Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs

Takuya Wakai1,3, Nan Zhang1, Peter Vangheluwe2, Rafael A. Fissore1*

1Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003.

2Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, O&N1 box 802, B-3000 Leuven, Belgium.

*Address correspondence to: Rafael A. Fissore, 661 North Pleasant Street, Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003. Tel: 413-545-5548; Fax: 413-545-6326; E-mail: rfissore@vasci.umass.edu

3Present address: Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan. Tel & Fax: 81-03-5477-2543; E-mail: t3wakai@nodai.ac.jp

Running title: ER Ca2+ homeostasis in mouse eggs

Key words: Ca2+ oscillations, Egg activation, Fertilization, Oocyte maturation, SERCA, Endoplasmic reticulum

Abstract

Changes in the intracellular concentration of free calcium ([Ca2+]\textsubscript{i}) regulate diverse cellular processes including fertilization. In mammalian eggs, the [Ca2+]\textsubscript{i} changes
induced by the sperm unfolds in a pattern of periodical rises, also known as $[\text{Ca}^{2+}]_i$. The source of Ca^{2+} during oscillations is the endoplasmic reticulum ([Ca$^{2+}]_{\text{ER}}$), but is presently unknown how $[\text{Ca}^{2+}]_{\text{ER}}$ is regulated. Here we show using mouse eggs that $[\text{Ca}^{2+}]_i$ oscillations induced by a variety of agonists, including PLCζ, SrCl$_2$ and thimerosal, provoked simultaneous but opposite changes in $[\text{Ca}^{2+}]_{\text{ER}}$ and caused differential effects on the refilling and overall load of $[\text{Ca}^{2+}]_{\text{ER}}$. We also found that Ca^{2+} influx is required to refill $[\text{Ca}^{2+}]_{\text{ER}}$, as in media devoid of Ca^{2+}, the loss of $[\text{Ca}^{2+}]_{\text{ER}}$ was accelerated. Pharmacological inactivation of the function of the mitochondria and of the Ca^{2+}-ATPase pumps PMCA and SERCA altered the pattern of oscillations and abruptly reduced $[\text{Ca}^{2+}]_{\text{ER}}$, especially after inactivation of mitochondria and SERCA functions. We also examined the expression of SERCA2b protein and found it expressed throughout oocyte maturation and attaining a conspicuous cortical cluster organization in mature eggs. We showed that its overexpression reduces the duration of IP$_3$-induced $[\text{Ca}^{2+}]_i$ rises, promoted initiation of oscillations and enhanced refilling of $[\text{Ca}^{2+}]_{\text{ER}}$. Collectively, our results provide novel insights on the regulation of $[\text{Ca}^{2+}]_{\text{ER}}$ oscillations, which underlie the unique Ca^{2+} signalling system that activates the developmental program in mammalian eggs.

Introduction

At fertilization, an increase in the intracellular Ca^{2+} concentration ($[\text{Ca}^{2+}]_i$), which is generally induced following interaction of the gametes, is the universal signal for the completion of meiosis and initiation of embryo development (Stricker, 1999). In
mammals, this signal takes the form of periodical increases in \([Ca^{2+}]_i\), termed \([Ca^{2+}]_i\) oscillations, that last for several hours after sperm entry (Miyazaki et al., 1986). The \([Ca^{2+}]_i\) responses provide spatio-temporal information that is decoded by downstream effectors, whose actions underpin several distinct cellular events such as the release of cortical granules, progression into interphase and pronuclear formation (PN). These and others subtler events underlie the egg to embryo transition and are collectively known as “egg activation” (Ducibella et al., 2002; Schultz and Kopf, 1995). Although \([Ca^{2+}]_i\) oscillations are a hallmark of mammalian fertilization and required for egg activation, the underlying molecular mechanism(s) that sustain them remains elusive.

Inositol 1,4,5-trisphosphate (IP₃)-mediated Ca²⁺ release from the endoplasmic reticulum (ER; \([Ca^{2+}]_ER\)), the main Ca²⁺ reservoir of the cell (Berridge, 2002), is primarily responsible for the initial \([Ca^{2+}]_i\) wave and oscillations during fertilization (Miyazaki et al., 1992). Therefore, the general properties of Ca²⁺ release during fertilization have been described in the context of IP₃ production and regulation of its cognate receptor, IP₃R (Jellerette et al., 2000; Miyazaki, 1993). Nevertheless, the regulation of \([Ca^{2+}]_i\) oscillations in eggs/cells is likely to be far more complex, as oscillations require Ca²⁺ influx and clearing mechanisms. For instance, for \([Ca^{2+}]_i\) oscillations to continue without attenuation, eggs must replenish \([Ca^{2+}]_ER\), as in the absence of external Ca²⁺ ([Ca²⁺]ₑ), sperm-initiated \([Ca^{2+}]_i\) oscillations run down and cease prematurely (Igusa and Miyazaki, 1983; Winston et al., 1995). Thus, [Ca²⁺]ₑ must cross the plasma membrane (PM) and access the ooplasm by a variety of channels and mechanisms (Smyth et al., 2006). Store operated Ca²⁺ entry (SOCE) is one of these
proposed mechanisms that happen to be activated by the depletion of $[\text{Ca}^{2+}]_{\text{ER}}$ (Putney, 1990). On the other hand, excessive or prolonged $[\text{Ca}^{2+}]_i$ elevations abolish the oscillatory behavior, and can cause fragmentation and apoptosis (Gordo et al., 2002; Ozil et al., 2005). To prevent this, elevated $[\text{Ca}^{2+}]_i$ is rapidly removed by pumps and exchangers. The PM Ca^{2+} ATPase (PMCA) and $\text{Na}^+/\text{Ca}^{2+}$ exchanger extrude free cytosolic Ca^{2+} to the extracellular space and the sarco-endoplasmic reticulum Ca^{2+} ATPases (SERCA) reuptake it into the ER stores refilling them (Berridge et al., 2000; Bootman et al., 2001). The mitochondria also uptake cytosolic Ca^{2+} thereby contributing to shape the spatio-temporal patterns of $[\text{Ca}^{2+}]_i$ responses, while simultaneously promoting a number of events that sustain ATP levels in cells (Hajnoczky et al., 1995). Despite the pivotal role of these mechanisms of Ca^{2+} homeostasis, few studies have examined their underlying molecules and regulation in mammalian oocytes/eggs.

In this regard, few factors are as important to sustain fertilization-associated $[\text{Ca}^{2+}]_i$ oscillations than $[\text{Ca}^{2+}]_{\text{ER}}$, as it is the source of Ca^{2+} during oscillations. Recent studies have shown that during fertilization $[\text{Ca}^{2+}]_{\text{ER}}$ levels change in parallel with changes in $[\text{Ca}^{2+}]_i$ (Takahashi et al., 2013; Wakai and Fissore, 2013), although how $[\text{Ca}^{2+}]_{\text{ER}}$ levels are regulated during oscillations was not examined. Moreover, it is unknown if common parthenogenetic agonists such as SrCl$_2$ or thimerosal, which reportedly induce $[\text{Ca}^{2+}]_i$ oscillations by sensitizing IP$_3$Rs and without generating IP$_3$ (Cheek et al., 1993; Galione et al., 1993), also modify $[\text{Ca}^{2+}]_{\text{ER}}$ levels. Hence, direct measurement of $[\text{Ca}^{2+}]_{\text{ER}}$ is required to get a better appreciation of Ca^{2+} homeostasis in these cells. Toward this end,
advances in genetically encoded Ca$^{2+}$ probes now allow measuring Ca$^{2+}$ dynamics in live cells and in targeted organelles (Demaurex, 2005). Cameleon D1ER, a fluorescence resonance energy transfer (FRET)-based Ca$^{2+}$ indicator, was successfully used to report $[\text{Ca}^{2+}]_{\text{ER}}$ in somatic cells (Palmer et al., 2004) and recently in mouse eggs (Takahashi et al., 2013; Wakai and Fissore, 2013).

