to the protein dynamics. The practicality and general applicability of this technique in a wide variety of settings should prove useful in further characterizing the regulation of matrix adhesions under different biological settings. A quantitative mapping of the residence times of all major FA-associated proteins in the entire cell according to its localization, size and type and in direct relation to the migratory behavior as well as their regulation by external signaling curves remains an important next challenge.
Material and methods

Cell lines

Here we used the porcine renal epithelial cell line LLC-PK1. Cells were maintained in DMEM supplemented with 10% (v/v) FCS and penicillin/streptomycin at 37°C in a humidified atmosphere of 95% air and 5% carbon dioxide. Stable eGFP and eGFP-FAK have been described previously (van de Water et al., 2001). For preparation of stable GFP expressing cell lines, LLC-PK1 cells were transfected with 0.8 µg DNA of pGZ21-paxillin and GFP-actin using Lipofectamine 2000 reagent according to the manufacturer’s procedures (Life Technologies, Inc). Stable transfectants were selected using 800 µg/ml G418. Individual clones were picked and maintained in complete medium containing 100 µg/ml G418. Clones were analyzed for paxillin expression using Western blotting and immunofluorescence. For further experiments one representative stable cell line was used per construct. For immunofluorescence studies, cells were cultured on collagen coated glass coverslips in 24 well dishes and allowed to adhere overnight in complete culture medium. For live cell microscopy, cells were plated on 35 mm glass coated with either 10 µg/ml collagen (control situation) or 1, 10 or 100 µg/ml collagen (for extra-cellular matrix density experiment) and let stretched in complete medium for overnight. Collagen type 1 from rat tail (Sigma-Aldrich) was stored at 3 mg/ml and diluted to the appropriate concentration for coating in PBS. In all cases, coating was done by incubation for 2 h at 37°C. Coated surfaces were washed three times with PBS and blocked with 1% heat denatured BSA in PBS for 1 h at 37°C.

Western blot analysis

For Western blot analysis cells were washed twice with PBS and lysed in ice-cold lysis buffer (50 mM HEPES, 150 mM NaCl, 1% (w/v) NP40, 1 mM EDTA pH 7.4) plus inhibitors (2 mM AEBSF, 100 µg/ml aprotinin, 17 µg/ml leupeptin, 1 µg/ml pepstatin, 5 µM fenvalerate, 5 µM BpVphen and 1 µM okadaic acid) for 5 min. After lysis, cells were scraped and centrifuged for 5 min at 4°C, 14000 rpm. Protein concentrations were determined using Coomassie Protein Assay Reagent using IgG as a standard (Pierce). Equal amounts of protein were separated by SDS-PAGE and transferred to PVDF membrane (Millipore). Blots were blocked with 5% (w/v) BSA in TBS-T (0.15 M NaCl, 50 mM Tris-HCl and 0.05 % (v/v) Tween-20) overnight at 4°C and probed with appropriate primary antibodies for 3h at room temperature as follows: anti-FAK
(monoclonal, 1 µg/ml, Transduction Lab.), anti-paxillin (monoclonal, 0.5 µg/ml, Transduction Lab.), anti-GFP (polyclonal, 1 µg/ml, Roche), and anti-P-Ser190MLC (Santa Cruz).

Immunofluorescence

Cells were fixed with 3.7 % formaldehyde for 10 min followed by 3 washes with PBS. After cell permeabilization and blocking with PBS/0.2 % (w/v) Triton X-100/0.5 % (w/v) BSA, pH 7.4 (PTB) cells were stained for P-Tyr397-FAK (BioSource), P-Tyr118-paxillin (BioSource), paxillin (BD Transduction lab diluted in TBP. For secondary staining Cy3-labeled goat anti-mouse or anti-rabbit antibodies (Jackson Laboratories) were used. Cells were mounted on glass slides using Aqua-poly-Mount (Polysciences Inc., Warrington, PA). Cells were viewed using a BioRad 2-photon confocal laser scanning microscope and images were processed with Image-Pro® Plus (Version 5.1; Media Cybernetics).

Image processing

For readers clarification, sometimes images are inverted so that for a 8 bit image, an intensity of 0 became 256 and an intensity of 256 become 0.

