Cullin5 destabilizes Cas to inhibit Src-dependent cell transformation

Anjali Teckchandani 1,*, George S. Laszlo1,*,†, Sergi Simó1, Khyati Shah1,†, Carissa Pilling1,2, Alexander A. Strait1,†, and Jonathan A. Cooper1,2,‡

1 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, Washington 98109
2 Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195

* Equal contributions.
† Current addresses: GSL: Clinical Research Division, Fred Hutchinson Cancer Research Center; KGS: Biocontrol Systems, Bellevue, Washington 98005; AAS: Biomedical Sciences Program, University of Colorado, Denver, Colorado 80217
‡ Communicating author: jcooper@fhcrc.org
Phone: 206-667-4454
FAX: 206-667-6522
Abstract

Phosphorylation-dependent protein ubiquitylation and degradation provides an irreversible mechanism to terminate protein kinase signaling. Here we report that mammary epithelial cells require Cullin 5 RING E3 ubiquitin ligase complexes (Cul5-CRLs) to prevent transformation by a Src-Cas signaling pathway. Removing Cul5 stimulates growth factor-independent growth and migration, membrane dynamics, and colony dysmorphogenesis, dependent on the endogenous tyrosine kinase, Src. Src is activated in Cul5-deficient cells, but Src activation alone is not sufficient to cause transformation. We found that Cul5 and Src together stimulate degradation of the Src substrate, p130Cas (Crk-associated substrate). Phosphorylation stimulates Cas binding to the Cul5-CRL adaptor protein SOCS6 and consequent proteasome-dependent degradation. Cas is necessary for the transformation of Cul5-deficient cells. Either SOCS6 knockdown or a degradation-resistant Cas mutant stimulates membrane ruffling but not other aspects of transformation. Our results show that endogenous Cul5 suppresses epithelial cell transformation by several pathways, including inhibiting Src-Cas-induced ruffling through SOCS6.
Introduction
Cullin RING ligase (CRL) complexes constitute the largest known class of E3 ubiquitin ligases (Deshaies and Joazeiro, 2009; Petroski and Deshaies, 2005). Each CRL contains a Cullin protein backbone that forms a bridge between a RING protein, and one of a large number of alternative substrate-specific adaptors. Substrate binding to a CRL stimulates mono- or polyubiquitylation that, in most cases, targets the substrate to the 26S proteasome for degradation. CRL substrates include oncogenic and anti-oncogenic proteins, so CRLs can inhibit or stimulate transformation depending on their substrate specificity. Consequently, genes encoding CRL polypeptides are often altered in cancer cells (Lee and Zhou, 2010). For example, cancer cells often have loss of function mutations in Fbw7, VHL and Keap1, which target oncoproteins to Cul1, Cul2 and Cul3 respectively, while Cul4A, which ubiquitylates several tumor suppressors, is commonly amplified or over-expressed. Adenoviruses and Kaposi’s sarcoma-associated herpesvirus encode Cul5 adaptors that bind to the p53 tumor suppressor, thereby inducing p53 degradation (Lee and Zhou, 2010). Cul5 thus mediates oncogenesis by these viruses. However, it is not known whether Cul5 targets oncogenic proteins or tumor suppressors in the absence of virus infection.

Cul5 resembles other Cullins in the large number of alternative adaptor proteins it uses to select substrates (Kile et al., 2002). Most Cul5 adaptors contain a sequence called a SOCS box that binds a linker protein, Elongin C (EloC, Tceb1) and the N-terminus of Cul5 (Kile et al., 2002). EloC also binds EloB (Tceb2), and Cul5 binds RING protein Rbx2 (Rnf7), resulting in adaptor-EloBC-Cul5-Rbx2 CRLs (Huang et al., 2009; Kamura et al., 2004). The mammalian genome encodes approximately forty SOCS box proteins, which may be classified according to their substrate-interaction domains, such as SH2 domains, WD40 motifs, SPRY domains, Ankyrin repeats and Tubby-like domains (Okumura et al., 2012). These substrate-interaction domains in turn bind a variety of substrates. This complexity has hindered the discovery of specific substrates and understanding their biological significance.