Prior to ovulation and following a systemic LH surge, prophase-arrested GV oocytes resume meiosis and progress to the metaphase stage of the second meiosis (MII). This process is commonly referred to as oocyte maturation, and during it oocytes acquire fertilization-competence and the precise spatio-temporal pattern of fertilization-associated $[\text{Ca}^{2+}]_{i}$ responses. In fact, \textit{in vitro} fertilized GV oocytes show fewer $[\text{Ca}^{2+}]_{i}$ oscillations and each $[\text{Ca}^{2+}]_{i}$ rise exhibits lesser duration and amplitude than those observed in fertilized MII oocytes (henceforth referred to as eggs) (Jones et al., 1995b; Mehlmann et al., 1996). Given that several of the parameters of Ca$^{2+}$ homeostasis progressively change during maturation, including the steady increase of $[\text{Ca}^{2+}]_{\text{ER}}$ (Jones et al., 1995b; Mehlmann and Kline, 1994; Wakai et al., 2012), it is possible that the molecules responsible for these adjustments in Ca$^{2+}$ homeostasis, which are mostly unknown in mammalian oocytes, experience dynamic modifications such that some of the mechanisms active at the GV stage may not be so at the MII stage and vice versa.

In the present study, using D1ER and mouse oocytes and eggs we measured $[\text{Ca}^{2+}]_{\text{ER}}$ levels during $[\text{Ca}^{2+}]_{i}$ oscillations induced by a variety of agonists. We found simultaneous changes in $[\text{Ca}^{2+}]_{\text{ER}}$ and $[\text{Ca}^{2+}]_{i}$ levels during oscillations, although with
unique \([\text{Ca}^{2+}]_{\text{ER}}\) kinetics according to the agonist applied. Further, we show that \([\text{Ca}^{2+}]_{\text{ER}}\) can act as a pacemaker of oscillations and is regulated by the action of mechanisms involved in \(\text{Ca}^{2+}\) influx and in buffering and sequestering \([\text{Ca}^{2+}]_i\). Lastly, besides showing that the SERCA2b protein is expressed in oocytes/eggs, we observed that it undergoes dynamic reorganization during maturation, which may contribute to shaping the fertilization-associated \([\text{Ca}^{2+}]_i\) responses in these cells.

Materials and Methods

Chemical reagents

Ionomycin (IO), cyclopiazonic acid (CPA), thapsigargin (Tg), oligomycin (Og) and Latrunculin A (Lat A) were purchased from Calbiochem (San Diego, CA). Fura-2AM, Fluo-4AM, Rhod2AM, pluronic acid and caged-IP3 (cIP3) were purchased from Invitrogen (Carlsbad, CA). Other all chemicals were from Sigma (St Louis, MO) unless otherwise specified.

Collection of oocytes/eggs

GV oocytes and MII eggs were collected from the ovaries of 4- to 8-week-old and oviducts of 6- to 10-week-old CD-1 female mice, respectively. Female were injected with 5 IU pregnant mare serum gonadotropin (PMSG). Cumulus cell-enclosed GV oocytes were recovered 42-46 hours post-PMSG and the cumulus cells were removed by repeated pipetting. Ovulated MII eggs were recovered 12-14 hours after injection of 5 IU hCG, which was administered 44-48 hours after PMSG stimulation.
procedures were performed according to research animal protocols approved by the
University of Massachusetts Institutional Animal Care and Use Committee.

Plasmids

Human SERCA2b was subcloned into a pcDNA6 vector (pcDNA6/Myc-His B;
Invitrogen, Carlsbad, CA) between the XhoI and PmeI restriction sites. To analyze the
subcellular distribution, SERCA2b was N-terminally tagged with EGFP between the
EcoRV and XhoI restriction sites. Cameleon D1ER and pDsRed2-ER were kindly
provided by Dr. R. Tsien (UCSD) and Dr. M. Trebak (Albany Medical College),
respectively. The ER targeting sequence of calreticulin, DsRed2 and the KDEL ER
retention sequence were ligated to pcDNA6. Since the original D1ER construct
somehow failed to target ER compartment in oocytes/eggs, the cameleon part was
amplified by PCR and inserted between calreticulin targeting and KDEL sequences
instead of DsRed2. The mouse plcζ was a kind gift from Dr K. Fukami (Tokyo
University of Pharmacy and Life Science, Japan) and subcloned into a PCS2+ vector, as
previously described by us (Kurokawa et al., 2007).

Preparation and microinjection of cRNA

Plasmids were linearized with a restriction enzyme downstream of the insert to be
transcribed. cDNA was in vitro transcribed using the T7 or SP6 mMESSAGE
mMACHINE Kit (Ambion, Austin, TX) according to the promoter that is contained in
the constructs. A Poly (A)-tail was added to the mRNAs using a Tailing Kit (Ambion)
and poly(A)-tailed RNAs were eluted with RNAase-free water and stored in aliquots at -80 °C. For microinjection, cRNA solution was loaded into glass micropipettes and delivered into oocytes/eggs by pneumatic pressure (PLI-100, Harvard Apparatus, Cambridge, MA). Each oocyte received 7-12 pl (~1-3% of the total volume of the egg). The volumes injected typically range from 2 to 10 pl, which is 1-5% of the egg (~70-75 µm).

Ca2+ imaging

To estimate relative changes in [Ca2+]\textsubscript{ER}, emission ratio imaging of the D1ER (YFP/CFP) was performed using a CFP excitation filter, dichroic beamsplitter, CFP and YFP emission filters (Chroma technology, Rockingham, VT; ET436/20X, 89007bs, ET480/40m and ET535/30m). To measure [Ca2+]\textsubscript{ER} and [Ca2+]\textsubscript{i} simultaneously, eggs that had been injected with Cameleon D1ER cRNA were loaded with 1 µM Rhod-2AM supplemented with 0.02% pluronic acid for 20 minutes at room temperature. Eggs then were attached on glass-bottom dishes (MatTek Corp., Ashland, MA) and placed on the stage of an inverted microscope. CFP, YFP and Rhod-2 intensities were collected every 20 second by a cooled Photometrics SenSys CCD camera (Roper Scientific, Tucson, AZ). The rotation of excitation and emission filter wheels was controlled using the MAC5000 filter wheel/shutter control box (Ludl) and NIS-elements software (Nikon). Fura-2-AM (1.25 µM) and Fluo-4AM (1 µM) were used to analyze IO-induced and cIP\textsubscript{3}-induced Ca2+ rises, respectively. Fura-2 fluorescence was excited with 340 nm and 380 nm wavelengths every 20 seconds and emitted light was collected at wavelengths
above 510 nm. Fluo-4 was excited with 480 nm wavelengths every 5 seconds and emitted light was collected at wavelengths greater than 510 nm. cIP$_3$ (0.25mM) was injected into oocytes and the photolysis was accomplished with a 360 nm wavelength.

Confocal microscopy

Live cell imaging of oocytes/eggs expressing fluorescent-tagged proteins was performed using a laser-scanning confocal microscope (LSM 510 META, Carl Zeiss Microimaging Inc., Germany) outfitted with a 63×1.4 NA oil immersion objective lens. Images were acquired with LSM software (Carl Zeiss Microimaging Inc., Germany) and psueudocolored in Photoshop CS (Adobe). Time-lapse imaging of SERCA2b-EGFP was performed using a Nipokow disk confocal unit (CV-1000, Yokogawa Electric Corp., Japan) outfitted with a 30× silicone immersion objective lens.