Live cell microscopy, Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP)

Live-cell microscopy was performed with a Zeiss LSM 510 META confocal laser scanning microscope equipped with a heated (37°C) scan stage and a Plan-Apochromat oil immersion objective (40X, numerical aperture [NA] 1.3, for all FRAP procedures). GFP fluorescence was detected by using the 488-nm line of a fiber-coupled 60-mW argon laser, a dichroic beamsplitter (488/543) and a 510- to 545-bandpass emission filter.

All FRAP procedures were performed with the same experimental set-up as for live cell microscopy.

(i) Strip-FRAP in cytoplasm. To determine cytoplasmic mobility of GFP, GFP-FAK and GFP-paxillin, a strip 1 µm wide spanning approximately the width of the cytoplasm (without any visible focal adhesion) was photobleached by a short bleach pulse (100 ms) at 100% laser intensity of a 60 mW argon laser at 488 nm. Recovery of fluorescence within the strip was
monitored using 100-ms intervals and low laser intensity to avoid photobleaching by monitoring. Approximately 10 cells were averaged to generate one FRAP curve for a single experiment.

(ii) **FRAP on individual focal adhesions.** Spot bleaching was applied to a small area of 0.80 μm² covering a single focal adhesion for 1 s at a 50-μW laser intensity. Redistribution of fluorescence was monitored with 100 ms time intervals at low laser intensity starting directly after the bleach pulse. Images were analyzed by using LSM Image software (Zeiss). The relative fluorescence intensity of individual focal adhesion, was calculated at each time interval as follows: \(I_{rel}(t) = \frac{F_A}{F_{A_0}} \), where \(F_A \) is the intensity of the focal adhesion at time point \(t \) after bleaching, \(F_{A_0} \) is the average intensity of the focal adhesion before bleaching. Approximately 15 focal adhesions (each in a distinct cell) were averaged to generate one FRAP curve for a single experiment, and the experiment was performed on at least three different days. The experimental data were fitted (least-squares best fit) to the following equation: \(I_{rel}(t) = f_1(1 - e^{-k_1t}) + f_2(1 - e^{-k_2t}) \), where \(f_1 \) and \(f_2 \) are the fractions and \(k_1 \) and \(k_2 \) are the corresponding rate constants of those fractions. Half lives were calculated as \(t_{1/2} = \ln 2/k \).

(iii) **Combined FLIP-FRAP analysis in a single cell.** For simultaneous FRAP and FLIP in a single cell, photobleaching was applied to about half the cell for less than 6 s at high laser intensity. Redistribution of fluorescence was monitored with 6 s time intervals. We processed the different time lapse movies using Image Pro software using in house written macro where focal adhesions were segmented based on intensity. Fluorescence intensity values over the time for each focal adhesion were exported into Excel together with FA morphologic parameters (size, elongation, area, localization). The difference between relative fluorescence intensities of bleached (FRAP) and unbleached (FLIP) focal adhesion was calculated as \(I_{rel}(t) = \left(\frac{[F_A-background]}{[F_{A_0}-background]} \right)_{\text{unbleached}} - \left(\frac{[F_A-background]}{[F_{A_0}-background]} \right)_{\text{bleached}} \) and normalized to the first data point after bleaching. Approximately 5 cells with more than 50 focal adhesions per cell were averaged to generate FRAP and FLIP curves for a single experiment, and the data shown were performed on at least three different days.