One family of SOCS box proteins contains SH2 domains and can thus target substrates containing phosphotyrosine (pY) degrons to Cul5-CRL for polyubiquitylation (Okumura et al., 2012; Pawson et al., 2001). There are eight SOCS-SH2 family members, named SOCS1-7 and CisH. Of these, SOCS1-3 and CisH have been intensively studied in leukocytes where they are induced by cytokines and chemokines. They inhibit JAK family tyrosine kinase signaling by Cul5-independent as well as Cul5-dependent mechanisms. The remaining family members, SOCS4-7, are widely expressed in many tissues and inhibit signaling by cytokines and peptide growth factors including insulin, Steel factor and EGF. The full complexity of SOCS-Cul5 CRL substrates is unknown.
Expression of *cul5* and several genes encoding SOCS-SH2 proteins is decreased in some types of human cancer, suggesting that SOCS-Cul5 CRL substrates may include oncogenic proteins (Elliott et al., 2008; Fay et al., 2003; Hampton et al., 1994; Lai et al., 2010; Sasi et al., 2010; Wang et al., 2006). Tyrosine kinases tend to be oncogenic, and are frequently activated in human cancers (Hunter, 2009). Loss of function mutations, loss of heterozygosity and genetic silencing of *cul5* and *socs* genes in cancer cells may therefore be selected because their loss inhibits turnover of pY proteins and stimulates oncogenic signaling.

Src, the protein encoded by the *src* proto-oncogene, is a tyrosine kinase that is strongly implicated in human cancers (Ishizawar and Parsons, 2004; Krishnan et al., 2012). Src is negatively regulated by the ubiquitin-proteasome pathway: inactive Src is stable but active Src is polyubiquitylated and degraded (Hakak and Martin, 1999; Harris et al., 1999; Imamoto and Soriano, 1993; Nada et al., 1993). The ubiquitin ligase has been unclear. We and others have found that Cul5 knock-down in mouse fibroblasts stabilizes active Src, suggesting that Cul5-CRLs are required for Src turnover in these cells (Laszlo and Cooper, 2009; Pan et al., 2011). Moreover, Cul5 knockdown induces transformation of fibroblasts in which Src is also genetically activated, either by *src* gene mutation or by deletion of the *csk* gene, which encodes a Src-inhibitory kinase (Laszlo and Cooper, 2009). The transformation of Cul5-deficient, *src* mutant cells is not due simply to the increased activity of Src, suggesting that additional Cul5 substrates are also critical. However, these substrates have not been identified. Two important questions remain unanswered: Are Cul5-deficient cells only transformed if Src is also activated? And, which Cul5 substrates drive transformation when Cul5 is absent?

We have now found that inhibiting *cul5* expression in human mammary epithelial cells induces transformation. Transformation does not require genetic activation of Src, but endogenous Src activity is increased and required for transformation. However, ectopic Src does not induce transformation when Cul5 is present, suggesting that other Cul5 substrates are involved. We found that removing Cul5 stabilizes p130Cas (also known as breast cancer anti-estrogen resistance 1, BCAR1). Cas is a substrate for Src and other tyrosine kinases that interacts with focal adhesion proteins and becomes tyrosine phosphorylated in response to cytoskeletal tension, binding to adaptors that regulate small GTPases (Bouton et al., 2001; Matsui et al., 2012). Cas is important for the motility and proliferation of cancer cells (Cabodi et al., 2006; Tornillo et al., 2011; van der Flier et al., 2000). Cas is required in Cul5-deficient cells for growth factor-independent proliferation and increased migration. The Cul5 adaptor SOCS6 binds Cas, phosphorylated at specific tyrosine residues, and stimulates Cas turnover. Removal of SOCS6 or expression of degradation-resistant Cas stimulates membrane ruffling but not other aspects of the Cul5-deficient phenotype. The results suggest that Cul5 suppresses the
transformation of epithelial cells by targeting phosphorylated Cas and other unidentified Src substrates for degradation.