Western blot analysis

Cell lysates from mouse oocytes/eggs were prepared by adding 2X sample buffer. Proteins were separated by SDS-PAGE and transferred to PVDF membrane (Millipore, Bedford, MA). After blocking with 6% skim milk dissolved in TBS supplemented with 0.05% Tween-20 (TBST) for 2 hours at 4°C, membranes were probed with the rabbit polyclonal antibody specific to SERCA2b (Vangheluwe et al., 2007) (1:2000) in TBST with 3% skim milk overnight at 4°C. Goat anti-rabbit antibody conjugated with horseradish peroxidase (HRP) was used for secondary antibody (1:2000, Biorad,
Hercules, CA) for detection chemiluminescence (NEN Life Science Products, Boston, MA) according to the manufacturer's instructions. The signal was digitally captured using a Kodak Imaging Station (440 CF, Rochester, NY).

Statistical analysis

Values from three or more experiments performed on different batches of oocytes/eggs were analyzed by the Student's t-test, Chi-squared test or one-way ANOVA, as appropriate. Differences were considered significant at \(p < 0.05 \). Values are presented as means ± SEM. Significance among groups/treatments is denoted in bar graphs by different superscripts or by the presence of asterisks.

RESULTS

Agonist-dependent regulation of \([\text{Ca}^{2+}]_{\text{ER}}\) during \([\text{Ca}^{2+}]_{\text{i}}\) oscillations.

We first examined if expression of D1ER protein in both mouse oocytes and eggs attained a distribution that replicated that of the ER in these two stages of maturation. To accomplish this, D1ER cRNA was injected into GV oocytes and MII eggs and fluorescence was examined ~5 hours after injection. Confocal images showed that D1ER fluorescence displayed the widespread reticular pattern characteristic of the ER in these cell types, including the conspicuous cortical clusters localization distinctive of the ER in MII eggs (FitzHarris et al., 2007; Kline et al., 1999). Together, these results suggest that D1ER was successfully targeted to the ER of oocytes and eggs (Fig. 1A).
To explore the range of FRET signals in our system, which would allow estimating the relative changes in $[\text{Ca}^{2+}]_{\text{ER}}$ during Ca$^{2+}$ stimulations, we recorded changes in emission ratios of D1ER (YFP/CFP) induced by addition of IO. The studies were performed in the absence of $[\text{Ca}^{2+}]_e$, to maximize emptying of $[\text{Ca}^{2+}]_{\text{ER}}$ and prevent Ca$^{2+}$ influx. Following addition of IO, the emission ratio of D1ER immediately decreased, as the CFP signal increased and the YFP signal decreased (Fig. 1B). In the absence of agonists, emission ratios remained unchanged for at least 3 hours, although they gradually decreased during additional measurement (data not shown). To establish if the change in $[\text{Ca}^{2+}]_{\text{ER}}$ closely corresponded with that of $[\text{Ca}^{2+}]_i$ levels, we performed simultaneous measurements of $[\text{Ca}^{2+}]_{\text{ER}}$ and $[\text{Ca}^{2+}]_i$ using Rhod-2 as the Ca$^{2+}$ indicator (Fig. 1C). Rhod-2 is generally used to measure mitochondrial Ca$^{2+}$, although given that in mouse eggs Rhod-2 fails to target to the mitochondria, it can be used to report cytoplasmic $[\text{Ca}^{2+}]_i$ (Dumollard et al., 2004). As expected, following addition of IO, $[\text{Ca}^{2+}]_{\text{ER}}$ and $[\text{Ca}^{2+}]_i$ underwent simultaneous but opposite changes in relative concentrations.

We next examined changes in $[\text{Ca}^{2+}]_{\text{ER}}$ levels during $[\text{Ca}^{2+}]_i$ oscillations. $[\text{Ca}^{2+}]_i$ oscillations during mammalian fertilization are thought to be triggered following fusion of the gametes by release from the sperm of a male specific Phospholipase C (PLC) enzyme, PLCζ (Nomikos et al., 2012; Saunders et al., 2002). Therefore, we initiated oscillations by injecting PLCζ cRNA, which evokes $[\text{Ca}^{2+}]_i$ responses that closely and reproducibly resemble fertilization-induced $[\text{Ca}^{2+}]_i$ oscillations (Saunders et al., 2002). The results show that during oscillations the sharp upstroke of each $[\text{Ca}^{2+}]_i$ rise
coincided with an equally fast drop in $[\text{Ca}^{2+}]_{\text{ER}}$ levels, as reported by the change in
YFP/CFP ratio (Fig. 2A). Remarkably, it appears that each of the ~first 6-10 $[\text{Ca}^{2+}]_i$ rises occurred before $[\text{Ca}^{2+}]_{\text{ER}}$ levels had recovered, i.e. reached levels similar to those prior to the rise, resulting in a progressive downturn in $[\text{Ca}^{2+}]_{\text{ER}}$ levels (Fig. 2B and 2C).

In addition, the transient recovery of $[\text{Ca}^{2+}]_{\text{ER}}$ levels exhibited a two-step process, an initial rapid increase followed by a more gradual increase. Afterwards, basal $[\text{Ca}^{2+}]_{\text{ER}}$ stabilized and each $[\text{Ca}^{2+}]_i$ rise seemed to occur from the same $[\text{Ca}^{2+}]_{\text{ER}}$ level (Fig. 2D), which suggests that by then the rate of refilling of the stores determines the initiation of the next $[\text{Ca}^{2+}]_i$ response.

$[\text{Ca}^{2+}]_i$ oscillations in eggs can also be induced by a variety of pharmacological agents, including strontium chloride (SrCl$_2$) and thimerosal. Nevertheless, the precise mechanism whereby these agents promote oscillations or the impact on $[\text{Ca}^{2+}]_{\text{ER}}$ levels are unknown. We first examined the role of SrCl$_2$, as it is widely used to induce artificial activation of mouse eggs following somatic cell nuclear transfer or round spermatid injection (Loren and Lacham-Kaplan, 2006; Wakayama et al., 1998). To accomplish oscillations, medium devoid of CaCl$_2$ was supplemented with SrCl$_2$; this treatment generates repetitive $[\text{Ca}^{2+}/\text{Sr}^{2+}]_i$ rises that are characteristically of longer duration than those induced by other procedures (Fig. 3A). Remarkably, while a decrease in the overall $[\text{Ca}^{2+}]_{\text{ER}}$ levels was noticeable, the magnitude of the YFP/CFP ratio change was small, ~less than half of the change observed in PLCζ cRNA-induced $[\text{Ca}^{2+}]_i$ oscillations and, in actuality, after a few $[\text{Ca}^{2+}/\text{Sr}^{2+}]_i$ rises, the levels of $[\text{Ca}^{2+}]_{\text{ER}}$ started to creep up, suggesting that oscillations by SrCl$_2$ rely less on intracellular $[\text{Ca}^{2+}]_i$.
mobilization. Supporting this notion, it is worth noting that the changes in [Ca^{2+}]_{ER}
levels were slow and clearly behind the changes in [Ca^{2+}], as by the time [Ca^{2+}/Sr^{2+}],
had peaked, [Ca^{2+}]_{ER} had not changed (Fig. 3A; right panel). The [Ca^{2+}] rises induced
by thimerosal, a thiol-oxidizing agent known to induce oscillations in mammalian
oocytes (Swann, 1991), caused greatly different effects on [Ca^{2+}]_{ER} levels. For example,
the first and subsequent [Ca^{2+}] rises were not accompanied by a reduction but rather by
an increase in [Ca^{2+}]_{ER} levels (Fig. 3B). Further, in accordance with the high frequency
of the oscillations, [Ca^{2+}]_{ER} was rapidly refilled and eventually overloaded, as
demonstrated by higher [Ca^{2+}]_{ER} levels at the end of the monitoring period (Fig. 3B;
right panel). Collectively, our results show that monitoring [Ca^{2+}]_{ER} reveals specific
agonist regulation of [Ca^{2+}]_{ER}, which is consistent with the unique pattern of oscillations
by these agonists.