FRAP analysis

For analysis of FRAP data, FRAP curves were normalized to prebleach values and the best fitting curve (least squares) was picked from a large set of computer simulated FRAP curves in which
three parameters representing mobility properties were varied: diffusion rate (ranging from 1 to 25 μm²/s), immobile fraction (0, 10, 20, 30, 40, 50 %) and time spent in immobile state, ranging from 10, 20, 30, 40s to ∞ s. Monte Carlo computer simulations used to generate FLIP and FRAP curves were based on a cell model of diffusion (ellipsoid volume representing the cytoplasm of the cell which includes another smaller ellipsoid volume representing the nucleus), and simple binding kinetics representing binding to immobile elements in the cell, representing focal adhesions (Fig. 3). Simulations were performed at unit time steps corresponding to the experimental sample rate of 5 s. Diffusion was simulated by each step deriving novel positions \(M(x+dx, y+dy, z+dz) \) for all mobile molecules \(M(x, y, z) \), where \(dx = G(r_1), dy = G(r_2) \) and \(dz = G(r_3) \), \(r_i \) is a random number \((0 \leq r_i \leq 1)\) chosen from a uniform distribution, and \(G(r) \) is an inverse cumulative Gaussian distribution with \(\mu = 0 \) and \(\sigma^2 = 2Dt \), where \(D \) is the diffusion coefficient and \(t \) is time measured in unit time steps. Immobilisation was based on simple binding kinetics described by: \(\frac{k_{on}}{k_{off}} = \frac{F_{imm}}{1 - F_{imm}} \), where \(F_{imm} \) is the relative number of immobile molecules. The chance for each particle to become immobilized per unit time (representing focal adhesion-binding) was defined as \(P_{immobilise} = \frac{k_{on} = k_{off} \cdot F_{imm}}{1 - F_{imm}} \), where \(k_{off} = 1/ t_{imm} \), and \(t_{imm} \) is the average time spent in immobile complexes measured in unit time steps; the chance to release was \(P_{mobilise} = \frac{k_{off}}{1/ t_{imm}} \). The FRAP procedure was simulated on the basis of an experimentally derived three-dimensional laser intensity profile providing a chance based on three-dimensional position for each molecule to get bleached during simulation of the bleach pulse.

Statistical Analysis

Student's t test was used to determine significant differences between two means (\(p<0.05 \)). For time-series data, the Bootstrap Hypothesis Test (BHT), also known as a subcategory of permutation test, was used (Edgington,1995; Good,2005; Hardle et al., 2003). Bootstrap sampling is a data sampling technique for approximating empirical distribution in observed data (Efron and Tibshirani,1993). Each experimental FLIP and FRAP curves data are used to calculate a standard FLIP-FRAP curve. By repeatedly applying the procedure, we obtain a set of FLIP-FRAP curves and the cumulative density of such set approximates the empirical distribution of FLIP-FRAP data at each time point. The required number of iterations is defined by the maximum size of either raw FLIP or FRAP data. The modified test statistic of BHT is
implemented using the Equation 1, in which the \bar{x}^* is the mean vector of the first n observed vectors from sample population x, \bar{y}^* is the mean vector of the first m vectors from sample population y. The σ_x^* and σ_y^* are the standard deviation vectors from sample population x and y.

$$
\tau = \frac{\sum_{j=1}^{r} (\bar{x}_j^* - \bar{y}_j^*)}{\sqrt{\frac{\sum_{j=1}^{r} (\frac{\sigma_{x_j}^*}{n} + \frac{\sigma_{y_j}^*}{m})}{\sum_{j=1}^{r} \left(\frac{\sigma_{x_j}^*}{n} + \frac{\sigma_{y_j}^*}{m}\right)}}} \quad (1)
$$
Acknowledgments

We thank the imaging members of the Division Toxicology for helpful suggestions and the IOC imaging center at Erasmus Rotterdam technical support. This work was supported by the Dutch Cancer Society (grants UL 2006-3538 and UL 2007-3860) and the EU FP7 Metafight project (Grant agreement no.201862).
Reference List

Figure legends:

Figure 1: Simultaneous FLIP-FRAP (=half-FRAP) of focal-adhesion bound GFP-FAK and GFP-paxillin. (A) FLIP-FRAP on living LLC-PK1 cells expressing GFP-FAK. Cells are photobleached over a region covering about one half of the cell (indicated by black boxes). The images were acquired before bleaching and at 6-s intervals after bleaching starting at 0 s. Scale bar is 10 µm. Images were inverted for easy visualisation. (B) Quantitative analysis of redistribution of GFP-FAK in the cytoplasm and at focal adhesions separately in bleached and unbleached half of the cell (and in the 3 different regions 0-50, 50-100 and 100-150). Values are means ± SEM from at least 300 adhesions per curve measured in about 25 cells on 5 different days. (C) Differences in GFP intensity in bleached and unbleached parts of the cell (=FLIP-FRAP) calculated from the data shown in panel B for GFP-FAK and also for GFP-paxillin.