Results

Inhibition of Cul5 expression transforms epithelial cells in vitro

Two lines of evidence suggest that Cul5 may be a tumor suppressor: first, Cul5 expression is reduced in several carcinomas, and second, expression of Cul5 (VACM1) in some cancer cell lines inhibits proliferation or survival (Fay et al., 2003; Johnson et al., 2007; Lai et al., 2010). To further test whether endogenous Cul5 inhibits transformation, we used RNA interference to knockdown Cul5 in the non-tumorigenic, spontaneously-immortalized human mammary cell line MCF10A, which has been used extensively for transformation studies (Debnath and Brugge, 2005; Muthuswamy et al., 2001). Cells were infected with retroviruses that express a puromycin-resistance gene and short-hairpin RNA (shRNA) targeting Cul5 or, as a control, shRNA against Cul2. We selected puromycin-resistant, polyclonal cell lines and confirmed that Cul5 expression was inhibited (Fig 1A). We then tested whether Cul5-deficient cells were transformed.

Cul5-deficient cells grew similarly to control cells in normal media, which contain epidermal growth factor (EGF), but grew significantly better than control cells in the absence of EGF (Fig 1B, C). Stable knockdown of Rbx2, the RING protein needed by Cul5 but not other Cullins, also allowed EGF-independent growth, while knockdown of Cul2 did not (Supp Fig S1A) (Huang et al., 2009; Kamura et al., 2004). To control for possible off-target effects of the Cul5 shRNA, we performed transient knockdown of Cul5 with siRNA targeting different sequences in cul5 mRNA. Again, EGF-independent growth was significantly stimulated (Supp Fig S1B). This suggests that endogenous Cul5 specifically inhibits EGF-independent cell proliferation.

Transformation of MCF10A cells can be assayed by colony formation in Matrigel (Debnath et al., 2003). Normal cells form hollow colonies comprised of dead and dying inner cells and an outer, quiescent, polarized epithelium. In contrast, cells transformed by activated viral Src (vSrc), the combination of CyclinD1 and Bcl2, or activated tyrosine kinase receptors, form solid colonies containing cells that continue to proliferate, have decreased apoptosis, and are poorly polarized (Debnath et al., 2002; Reginato et al., 2005; Wrobel et al., 2004). Like other transformed MCF10A cells, Cul5-deficient cells formed dysmorphic colonies that were larger than control and showed increased proliferation (Fig 1Da,b, Ki67, red) and reduced apoptosis (Fig 1Dc,d, Caspase 3, green). The Golgi was not oriented consistently to the interior (Fig 1Dc,d, GM130, red) and some cells lacked basal α6 integrin (Fig 1De,f, green). E-cadherin was more diffuse than in control colonies (Fig 1De,f, red).
To investigate whether Cul5 regulates cell motility, we performed migration assays using scratch wounds and Boyden chambers. Confluent monolayers of control and Cul5-deficient cells were transferred to EGF-deficient medium, wounded, and migration was monitored by phase-contrast microscopy. Cul5-deficient cells migrated more rapidly than control cells (Fig 1G, H) but remained as a sheet and did not undergo the epithelial-mesenchymal transition (Wrobel et al., 2004). Single cell migration towards EGF in a Boyden chamber was also increased when Cul5 was absent (Fig 1I). Migration was also stimulated when Cul5 was transiently knocked-down using siRNAs targeting different regions of Cul5 RNA (see below), reducing the chance of off-target effects.

Cul5-deficient cells were morphologically altered when migrating or sub-confluent (Fig 2, Supp Fig S1C,D). Characteristically, they exhibited an elongated leading lamellipodium and phase-dark regions indicating membrane ruffling (Fig 2A). Increased ruffling was confirmed by time-lapse micrography of migrating cells (data not shown). Enlarged lamellipodia and ruffling were also evident when Cul5-deficient cells were plated in EGF-deficient medium at low density (Supp Fig S1C,D). Cul5-deficient cells contained many tiny contact sites, detected with antibodies to vinculin, FAK and phosphotyrosine (pY) Cas, in contrast to the prominent focal adhesions of normal cells (Fig 2B). Stress fibers were also decreased (Fig 2B,C). However, the Golgi apparatus was oriented in front of the nucleus, suggesting that Cul5-deficient cells polarized normally during migration (Fig 2C).

Taken together, these results suggest that endogenous Cul5 suppresses several hallmarks of transformation, including EGF-independent proliferation, colony dysmorphogenesis, EGF-independent migration, disruption of focal adhesions, and the formation of an extended, ruffling, lamellipodium.