Ca^{2+} influx is required for replenishment of [Ca^{2+}]_{ER} during [Ca^{2+}]_i oscillations
To gain insight into the contribution of Ca^{2+} influx to the refilling of [Ca^{2+}]_{ER}, we
simultaneously measured [Ca^{2+}]_{ER} and [Ca^{2+}]_i in eggs induced to oscillate by injection
of PLCζ cRNA while maintained in Ca^{2+} free conditions. As expected, [Ca^{2+}]_i
oscillations ceased prematurely and on average eggs only displayed 2.2 ± 0.32 [Ca^{2+}]_i
rises, supporting the notion that Ca^{2+} influx is required to maintain oscillations (Fig. 4A).
[Ca^{2+}]_{ER} levels also declined, which was confirmed by addition of IO after the
oscillations had ceased, as both [Ca^{2+}]_i and [Ca^{2+}]_{ER} responses were greatly reduced in
PLCζ-injected eggs vs. untreated controls cultured in Ca^{2+}-free medium (Fig. 4B).
Further, the absence of \([Ca^{2+}]_e\) slowed down the refilling of \([Ca^{2+}]_{ER}\) during oscillations, as reflected by the lower mean slope of the second \([Ca^{2+}]_{ER}\) increases in these eggs vs. those oscillating in the presence of \([Ca^{2+}]_e\) (Fig. 4C; Fig. 2A vs. 4A), which prolonged the interval between the first and second \([Ca^{2+}]_i\) rises in these eggs (Fig. 4D; Fig. 2A vs. 4A). The absence of \([Ca^{2+}]_e\) also compromised the duration of the 1st rise (Fig. 4E; Fig. 2A vs. 4A), confirming that \(Ca^{2+}\) influx also contributes to the robust 1st \([Ca^{2+}]_i\) rise (Halet et al., 2004). Collectively, our results therefore show that \(Ca^{2+}\) influx is required to replenish \([Ca^{2+}]_{ER}\) and shape \([Ca^{2+}]_i\) oscillations, as without it \([Ca^{2+}]_i\) oscillations cease prematurely and show abnormal parameters.

\textbf{Ca}^{2+} \textbf{buffering mechanisms modulate} \([Ca^{2+}]_{ER}\) \textbf{refilling during} \([Ca^{2+}]_i\) \textbf{oscillations}

Compared to the quick return to baseline that cytosolic \([Ca^{2+}]_i\) transients experience during oscillations, the recovery of \([Ca^{2+}]_{ER}\) is more gradual, suggesting that other \(Ca^{2+}\) buffering systems contribute to cytosolic \([Ca^{2+}]_i\) clearance. We therefore investigated the role of PMCA, one of the mechanisms known to mediate \(Ca^{2+}\) efflux, on the refilling of \([Ca^{2+}]_{ER}\). To accomplish this, we took advantage of the knowledge that PMCA’s function is inhibited by mM concentrations of gadolinium (Gd\(^{3+}\)), which at these concentrations generates a \(Ca^{2+}\) insulation system, as both \(Ca^{2+}\) influx and efflux are greatly reduced (Bird and Putney, 2005); this approach was used in mouse eggs to maintain \([Ca^{2+}]_i\) oscillations in the absence of \([Ca^{2+}]_e\) (Miao et al., 2012). Using this experimental system (5 mM Gd\(^{3+}\)), we found that while the initiation of periodical oscillations was delayed by Gd\(^{3+}\), PLC\(\zeta\) cRNA injection induced long-lasting \([Ca^{2+}]_i\).
oscillations that were unattenuated despite the absence of \([\text{Ca}^{2+}]_e\) (Fig. 5A). Consistent

with the high frequency of \([\text{Ca}^{2+}]_i\) rises, \([\text{Ca}^{2+}]_{\text{ER}}\) was rapidly refilled, and unlike \([\text{Ca}^{2+}]_i\)
oscillations under normal \([\text{Ca}^{2+}]_e\), basal \([\text{Ca}^{2+}]_{\text{ER}}\) levels remained largely unchanged.

These results suggest that PMCA contributes to shape the pattern of \([\text{Ca}^{2+}]_i\) oscillations
and inhibition of its function leads to retention of \(\text{Ca}^{2+}\) in the cytosol, which increases
the refilling of \([\text{Ca}^{2+}]_{\text{ER}}\) by SERCA.

Mitochondrial function is closely linked to \(\text{Ca}^{2+}\) homeostasis, as inhibition of its
function in mouse eggs was shown to disrupt \([\text{Ca}^{2+}]_i\) oscillations and cause an increase
in \([\text{Ca}^{2+}]_i\) (Dumollard et al., 2004; Liu et al., 2001). To ascertain whether inhibition of
mitochondrial function involved ER \(\text{Ca}^{2+}\) homeostasis, we exposed oscillating eggs to,
an inhibitor of mitochondrial ATP synthase (Wolvetang et al., 1994) and monitored the
effects on the oscillations and \([\text{Ca}^{2+}]_{\text{ER}}\) refilling. Addition of Og reduced \([\text{Ca}^{2+}]_{\text{ER}}\) levels,
impaired its refilling and induced a sustained elevation in \([\text{Ca}^{2+}]_i\) in the majority of eggs
(Fig. 5B). We interpret these results to mean that without ATP synthesis, the refilling of
\([\text{Ca}^{2+}]_{\text{ER}}\) is compromised and oscillations cannot be maintained.

SERCA is required for replenishment of \([\text{Ca}^{2+}]_{\text{ER}}\) during \([\text{Ca}^{2+}]_i\) oscillations

The active presence of SERCAs in mammalian oocytes/eggs can be surmised by the
alteration of \([\text{Ca}^{2+}]_i\) levels caused by their exposure to Tg or CPA, two SERCA
inhibitors; these inhibitors also prevent continuation of \([\text{Ca}^{2+}]_i\) oscillations in oscillating
eggs (Kline and Kline, 1992; Lawrence and Cuthbertson, 1995; Machaty et al., 2002).

Nevertheless, the precise rate of change of \([\text{Ca}^{2+}]_{\text{ER}}\) caused by SERCA inhibition has
not been elucidated in these cells. We found that addition of Tg to oscillating eggs immediately reduced basal $[\text{Ca}^{2+}]_{\text{ER}}$ levels and prevented their recovery thereafter (Fig. 5C). Thus, the results demonstrate that SERCA function is required for long-lasting $[\text{Ca}^{2+}]_{\text{i}}$ oscillations by maintaining $[\text{Ca}^{2+}]_{\text{ER}}$.

SERCA2b is expressed throughout oocyte maturation and undergoes spatial reorganization

Despite their pivotal role in Ca^{2+} homeostasis, the molecular properties of SERCAs and the dynamic modifications that they might undergo during maturation have not yet been examined in mammalian oocytes/eggs. Three different SERCA genes ($ATP2A1$-3) encode three main isoforms ($SERCA1$–3), each of which undergoes tissue-specific splicing (Brini and Carafoli, 2011). SERCA1a and SERCA1b are expressed in skeletal muscle, SERCA2a is found in cardiac muscle, whereas SERCA2b is ubiquitous and considered the housekeeping isoform. SERCA3 is instead expressed in a limited number of non-muscle cells. We thus investigated the expression of SERCA2b protein and its subcellular distribution during *in vitro* maturation of oocytes.