Figure 2: 3D cell model to use Monte-Carlo simulation. (A) Z-scan projection of LLC-PK1 cells expressing GFP-paxillin and GFP-FAK. (B) Schematic view of a LLC-PK1 cell in steady-state. (C) 3D cell model used for Monte-Carlo simulation. Two ellipsoids represent the cytoplasm and an empty ball represents the nucleus. The circular structures are the objects that represent focal adhesions located in the different FLIP-FRAP regions. (D) Fitting analysis of experimental data from FLIP-FRAP curves representing regions 0-50 and 100-150 for FA-associated paxillin and FAK.

Figure 3: Focal adhesion size is a function of FAK and paxillin residence time. (A) Examples of matrix adhesion variety in cells expressing GFP-FAK and GFP-paxillin. After image segmentation based on intensity threshold over the whole cell, focal adhesions can be displayed according to the size using Image-Pro-Plus software; Individual focal adhesion images were inverted for easy visualization. (B) Plot shows the number of adhesions per cell versus adhesion size (µm²). Measurements were done on 5 sets of data collected at different days with approximately 5 to 6 cells per cell-line. Values are means ± SEM. (C) Quantitative analysis of redistribution of GFP-FAK at focal adhesions separately in bleached and unbleached half of the cell after sorting on focal adhesion size (small: 0 to 1 µm²; medium: 1 to 3 µm²; large: 3 to 15 µm²). Values are means ± SEM. FRAP experiment were performed on approximately 25 cells.
over 5 different days. 343 small (0 to 1 \(\mu m^2 \)), 114 medium (1 to 3 \(\mu m^2 \)) and 33 large (3 to 15 \(\mu m^2 \)) adhesions were analyzed in the region 0-50. (B) Quantitative analysis of redistribution of GFP-paxillin at focal adhesions separately in bleached and unbleached half of the cell after sorting on focal adhesion size. Values are means ± SEM. For GFP-paxillin, 409 small (0 to 1 \(\mu m^2 \)), 95 medium (1 to 3 \(\mu m^2 \)) and 33 large (3 to 15 \(\mu m^2 \)) adhesions were analyzed in the region 0-50. (D) FLIP-FRAP curves of GFP-FAK and GFP-paxillin sorted according to the adhesion area. For GFP-FAK, 343 small (0 to 1 \(\mu m^2 \)), 114 medium (1 to 3 \(\mu m^2 \)) and 33 large (3 to 15 \(\mu m^2 \)) adhesions were analyzed in the region 0-50. For GFP-paxillin, 409 small (0 to 1 \(\mu m^2 \)), 95 medium (1 to 3 \(\mu m^2 \)) and 33 large (3 to 15 \(\mu m^2 \)) adhesions were analyzed in the region 0-50. (E) Plot shows residence time of both FAK and paxillin versus adhesion area (\(\mu m^2 \)). Values are means ±SEM. *p<0.05 based on the Bootstrap Hypothesis test.

Figure 4: FAK and paxillin residence times are regulated by ligand density. (A) LLC-PK1 cells 3 hr and 24 h after plating on coverslips coated with the indicated collagen concentrations (C1: 1 \(\mu g/ml \), C10: 10 \(\mu g/ml \) and C100: 100 \(\mu g/ml \)); F-actin phalloidin and phospho-tyrosine staining in LLC-PK1 cells plated on low (1 \(\mu g/ml \)), medium (10 \(\mu g/ml \)) and high (100 \(\mu g/ml \)) collagen. Merge: F-actin=red, PY=green. Scale bar is 10 \(\mu m \). (B) Plot shows the number of adhesions per cell (GFP-paxillin (a) and GFP-FAK (b)) plated on low, medium and high collagen versus adhesion size (\(\mu m^2 \)). Measurements were done on 4 set of data collected at different days with approximately 5 to 6 cells per cell-line. Values are means ± SEM. (*p<0.05 based on the student’s t-test). (C) Plot shows residence time of GFP-paxillin (a) and GFP-FAK (b) versus collagen concentration and adhesion area. For GFP-FAK and GFP-paxillin, the experiment was performed at 3 different days. GFP-FAK (C1, 16 cells, \(n_{small}=107, n_{medium}=44, n_{large}=18 \); C10, 15 cells, \(n_{small}=238, n_{medium}=67, n_{large}=20 \); C100, 18 cells, \(n_{small}=157, n_{medium}=46, n_{large}=20 \)). GFP-paxillin (C1, 17 cells, \(n_{small}=466, n_{medium}=107, n_{large}=10 \); C10, 15 cells, \(n_{small}=232, n_{medium}=41, n_{large}=21 \); C100, 17 cells, \(n_{small}=133, n_{medium}=36, n_{large}=19 \)) *p<0.05 based on the Bootstrap Hypothesis test.