Src is required for transformation of Cul5-deficient cells

Cul5 is required for the degradation of activated but not inhibited Src in fibroblasts (Laszlo and Cooper, 2009; Pan et al., 2011). We tested whether endogenous Cul5 also regulates Src in MCF10A cells. Western blotting showed that Src protein levels increased in Cul5-deficient MCF10A cells, even though mRNA levels, measured by RT-PCR, were unaltered (Fig 3A, Supp Fig S2A). The Src protein increase was quite variable between experiments, but Src activity, detected using a phosphoepitope antibody to autophosphorylation site Tyr416, was consistently increased (Fig 3A). The results suggest that Cul5 represses Src activity, perhaps partly by regulating proteins that activate Src as well as by regulating Src expression or stability.

Some oncogenes require endogenous Src to transform MCF10A cells (Wrobel et al., 2004). We tested whether Src is required for transformation of Cul5-deficient MCF10A cells.
were introduced into MCF10A cells in various combinations and polyclonal populations selected. Src shRNA inhibited Src expression and suppressed the EGF-independent proliferation and migration induced by Cul5 knockdown (Fig 3B, Supp Fig S2B). Similar results were obtained whether Cul5 shRNA was expressed from a puromycin-resistant vector and Src shRNA from a hygromycin-resistant vector or vice versa (data not shown). To control for off-target effects, cells were transiently transfected with siRNAs targeting Cul5 and Src and migration assayed. Src was required for the increased migration of Cul5-deficient cells (Supp Fig S2C, D). The pharmacological Src inhibitor, SU6656, restored normal acini morphogenesis to Cul5-deficient cells (Supp Fig S2E). These results indicate that the increased migration and dysmorphic colonies of Cul5-deficient cells require Src kinase activity.

To test whether Src activation might be sufficient to stimulate MCF10A cell proliferation and migration, we made use of an MCF10A cell line expressing a 4-hydroxytamoxifen (4HT)-regulated vSrc-ER (estrogen receptor) fusion protein (Reginato et al., 2005). These cells are not transformed in normal media, but become transformed in the presence of 4HT (Reginato et al., 2005). We found that vSrc-ER was active even in the absence of 4HT, and stimulated further by a low dose of 4HT, as judged by blotting for pY in total proteins or pY-Cas (Fig 3C, Supp Fig S2F). Despite having greater Src activity than Cul5-deficient cells, the vSrc-ER cells did not proliferate or migrate faster than control cells (Fig 3D). Although it is possible that different substrates are phosphorylated by vSrc-ER and activated endogenous Src, it seems likely that Cul5 suppresses transformation by inhibiting other proteins in addition to Src.

Cas is required for transformation of Cul5-deficient cells

We searched for other proteins that might be Cul5 substrates and contribute to the transformation of Cul5-deficient cells. Cul5 has the potential to ubiquitylate many substrates, depending on which substrate adaptor is bound. We speculated that other Cul5 substrates that contribute to transformation may be Src substrates and contain pY. Such pY Cul5 substrates are likely to be recognized by the SH2 domain-containing SOCS adaptor proteins. RT-PCR analysis indicated that SOCS2, 4, 5 and 6 are more abundant at the RNA level than other SH2-SOCS genes in MCF10A cells (Supp Fig S3A). We then tested whether combined knockdown of SOCS2, 4, 5 and 6 with siRNA would recapitulate the effects of Cul5 siRNA. Indeed, combined siRNA against SOCS2, 4, 5 and 6 stimulated EGF-independent proliferation and migration to a similar extent as Cul5 siRNA (Fig 4A). This suggests that Cul5 suppresses proliferation and migration by inhibiting pY proteins through SH2-SOCS adaptors.

We screened for pY-containing proteins that might be targets for SH2-SOCS-Cul5 CRLs. Briefly, pY peptides were recovered from control, Cul5- and Cul2-deficient MCF10A cells and identified by mass spectrometry (Zhang et al., 2005). Phosphopeptides corresponding to pY128
and pY249 of p130Cas were identified a total of 18 times in the sample from Cul5-deficient cells but were not detected in control or Cul2-deficient cells (Supp Fig S3B). Western blotting confirmed that Cas levels were increased in Cul5-deficient cells and when Cul5 or SOCS2, 4, 5 and 6 were transiently knocked down with siRNA (Fig 4B, C). Levels of pY-Src were also increased when Cul5 or SOCS2, 4, 5 and 6 were transiently knocked down (Fig 4C). Cas mRNA levels did not increase detectably (Fig S2A). These results suggest that Cul5 inhibits Cas protein expression post-transcriptionally.