Western blot analysis revealed that SERCA2b protein is expressed throughout maturation and comparable levels of protein are also found in *in vivo* matured MII eggs, as estimated by the intensity of SERCA2b reactive bands (artificial units) at different stages of maturation or after ovulation that showed values of 32.9, 39.6, 39.4, 44.6, 40.6 and 41.4 for oocytes at 0, 2, 4, 8, 12 h after initiation of *in vitro* maturation and 14 h after administration of hCG (*in vivo*), respectively (Fig. 6). To examine the subcellular
distribution of SERCA2b, we used EGFP-tagged fusion proteins. We found that
SERCA2b is diffusely distributed in GV oocytes, while it accumulates around the
chromosomes at the GV breakdown (GVBD) stage (Fig. 7A; upper panel). With
progression of maturation, during the transition from the metaphase of first meiosis
(MI) to MII, SERCA2b migrates toward the cortical regions surrounding the meiotic
spindle. Time-lapse imaging of single oocyte also demonstrated the reorganization of
SERCA2b during maturation (Fig. S1). Given that SERCA2b is an ER-resident protein,
we used ER-tagged DsRed cRNA to determine if it co-localized with the ER. We found
that SERCA2b displayed identical localization as ER-DsRed (Fig. 7A; middle panel).
Importantly, expression of higher concentration of RNA (1 µg/µl) to attain expression
levels of SERCA2b-EGFP comparable to endogenous SERCA2b (Fig. 7B; lower panel)
revealed that SERCA2b displayed dense accumulations, clusters, in the subcortical
areas of MII eggs (Fig. 7B; upper panel), which were not observed in GV oocytes.
Further, these clusters were more prominent in in vivo matured MII eggs and curiously
remained detectable after extrusion of the second polar body extrusion (2PB) but
disappeared by the PN stage after fertilization and did not reappear at the subsequent
embryonic stage (2-cell) (Fig. 7C).

Microtubules and microfilaments in a stepwise manner are responsible for the
re-distribution that the ER undergoes during oocyte maturation (FitzHarris et al., 2007).
In accordance with the ER reorganization, inhibition of microtubules polymerization by
colcemid abrogated the accumulation of SERCA2b around the chromosomes at the
GVBD stage (Fig. 7D), but not the subsequent migration to the cortex. On the other
hand, treatment with Lat A, which depolymerized actin microfilaments, did not inhibit migration of SERCA2b toward the GV/spindle area, but prevented its migration to the cortex. Taken together, these results suggest that SERCA2b moves along cytoskeletal tracks during oocyte maturation and is actively re-organized into the cortical area in preparation for fertilization.

SERCA2b overexpression enhances ER Ca\(^{2+}\) uptake in oocytes/eggs.

The increase in \([\text{Ca}^{2+}]_{\text{ER}}\) during oocyte maturation is a well-documented phenomenon (Jones et al., 1995b; Mehlmann et al., 1996; Wakai et al., 2012) likely to contribute to the robust \(\text{Ca}^{2+}\) release during fertilization (Wakai et al., 2012). To address the functional importance of SERCA2b for ER \(\text{Ca}^{2+}\) homeostasis during maturation, we investigated whether enhanced SERCA2b expression altered \([\text{Ca}^{2+}]_{i}\) responses in oocytes/eggs. This overexpression caused a significant increase in \([\text{Ca}^{2+}]_{\text{ER}}\) in GV oocytes, as the amplitude of IO-evoked \(\text{Ca}^{2+}\) release was higher than in control GV oocytes (P< 0.05), albeit far lower than in control MII eggs (Fig. 8A); \([\text{Ca}^{2+}]_{\text{ER}}\) levels in MII eggs were not increased by SERCA2b overexpression. The contribution of SERCA2b to the increase in \([\text{Ca}^{2+}]_{\text{ER}}\) was further demonstrated by inhibiting SERCA2b function using the pharmacological inhibitor CPA, which prevented the increase of \([\text{Ca}^{2+}]_{\text{ER}}\) in control or SERCA2b expressing MII eggs. It should be noted that oocytes overexpressing SERCA2b or matured in the presence of CPA advanced to the MII stage without complications, suggesting that the change in \([\text{Ca}^{2+}]_{\text{ER}}\) levels is dispensable for meiotic progression (Fig. 8B). Taken together, our results suggest that SERCA2b is
required for the increase in $[\text{Ca}^{2+}]_{\text{ER}}$ during maturation.

We next examined the effects of SERCA2b overexpression on IP$_3$-mediated Ca$^{2+}$ release. To do this, IP$_3$ responses were produced by caged-IP$_3$, which was photo-released by a flash of UV light as previously described (Wakai et al., 2012). To exclude the participation of Ca$^{2+}$ influx, experiments were performed in Ca$^{2+}$-free medium. Consistent with our previous data, release of IP$_3$ in control oocytes generated a single [Ca$^{2+}$]$_i$ rise that gradually returned to baseline (Fig. 8C). Nevertheless, in the majority of SERCA2b-overexpressing oocytes, although IP$_3$ release caused a similar [Ca$^{2+}$]$_i$ rise, it returned to basal levels considerably faster and displayed repetitive [Ca$^{2+}$]$_i$ transients prior to reaching baseline; time-lapse imaging shows the regenerative propagation of [Ca$^{2+}$]$_i$ responses (Fig. S2). Collectively, these results demonstrate that SERCA2b actively sequesters [Ca$^{2+}$]$_i$ during IP$_3$-induced Ca$^{2+}$ release.

Lastly, we investigated whether SERCA2b overexpression influences [Ca$^{2+}$]$_{\text{ER}}$ homeostasis during oscillations. The overall patterns of [Ca$^{2+}$]$_i$ oscillations in SERCA2b-overexpressing eggs were indistinguishable from controls, as the duration, amplitude and frequency of [Ca$^{2+}$]$_i$ rises were not statistically different (data not shown). Nevertheless, after the 4 or 5th [Ca$^{2+}$]$_i$ rise, basal [Ca$^{2+}$]$_{\text{ER}}$ levels remained higher in SERCA2b-overexpressing eggs, suggesting that SERCA2b is one of the molecules that maintains [Ca$^{2+}$]$_{\text{ER}}$ during oscillations (Fig. 8D).

Discussion
Long-lasting $[Ca^{2+}]_i$ oscillations are a hallmark of mammalian fertilization and are important to establish the stepwise completion of all events of egg activation. The remarkable features presented here regarding Ca^{2+} homeostasis in mouse eggs include:

1) direct $[Ca^{2+}]_{ER}$ measurements demonstrate that refilling of $[Ca^{2+}]_{ER}$ underpins the sustained and periodical configuration of $[Ca^{2+}]_i$ oscillations; 2) the regulation of $[Ca^{2+}]_{ER}$ is closely associated with Ca^{2+} influx, Ca^{2+} buffering and sequestering mechanisms; 3) SERCA2b undergoes spatial redistribution during oocyte maturation, which is likely to optimize $[Ca^{2+}]_i$ responses during fertilization. Collectively, our results are the first to describe the regulation of $[Ca^{2+}]_{ER}$ in mammalian oocytes and set the stage to investigate how $[Ca^{2+}]_{ER}$ levels affect developmental competence.