Figure 5: Dynamic of FAK and paxillin during adhesion assembly and disassembly in the nocodazole assay. (A) F-actin phalloidin and phosphotyrosine immunostaining of LLC-PK1 cells exposed to DMSO for 180 min, nocodazole (10 \(\mu M \)) for 120 min and washout for 30 min
(after nocodazole exposure). (B) Schematic view of the peripheral and ventral adhesions as they were segmented in the FRAP experiments. (C) Plot show residence time of GFP-paxillin when localized either in peripheral (a) or in ventral (b) adhesions during the nocodazole assay (sorted on size). 30 cells were analyzed over 6 different days for the DMSO condition ($n_{\text{periph}}=639$; $n_{\text{ventral}}=1017$). 31 cells were analyzed for the NOCO condition ($n_{\text{periph}}=622$; $n_{\text{ventral}}=1487$). 24 cells were analyzed for the WO condition ($n_{\text{periph}}=748$; $n_{\text{ventral}}=789$). (D) Plot show residence times of GFP-FAK when localized either in peripheral (a) or in ventral (b) adhesions during the nocodazole assay (sorted on size). 27 cells were analyzed over 6 different days for the DMSO condition ($n_{\text{periph}}=612$; $n_{\text{ventral}}=617$). 26 cells were analyzed for the NOCO condition ($n_{\text{periph}}=527$; $n_{\text{ventral}}=1256$). 20 cells were analyzed for the WO condition ($n_{\text{periph}}=490$; $n_{\text{ventral}}=483$). *$p<0.05$ based on the Bootstrap Hypothesis test.

Supplemental figures legends:

Supplemental figure 1: Expression levels, localization and turnover of GFP-FAK and GFP-paxillin. (A) Immunoblot of whole cell extracts of LLC-PK1 cells with stable expression of GFP (lane 1), GFP-FAK (lane 2) and GFP-paxillin (lane 3) probed with anti-FAK, anti-paxillin and anti-GFP antibodies. (B) P-tyr397 FAK and P-tyr118 paxillin staining in respectively GFP-FAK and GFP-paxillin expressing cells. Scale bar is 20 µm. (C) Time–lapse of GFP-FAK and paxillin expressing cells for 15 min. Note the stability of the focal adhesions over the period of time of 15 min in the merge picture. Scale bar is 20 µm.

Supplemental figure 2: FRAP analysis of cytosolic and focal adhesion-associated GFP-FAK and GFP-paxillin. (A) Quantitative analysis of fluorescence recovery of GFP (n=20), GFP-FAK (n=30) and GFP-paxillin (n=30) after strip bleaching in the cytoplasm. A small strip of 1.8 µm wide spanning was photobleached (white box). Scale bar is 20 µm. Note that the fluorescent intensity in the strip does not recover to prebleach levels (set to one) because a fraction of the molecules is permanently bleached. (B) Quantitative analysis of fluorescence recovery of GFP (n=20), GFP-FAK (n=45), GFP-paxillin (n=45) and GFP-actin (n=45) after spot bleaching in the focal adhesions. A small region of 0.8 µm² covering a single focal adhesion was photobleached.
(white box). Scale bar is 10 µm. (C) Examples of spot bleaching (arrowhead) on a single GFP-FAK and GFP-paxillin expressing focal adhesion. Images were acquired before bleaching and at 5 s intervals after bleaching. Scale bar is 1 µm. (D) Average half-time for fluorescence recovery after photobleaching ($t_{1/2}$, s) and % immobile fraction for GFP-FAK and GFP-paxillin.