Cas is a Src substrate implicated in transformation (Matsui et al., 2012). Cas knockout mouse fibroblasts resist transformation by active mutant Src, and Cas knockdown in breast cancer cells suppresses transformation. Cas over-expression induces membrane ruffling and stimulates invasion by Src-transformed fibroblasts and cancer cells (Bouton et al., 2001; Cabodi et al., 2006; Matsui et al., 2012; Tornillo et al., 2011; van der Flier et al., 2000). We therefore tested whether Cas is required for transformation of Cul5-deficient MCF10A cells. Retroviruses were used to knockdown Cas in control and Cul5-deficient cells (Supp Fig S3C). Cas knockdown inhibited the EGF-independent proliferation and migration of Cul5-deficient cells (Fig 4D). In addition, Cas knockdown restored the normal lamellipodium length and ruffle area to Cul5-deficient cells (Fig 4E). To control for off-target effects, transient knockdown of Cas with siRNA also restored normal migration (Supp Fig S3D, E). Therefore, Cas, like Src, is required for the increased proliferation and migration of Cul5-deficient cells, suggesting that Src and Cas may work in the same signaling pathway.

Cul5 regulates Cas protein stability and binds Cas through SOCS6

To test whether Cas stability is regulated by Cul5 when Src is active, we used matched mouse fibroblast lines derived from a csk mutant embryo. Either kinase-defective Csk (R222) or wildtype Csk (Csk+) was re-expressed, to de-repress and repress Src, respectively (Hakak and Martin, 1999; Howell and Cooper, 1994). Cas phosphorylation, assayed with anti-pTyr165 antibodies, was greater in CskR222 cells than Csk+ cells, as expected (Fig 5A, lanes 1 and 3). We generated lines of CskR222 cells expressing vector or shRNA against Cul5. When protein synthesis was inhibited with cycloheximide, Cas was rapidly degraded, dependent on Cul5 (Fig 5A, lanes 3, 4, 7, 8). Cas half-life was approximately 2-3 h in CskR222 cells but greater than 10 h when Cul5 was absent or Src was repressed (Fig 5B, Supp Fig S4A). Cas turnover was inhibited by epoxomycin, a proteasome inhibitor (Fig 5A, lanes 5, 6). Cas was stable in Csk+ cells (Fig 5A, Supp Fig S4A). Although it was not technically feasible to show Cul5-dependent Cas ubiquitylation, the results are consistent with the hypothesis that Src promotes Cul5- and proteasome-dependent degradation of Cas.
Physical interaction between Cas and Cul5 was assayed by co-expressing HA-tagged Cas with T7-tagged, inactivated Cul5 mutant (Cul5 K799R) in Cul5-deficient CskR222 cells. HA-tagged, pY Cas co-precipitated with T7-tagged Cul5 (Fig 5C).

We tested which SH2-SOCS proteins can bind to pY Cas. T7-tagged SH2-SOCS proteins were transiently over-expressed and, after brief treatment with pervanadate to inhibit pY phosphatases and increase pY Cas, SOCS proteins were immunoprecipitated and Western blotted for endogenous Cas. SOCS6 was the only SOCS protein that co-immunoprecipitated with Cas (Fig 5D). Similarly, co-transfection of T7-SOCS proteins with HA-Cas into Cul5-deficient, CskR222 MEFs revealed that Cas binds to SOCS6 but not other SOCS proteins (Supp Fig S4B). More Cas-SOC6 binding was detected when Src was activated or phosphorylation was increased with pervanadate, while binding decreased when Src was inhibited with PP2 (Supp Fig S4C). These results are consistent with Cas binding SOCS6, stimulated by Src. Cas is a scaffold protein with an N-terminal SH3 domain, central region and C-terminal focal adhesion targeting (FAT) domain (Fig 5E) (Matsui et al., 2012). The central region contains a fifteen repeated tyrosine sequences YxVP, followed by a PxxP binding site for the Src SH3 domain and the sequence YDYV that when phosphorylated, binds the Src SH2 domain. After Src binding, increased phosphorylation of the pYxVP repeats induces binding to a variety of signaling proteins, including Crk and Nck, which link to multiple downstream pathways. We tested whether the fifteen YxVP tyrosines or the YDYV tyrosines were required for binding to SOCS6. HA-tagged Cas wildtype, 15F (all YxVP sites mutated to FxVP) and FF (YDYV mutated to FDFV) were co-transfected with T7-SOCS6 into Csk-mutant, Cul5-deficient MEFs and binding measured by co-immunoprecipitation. The FF mutation completely inhibited and the 15F mutation partly inhibited Cas binding to SOCS6 (Fig 5F). CasFF was also expressed at significantly higher level than wildtype or Cas15F when transiently transfected into cells with Src, consistent with reduced degradation (Fig 5G).