Agonist-dependent $[Ca^{2+}]_{ER}$ filling and refilling during oscillations in mouse eggs

Understanding the regulation of $[Ca^{2+}]_{ER}$ is critical to elucidate the mechanisms that underlie $[Ca^{2+}]_i$ oscillations. Using D1ER we show for the first time that $[Ca^{2+}]_{ER}$ undergoes agonist-specific patterns of oscillations. For example, PLCζ-induced $[Ca^{2+}]_i$ oscillations triggered $[Ca^{2+}]_{ER}$ oscillations that displayed two notable characteristics: 1) basal $[Ca^{2+}]_{ER}$ levels progressively decreased during the initial $[Ca^{2+}]_i$ rises, although they settled into steady state after certain time; 2) the recovery of $[Ca^{2+}]_{ER}$ after each $[Ca^{2+}]_i$ rise was accomplished in two phases, an initial rapid phase and a slower second phase. The progressive decrease in basal $[Ca^{2+}]_{ER}$ during initiation of oscillations may be explained at least in part by the large magnitude of the first rises coupled to the apparent inactivation of the Ca^{2+} influx mechanisms at the MII stage (Cheon et al.,
Further, the presence of \([\text{Ca}^{2+}]_i\) oscillations despite decreasing \([\text{Ca}^{2+}]_{\text{ER}}\) levels may be associated with mouse eggs having a highly sensitized IP₃R₁. MII eggs contain the highest \([\text{Ca}^{2+}]_{\text{ER}}\) levels of any stage that combined with increased ambient IP₃ induced by PLCζ enhance IP₃R₁ sensitivity making possible \(\text{Ca}^{2+}\) release in the face of decreasing \([\text{Ca}^{2+}]_{\text{ER}}\). In this context, it can be surmised that during these early stages of fertilization, the refilling of \([\text{Ca}^{2+}]_{\text{ER}}\) does not seem to set the pace of oscillations. Nevertheless, the decrease in \([\text{Ca}^{2+}]_{\text{ER}}\) eventually came to a halt and thereafter \([\text{Ca}^{2+}]_{\text{ER}}\) levels became stable, i.e. after each \([\text{Ca}^{2+}]_i\) rise \([\text{Ca}^{2+}]_{\text{ER}}\) levels fully recover in advance of the next \([\text{Ca}^{2+}]_i\) rise. This stabilization led to high synchrony between initiation of the upstroke of the \([\text{Ca}^{2+}]_i\) rise with initiation of the downstroke of \([\text{Ca}^{2+}]_{\text{ER}}\), which suggests that by this time the refilling of \([\text{Ca}^{2+}]_{\text{ER}}\) becomes the pacemaker of the oscillations. Moreover, at this point, \(\text{Ca}^{2+}\) efflux/influx is in balance with \(\text{Ca}^{2+}\) uptake in/release from the ER. Concerning the refilling phases of \([\text{Ca}^{2+}]_{\text{ER}}\), the rapid phase appears to consist of \(\text{Ca}^{2+}\) reuptake from the cytosol by SERCAs, while the gradual phase may depend on \(\text{Ca}^{2+}\) influx from the external medium, as in the absence of \([\text{Ca}^{2+}]_c\), the latter was markedly extended.

In contrast to PLCζ-induced oscillations, \([\text{Ca}^{2+}]_{\text{ER}}\) levels remain largely unchanged or even enhanced during Sr²⁺- or thimerosal-induced oscillations. In the case of SrCl₂, only the initial, prolonged rise, possibly caused by sensitization of IP₃R₁ by SrCl₂ (Cheek et al., 1993; Zhang et al., 2005), led to a slow decline in \([\text{Ca}^{2+}]_{\text{ER}}\). After that however \(\text{Ca}^{2+}/\text{Sr}^{2+}\) mobilization from the ER appeared to be modest, as by the time of \([\text{Ca}^{2+}/\text{Sr}^{2+}]_i\) levels peaked, \([\text{Ca}^{2+}]_{\text{ER}}\) levels did not show a corresponding reduction, which
suggests that Sr$^{2+}$ from the external milieu may be directly contributing to the cytosolic oscillations. Nevertheless, additional studies are needed to ascertain with higher degree of resolution the timing of [Ca$^{2+}$]$_i$ increases/[Ca$^{2+}$]$_{ER}$ decreases during oscillations. Further, we are unaware of the ability of D1ER to bind Sr$^{2+}$ and the affinity of SERCA for Sr$^{2+}$. Thimerosal produced the most striking results in [Ca$^{2+}$]$_{ER}$, as overall [Ca$^{2+}$]$_{ER}$ levels seemed to increase with progression of oscillations. Thimerosal has been proposed to initiate high frequency [Ca$^{2+}$]$_i$ oscillations by sensitizing IP$_3$Rs (Cheek et al., 1993; McGuinness et al., 1996). Moreover, it has been speculated that by acting on cortical IP$_3$Rs, it might more effectively deplete peripheral stores, thereby promoting near constitutive Ca$^{2+}$ entry (McGuinness et al., 1996). This persistent Ca$^{2+}$ entry may cause rapid saturation of the cytoplasmic stores thereby promoting premature Ca$^{2+}$ release and reducing the interval between spikes. Thimerosal may also directly promote Ca$^{2+}$ influx or reduce Ca$^{2+}$ efflux, further contributing to the rapid refilling of [Ca$^{2+}$]$_{ER}$ and increased basal [Ca$^{2+}$]$_{ER}$ with progression of oscillations, as observed in our studies. Collectively, our results show that oscillations induced by different agonists cause distinct changes in [Ca$^{2+}$]$_{ER}$ levels in mouse eggs and Ca$^2+$ influx-coupled [Ca$^{2+}$]$_{ER}$ refilling may control the frequency of oscillations.

Ca$^{2+}$ influx and buffering mechanisms during oscillations.

Accumulating evidence shows that Ca$^{2+}$ influx is required for the persistence of [Ca$^{2+}$]$_i$ oscillations after fertilization (Lee et al., 2013; Lee et al., 2012; Shirakawa and Miyazaki, 1995; Wang et al., 2012). In the present study, we show that one role of Ca$^{2+}$
influx is to replenish \([\text{Ca}^{2+}]_{\text{ER}}\) levels, as in the absence of \([\text{Ca}^{2+}]_{c}\) the rate of \([\text{Ca}^{2+}]_{\text{ER}}\) refilling was slowed, which led to the premature termination of \(\text{PLC}\zeta\)-induced oscillations. Remarkably, by the time oscillations ceased in these eggs, \([\text{Ca}^{2+}]_{\text{ER}}\) levels were still substantial, as application of IO caused a larger reduction in \([\text{Ca}^{2+}]_{\text{ER}}\) levels, which suggests that IP\(_3\)-sensitive stores are a comparatively small part of the total \(\text{Ca}^{2+}\) stored in the cell. \(\text{Ca}^{2+}\)-free medium also reduced the duration of the first \(\text{PLC}\zeta\)-induced \([\text{Ca}^{2+}]_{i}\) rise, although without affecting the \([\text{Ca}^{2+}]_{\text{ER}}\) recovery slope (Fig. 4C), which suggests that \(\text{Ca}^{2+}\) influx prolongs the first rise possibly by causing \(\text{Ca}^{2+}\)-induced \(\text{Ca}^{2+}\) release. \(\text{Ca}^{2+}\)-free medium did not affect the \([\text{Ca}^{2+}]_{\text{ER}}\) recovery slope after the 1st \([\text{Ca}^{2+}]_{i}\) rise (Fig. 4E), suggesting that \(\text{Ca}^{2+}\) influx does not contribute to refill \([\text{Ca}^{2+}]_{\text{ER}}\) at this stage, which is consistent with the sharp loss of \([\text{Ca}^{2+}]_{\text{ER}}\) levels following this rise.

Importantly, we are still unaware of the channels that mediate \(\text{Ca}^{2+}\) influx during maturation and fertilization, and thus, future studies should examine the type of plasma membrane channel(s) responsible for the influx.