Supplemental figure 3: Example of data analysis of a FRAP experiment performed on a GFP-paxillin LLC-PK1 cell. (A) FLIP-FRAP on living LLC-PK1 cells expressing GFP-paxillin. Cells are photobleached over a region covering about one half of the cell (indicated by black boxes). The images were acquired before bleaching and at 6-s intervals after bleaching starting at 0 s. Scale bar is 10 µm. Images were inverted for easy visualization. (B) Individual FRAP and FLIP curves for each focal adhesions obtained after threshold segmentation and for the cytoplasm. Scale bar is 10 µm. (C) Quantitative analysis of redistribution of GFP-FAK in the cytoplasm and at focal adhesions separately in bleached and unbleached half of the cell (and in the 3 different regions 0-50, 50-100 and 100-150). Values are means ± SEM from at least 300 adhesions per curves measured in about 25 cells over 5 different days.

Supplemental figure 4: Collagen density affects FAK and paxillin kinetics at focal adhesions. A) Quantitative analysis of redistribution of GFP-paxillin and GFP-FAK at focal adhesions after plating the cells on increasing collagen concentration (C1: 1 µg/ml, C10: 10 µg/ml and C100: 100 µg/ml). Each graph represents the FLIP and FRAP curves for the three size of focal adhesions (small, medium and large). (B) Differences in GFP intensity in bleached and unbleached parts of the cell (=FLIP-FRAP) calculated from the data shown in panel A for GFP-paxillin and GFP-FAK.

Supplemental figure 5: Collagen density reduces tyrosine phosphorylation of paxillin in large adhesions. (A) Immunolocalization of GFP-FAK (green) and pY397 FAK in cells on low, medium and high collagen concentration. Bar is 5 µm. (B) Immunolocalization of GFP-paxillin (green) and pY31/118 paxillin in cells on low, medium and high collagen concentration. Bar is 5 µm.
Supplemental figure 6: Microtubule disruption followed re-polymerization result in assembly and disassembly of new focal adhesions. (A) Snapshots of time-lapse of GFP-FAK and GFP-paxillin cells treated with nocodazole for 2 hours (NOCO) and where washout was done after 2 hours. (B) Immunoblot of lysates of untreated cells (DMSO), cells treated with 10 µM nocodazole (NOCO) and cells treated first with nocodazole and followed by its removal (WO) using an antibody specific to P-Ser190MLC. (C) Plots show the change in area of all focal adhesions located either at the periphery or at the ventral side of the GFP-FAK cells and GFP-paxillin cells. Values are means ±SEM. *p<0.05 based on the student’s t-test. (D) Plot shows the number of adhesions per cell (GFP-FAK and GFP-paxillin) in the three conditions DMSO, NOCO and WO versus adhesion size (µm²) and location (periphery/ventral).

Supplemental figure 7: Microtubule disruption and regrowth affects the phosphorylation status of paxillin. (A) Immunolocalization of GFP-FAK (green) and pY397 FAK in untreated control cells (DMSO), cells treated with 10 µM of nocodazole for 2 hrs (NOCO) and cells treated with nocodazole which is washed away after 30 min (WO). Bar is 5 µm. (B) Immunolocalization of GFP-paxillin (green) and pY31/118 paxillin in untreated control cells (DMSO), cells treated with 10 µM of nocodazole for 2 hrs (NOCO) and cells treated with nocodazole which is washed away after 30 min (WO). Bar is 5 µm.

Supplemental movie M1: Example of a FRAP experiment performed on a GFP-FAK LLC-PK1 cell. Box size is 100 µm x 100 µm.
Figure 1

A

B

C

Journal of Cell Science Accepted manuscript

Journal of Cell Science Accepted manuscript
Figure 3

FA size distribution in whole cell

GFP-FAK

GFP-paxillin

Number of adhesions per cell

Relative fluorescence intensity vs. time for GFP-FAK and GFP-paxillin.

Adhesion area (μm²) vs. residence time.

* indicates statistical significance.