Taken together, the results suggest that Src-catalyzed phosphorylation of Cas at the YDYV sequence stimulates binding to SOCS6 and Cul5-dependent Cas degradation.

SOCS6 regulates membrane ruffling by targeting Cas for degradation

Our results so far suggested that Cas is necessary for the increased migration of Cul5-deficient cells. To test whether Cas is sufficient for the increase in migration, we stabilized Cas and other SOCS6-Cul5 CRL substrates by knocking down SOCS6. We first confirmed that SOCS6 siRNA increased the steady state level of Cas but not Src, suggesting that Src is a target for other SOCS-Cul5 CRLs (Fig 6A). The increase in Cas is unlikely to be due to off-target effects because each of five individual SOCS6 siRNAs increased Cas and inhibited expression of socs6 mRNA but not other socs mRNAs (Supp Fig S4D and data not shown). We then tested
whether the stabilization of Cas by SOCS6 knockdown was sufficient to stimulate migration. While SOCS6 knockdown did not stimulate migration (Supp Fig S4E), membrane ruffling was significantly increased, suggesting that stabilization of Cas or another SOCS6 substrate is sufficient for ruffling (Fig 6B, C). To test whether Cas or another SOCS6 substrate stimulates ruffling, we established Cas-deficient MCF10A cell lines re-expressing CasWT, FF or 15F, fused to YFP. CasWT was expressed at similar level to endogenous Cas in Cul5-deficient MCF10A cells (Supp Fig S4F). Degradation-resistant CasFF was expressed at higher level, consistent with increased stability. Cas (re)-expression did not stimulate migration (Supp Fig S4E) but did stimulate ruffling (Fig 6B, C). Ruffling was stimulated most by degradation-resistant CasFF, less by CasWT, and least by signaling-defective Cas15F. Whether CasFF stimulates ruffling more strongly than CasWT because its expression is increased or its turnover is decreased is unclear.

The results suggest that SOCS6-Cul5 inhibits membrane ruffling at the leading edge of migrating cells by stimulating the down-regulation of pY-Cas, and that increased migration and other phenotypes of Cul5-deficient cells involve other SOCS proteins and other substrates (Fig 6D).

Discussion

The evidence suggests that SOCS-Cul5 CRLs have vital functions in normal epithelial cells by restraining tyrosine kinase signaling and inhibiting Src-dependent transformation. Our data suggest a model in which different SOCS adaptors target phosphorylated Src substrates for down-regulation by the ubiquitin/proteasome system (Fig 6D). When Cul5 expression is reduced, these phosphoproteins are degraded less rapidly. The net accumulation of each substrate is small because only the phosphorylated subpopulation is down-regulated, but the increases in several pY proteins combine to cause transformation. One key Cul5 substrate is Cas, which binds to SOCS6 contingent on Src-dependent phosphorylation at a pYDYV Src-SH2 binding site involved in Cas activation. The dependence of activation and degradation on the same phosphorylation site means that Cas molecules are only degraded after signaling, and the pool of unphosphorylated Cas is unaffected until it too becomes phosphorylated. This delayed negative feedback system may provide temporal and spatial control of Cas activity that would not be possible if Cas was inactivated solely by pY phosphatases. In the absence of SOCS6 or Cul5, increased Cas activity stimulates dynamic membrane ruffling at the leading edge of migrating cells. Other SOCS proteins and their substrates presumably contribute to other aspects of transformation. By binding to proteins that contain pY, SH2-SOCS-Cul5 CRLs are exquisitely adapted to inhibit the transforming actions of deregulated tyrosine kinases.
Suppression of Src-dependent transformation by SOCS-Cul5 CRLs