The lag time between the rapid recovery of \([\text{Ca}^{2+}]_{i}\) and the slow refill of \([\text{Ca}^{2+}]_{\text{ER}}\) during oscillations suggests that additional \(\text{Ca}^{2+}\) buffering mechanisms besides SERCA participate in returning \([\text{Ca}^{2+}]_{i}\) to basal levels. There are several possible mechanisms including the \(\text{Na}^{+}/\text{Ca}^{2+}\) exchanger, which is known to be active in mouse eggs (Carroll, 2000; Pepperell et al., 1999), although here we focused on the roles of PMCA and the mitochondria, as in \(\text{Na}^{+}\)-free media mouse eggs maintained normal oscillatory patterns (Carroll, 2000). We used high concentrations of \(\text{Gd}^{3+}\) to examine the contribution of PMCA, and in its presence the duration of the initial \([\text{Ca}^{2+}]_{i}\) rises induced by injection of
PLCζ cRNA was increased and the interval between spikes widened. We interpret the broadening of the initial \([\text{Ca}^{2+}]_i\) rises to be due at least in part to the sensitization of IP₃R1 caused by the retention of \(\text{Ca}^{2+}\) in the cytosol and/or the enhanced SERCA-mediated \(\text{Ca}^{2+}\) reuptake, as the decline of \([\text{Ca}^{2+}]_{\text{ER}}\) levels was also greatly prolonged. The significant initial depletion of \([\text{Ca}^{2+}]_{\text{ER}}\) may require longer refilling thereby prolonging the initial interspike intervals. Interestingly, \(~3\) hours after initiation of the \([\text{Ca}^{2+}]_i\) responses, the oscillations became very frequent and of small amplitude, which may be due to faster than normal \(\text{Ca}^{2+}\) reuptake into the ER and rapid refilling of \([\text{Ca}^{2+}]_{\text{ER}}\) due to the modest \([\text{Ca}^{2+}]_i\) increases. Therefore, our results suggest active participation of PMCA in shaping up the pattern of \([\text{Ca}^{2+}]_i\) oscillations and future studies should identify the molecular presence of PMCAs in mouse eggs.

The mitochondria also contribute to shape \([\text{Ca}^{2+}]_i\) rises during oscillations (Duchen, 2000; Rizzuto et al., 2000), as they can uptake \(\text{Ca}^{2+}\) into the matrix, thereby alleviating the overall cytosolic \(\text{Ca}^{2+}\) load (Rizzuto et al., 1998). In support of this role, inhibition of mitochondrial function in mouse eggs disrupted oscillations and caused a sustained increase in \([\text{Ca}^{2+}]_i\) (Dumollard et al., 2004; Liu et al., 2001), although this effect was reportedly more related to the mitochondria’s ability to produce ATP than their ability to uptake \(\text{Ca}^{2+}\) (Dumollard et al., 2004). Our results support this view, as inhibition of mitochondrial function with Og reduced \([\text{Ca}^{2+}]_{\text{ER}}\) levels, inhibited refilling and terminated oscillations. The increase in basal \([\text{Ca}^{2+}]_i\) is possibly due to a malfunction of SERCA and PMCA pumps. Thus, mitochondrial function seems indispensable for
[Ca^{2+}]_i oscillations, as it is required both to maintain Ca^{2+} levels in the cytosol and in the ER through ATP-driven Ca^{2+} pumping mechanisms.

The roles of SERCAs during oocyte maturation and fertilization.

Despite the functional evidence that SERCA2b is associated with [Ca^{2+}]_i oscillations in mouse eggs (Kline and Kline, 1992), molecular evidence of SERCA2b and its contribution to the filling/refilling of [Ca^{2+}]_{ER} in these cells have not been confirmed. Here, we show that inhibition of SERCA2b during maturation prevents the increase in [Ca^{2+}]_{ER} during this process. Further, we show that the protein remains uniformly expressed from the GV stage, which suggests that mechanisms other than protein expression must account for the increase in [Ca^{2+}]_{ER} during maturation.

SERCA2b undergoes major cellular redistribution during maturation. The overall re-organization is similar to that described for the ER and IP_{3}Rs, both of which form marked clusters in subcortical areas in MII eggs. As a consequence of this reorganization, SERCA2b and IP_{3}R1 are closely apposed, thereby facilitating the refilling of ER Ca^{2+} stores rich in IP_{3}R1, which are likely frequently depleted during fertilization. It is worth noting that SERCA2b clusters remain past the 2PB stage, ~3 hours after fertilization, but disappear by the PN stage, ~8 hours after fertilization, coinciding with the natural duration of the [Ca^{2+}]_i oscillations in these species (Jones et al., 1995a).

Our results also show that inhibition of SERCA2b by pharmacological inhibitors disrupts the refilling of [Ca^{2+}]_{ER}, lowering [Ca^{2+}]_{ER} levels and causing premature
termination of oscillations. Remarkably, despite lower \([\text{Ca}^{2+}]_{\text{ER}}\) levels, most eggs continued to oscillate for an additional 20 to 30 minutes, a finding previously noted by others, which suggests that mouse eggs contain Tg-insensitive/resistant stores that can support oscillations (Kline and Kline, 1992). The contribution of SERCA2b to oscillations was also addressed in overexpression studies. Expression of exogenous SERCA2b reduced the duration of \([\text{Ca}^{2+}]_{\text{i}}\) rises generated by caged IP3 while at the same time stimulating the presence of oscillations. This result is consistent with data in *Xenopus* oocytes where SERCA overexpression increased the frequency of IP3-induced \([\text{Ca}^{2+}]_{\text{i}}\) oscillations and repetitive \([\text{Ca}^{2+}]_{\text{i}}\) rises were observed during the decaying phase of photo-release IP3-induced responses (Camacho and Lechleiter, 1993). We also observed that SERCA2b overexpression lessened the loss of \([\text{Ca}^{2+}]_{\text{ER}}\) levels experienced by mPLCζ cRNA injected eggs.

In conclusion, the present study provides novel insights into the function of \([\text{Ca}^{2+}]_{\text{ER}}\) during oscillations in mouse eggs and shows that agonists have distinct impact on the refilling and overall load of \([\text{Ca}^{2+}]_{\text{ER}}\). We also found that \text{Ca}^{2+} \text{-influx} and the function of \text{Ca}^{2+}\text{-ATPase} pumps and mitochondria are all key regulators of \([\text{Ca}^{2+}]_{\text{ER}}\) during maturation and fertilization. Future studies should identify the channels that regulate \text{Ca}^{2+} \text{-influx} into oocytes and eggs and the regulatory mechanisms that modulate the function of the \text{Ca}^{2+} \text{pumps} and the mitochondria, as this knowledge will make possible to manipulate \([\text{Ca}^{2+}]_{\text{ER}}\) levels to ascertain its impact on maturation and development.

Acknowledgements
The authors want to thank Dr. Roger Tsien’s lab (UCSD) and Dr. M. Trebak (Albany Medical College) for sharing the D1ER and pDsRed2-ER constructs, respectively. We also thank Ms. Changli He and Banyoon Cheon for technical assistance. These studies were supported in part by grant HD051872 from NIH to R.A.F.
References

Wolvetang, E. J., Johnson, K. L., Krauer, K., Ralph, S. J. and Linnane, A.

Figure legends

Fig. 1. Measurement of $[\text{Ca}^{2+}]_{ER}$ in oocytes/eggs using cameleon D1ER

(A) Confocal images of D1ER fluorescence in GV oocytes and MII eggs. (B and C) Emission ratios of D1ER (YFP/CFP; left axis) after addition of 5 µM ionomycin (IO) in Ca$^{2+}$ free medium. The intensities of CFP fluorescence and YFP fluorescence shifted in opposite directions (B). To perform simultaneous measurements of $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$, the latter was recorded using Rhod-2 (red trace, right axis) (C).

Fig. 2. $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$ responses during PLCζ-induced oscillations

(A-D) Representative Ca$^{2+}$ responses induced by injection of mouse PLCζ cRNA (0.05 µg/µl) (n=18). $[\text{Ca}^{2+}]_{ER}$ (black trace, left axis) and $[\text{Ca}^{2+}]_i$ (red trace, right axis) undergo simultaneous but opposite changes in concentration during oscillations (A). (B-D) Magnified views of 1st and 2nd (B), 4th to 6th (C) and 11th to 14th Ca$^{2+}$ responses induced by injection of PLCζ cRNA.

Fig. 3. $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$ during Sr$^{2+}$- and thimerosal-induced oscillations
(A and B) Simultaneous measurements of changes in $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$ in eggs exposed to 10 mM SrCl$_2$ (n=16) (A) or 50 µM thimerosal (n=20) (B). Right panels are magnified views of squares areas on the main tracings.

Fig. 4. $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$ responses induced by PLCζ cRNA injection in the absence of $[\text{Ca}^{2+}]_e$.

(A and B) Representative traces of Ca^{2+} responses induced by mouse PLCζ cRNA injection (n=20) (A) or in uninjected controls (n=5) (B) in eggs maintained in Ca^{2+}-free conditions. $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$ were monitored as in previous experiments. When oscillations ceased, 2 µM IO was applied. (C-E) Comparisons of several parameters of $[\text{Ca}^{2+}]_i$ rises of PLCζ cRNA injection-induced oscillations in eggs oscillating in Ca^{2+}-containing (n=17) or in Ca^{2+}-free-media (n=20). The recovery of $[\text{Ca}^{2+}]_{ER}$ after the first and second $[\text{Ca}^{2+}]_i$ transients was estimated by comparing the slope of refilling and graphed as changes in emission ratios of D1ER per second (C), the interval between first and second $[\text{Ca}^{2+}]_i$ rises (sec) (D) and duration of first $[\text{Ca}^{2+}]_i$ rise (F). Error bars represent SEM. Bars with asterisks represent significant differences between groups (*P < 0.005; **P<0.001).

Fig. 5. Inhibition of the Ca^{2+} buffering/sequestering capacity of eggs alters $[\text{Ca}^{2+}]_{ER}$ and $[\text{Ca}^{2+}]_i$ responses during oscillations.

(A-C) Representative traces of the changes in $[\text{Ca}^{2+}]_{ER}$ (YFP/CFP; black trace) and $[\text{Ca}^{2+}]_i$ (Rhod-2; red trace) during PLCζ-induced oscillations under conditions where
Ca\(^{2+}\) efflux/influx (n=22) (A), mitochondrial function (n=16) (B) and SERCA (n=18) (C) were pharmacologically inactivated. (A) Simultaneous measurements were performed in Ca\(^{2+}\)-free HBSS medium containing 5 mM GdCl\(_3\). (B and C) Og and Tg were added to oscillating eggs at concentrations of 5 µM and 20 µM, respectively.

Fig. 6. SERCA2b is expressed throughout oocyte maturation.
Western blot analysis of oocytes at different stages of maturation. Lysates of one hundred oocytes were probed with an antibody specific for SERCA2b. A representative result of 2 similar independent experiments is shown.

Fig. 7. SERCA2b undergoes reorganization during oocyte maturation and forms cortical clusters in MII eggs.
(A) The subcellular distribution of SERCA2b and ER was analyzed using EGFP (upper panel) and DsRed-tagged (middle panel) fusion proteins, respectively. Representative images taken at the equatorial plane were obtained and are shown here. The observations were performed at 0, 4, 8 and 12 h after initiation of in vitro maturation, which corresponded with GV, GVBD, MI and MII stages, respectively; corresponding DIC images are shown in the bottom panel. (B) Images of high expression of SERCA2b-EGFP in GV oocytes and in vitro matured MII eggs (upper panel), which was achieved by injection of 1 µg/µl cRNA, and higher magnification views of the selected area (middle panel) where differences in SERCA2b distribution between the two stages can be observed. Levels of SERCA2b-EGFP expression were confirmed by
western blot analysis (50 oocytes/eggs per lane) using antibody specific to SERCA2b (lower panel). (C) Expression of SERCA2b-EGFP in in vivo matured MII eggs, 2PB or PN zygotes and 2-cell embryo. (D) GV oocytes expressing SERCA2b-EGFP were matured in the presence of 100 ng/ml colcemid or 1 µM Lat A and observations were performed at 4 and 12 h of in vitro maturation and typical equatorial sections are shown.

Fig. 8. SERCA2b overexpression alters Ca\(^{2+}\) responses in oocytes/eggs

(A) \([\text{Ca}^{2+}]_{\text{ER}}\) levels were estimated from \([\text{Ca}^{2+}]_{\text{i}}\), responses induced by addition of 2 µM IO in Ca\(^{2+}\) free medium and representative traces of Fura-2 emission ratios are shown. The comparison of fluorescent \([\text{Ca}^{2+}]_{\text{i}}\) peaks between stages is shown in a bar graph to the right of the traces (n=18-26). Error bars represent SEM and bars with different superscripts are significantly different (P < 0.05). (B) Meiotic progression to the MII stage indicated as % of oocytes with extrusion of the first polar body (n=16-23). (C) IP\(_3\)-induced Ca\(^{2+}\) release obtained after photolysis of cIP\(_3\) release (0.25mM) by a flash of UV light (arrow; 0.1 second). Representative traces of increases of Fluo-4 fluorescence caused by cIP\(_3\) in control (black trace; n=29) and in oocytes overexpressing SERCA2b (red trace; n=24) are shown. The percentage of oocytes showing repetitive \([\text{Ca}^{2+}]_{\text{i}}\) rises were compared and displayed in a bar graph to the right. Asterisk indicates statistical significance (*P < 0.01, Chi-squared test). (D) The relative emission ratio of D1ER (the value at the beginning of measurement was defined as 1; black line) and \([\text{Ca}^{2+}]_{\text{i}}\) (Rhod-2; red trace) during PLC\(\zeta\)-induced oscillations were
measured and representative traces are shown in control (n=14) and in SERCA2b
overexpressing eggs (n=20). Bar graphs show comparison of [Ca^{2+}]_{ER} basal levels ~180
minutes after initiation of monitoring. Asterisk indicates statistical significance (*P <
0.05, t-test).
Figure 1

A

GV

MII

B

0 mM Ca$^{2+}$

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Fluorescence intensity

YFP / CFP

CFP

YFP

YFP / CFP

5 min

C

0 mM Ca$^{2+}$

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Rhod-2 (F / F0)

YFP / CFP

CFP

YFP

YFP / CFP

5 min
Figure 2

A mPLCz

B 1st - 2nd

C 4th - 6th

D 11th - 14th

Journal of Cell Science • Accepted manuscript
Figure 4

A mPLCz

No stimulation

Rhod-2 (F / F0)

0 mM Ca^{2+}

Slope (D1ER ratio / sec)

1st 2nd

0 mM Ca^{2+} 1.7 mM Ca^{2+}

Duration (sec X10^3)

Interval (sec x 10^3)

1.7 mM Ca^{2+} 0 mM Ca^{2+}

* **
Figure 5

A mPLCz

0 mM Ca$^{2+}$, 5mM Gd$^{3+}$

Rhod-2 (F / F0)

Time (min)

1.3
1.2
1.1
1.0
0.9
0.8

mPLCz

1.7 mM Ca$^{2+}$

Rhod-2 (F / F0)

Time (min)

Og

B mPLCz

1.7 mM Ca$^{2+}$

Rhod-2 (F / F0)

Time (min)

Tg

C mPLCz

1.7 mM Ca$^{2+}$

Rhod-2 (F / F0)

Time (min)
Figure 8

A

![Graph showing Amplitude (ΔF/F₀) for GV, GV-SERCA2b, MII, MII-SERCA2b, and MII-CPA.](image)

B

![Graph showing 1st PB extrusion (%).](image)

C

![Graph showing Repetitive Ca²⁺ (%).](image)