Unlike other Cullins, Cul5 is restricted to multi-cellular animals (Hampton et al., 1994). SOCS genes also arose in metazoans, with four ancestral SOCS genes (SOCS1/2/3/CisH, SOCS4/5, SOCS6 and SOCS7) present in the sea anenome Nematostella and four to eight members in Bilateria (Liongue et al., 2012). The tyrosine kinase and phosphatase families also burgeoned in metazoans (King et al., 2008), raising the possibility that Cul5 may have evolved to counteract tyrosine kinase signaling. Indeed, we found here that Cul5 suppresses epithelial cell transformation. Cul5-deficient cells formed dysmorphic acini, with decreased polarity, reduced apoptosis and increased proliferation, when cultured in semi-solid media. Their migration and proliferation was increased in the absence of EGF, and their morphology was altered, including a greatly extended lamellipodium, highly dynamic membrane ruffling, and reduced focal adhesions and stress fibers. These phenotypes may be compared with those of MCF10A cells transformed by other mechanisms. Single genetic manipulations regulate proliferation, invasion, apoptosis and cell polarity to different degrees. For example, over-expressing cyclin D1 induces excess cell proliferation but not protection from apoptosis, while Bcl2 protects from apoptosis without increasing proliferation. Combined cyclin D1 and Bcl2 expression generates filled multi-acinar structures similar to those created by activated mutant HER2, autocrine activated CSF1R (Debnath and Brugge, 2005), or, as we show here, knock down of Cul5. Like transformation by HER2 or CSF1R, transformation of Cul5-deficient cells requires endogenous Src. This suggests that Src activation may be sufficient for transformation. Indeed, highly active mutant Src causes similar changes in acinar morphogenesis (Reginato et al., 2005), and Src is a direct substrate for PTPN23, a pY phosphatase that inhibits Src and inhibits invasion by MCF10A cells (Lin et al., 2011). However, the increased migration and dysmorphic colonies of Cul5-deficient cells cannot be explained simply by the modest increase in Src activity. Moreover, highly activated mutant Src causes cell rounding, while Cul5-deficient cells remain spread. Therefore, some but not all of the abnormal phenotypes of Cul5-deficient cells may be attributed to increased Src activity.

Transformation suppression by Cul5 in vitro is consistent with previous suggestions that SOCS-Cul5 CRLs may suppress cancer in humans. cul5 and socs gene expression is frequently decreased in poor prognosis breast and gastric cancer (Elliott et al., 2008; Fay et al., 2003; Lai et al., 2010; Sasi et al., 2010). Ectopic expression of Cul5 inhibits proliferation of gastric and mammary cancer cells in culture (Johnson et al., 2007; Lai et al., 2010). The cul5 gene maps to a region of frequent loss of heterozygosity in breast cancer and neuroblastoma (Hampton et al., 1994; Wang et al., 2006). In addition, an allele of socs6 is frequently lost and the gene is under-expressed in a large percentage of carcinomas of lung, colorectum and stomach (Lai et al., 2010; Sriram et al., 2012) (http://www.oncomine.org, accessed 10/25/12).
Other socs genes are also under-expressed in specific cancer types: socs2 expression decreases with worsening grade of breast cancer and is hypomethylated in ovarian cancers (Farabegoli et al., 2005; Sutherland et al., 2004). Furthermore, ectopic socs2 and socs5 suppress transformation in vitro (Herranz et al., 2012; Sutherland et al., 2004).

The importance of Cas for transformation of Cul5-deficient cells is also consistent with data from human tumor cells. Cas phosphorylation by Src stimulates cancer cell invasion, Akt, the anti-apoptotic pathway, growth factor-independence, and, in breast cancer, induces resistance to anti-estrogens (Bouton et al., 2001; Cabodi et al., 2006; Schrecengost et al., 2007; Stupack et al., 2000; Tornillo et al., 2011; van der Flier et al., 2000). Since Src is highly active in many human tumors but is only weakly oncogenic in mice (Kline et al., 2008; Summy and Gallick, 2003), decreased expression of cul5 and socs genes may contribute to some aspects of cancer progression by activating tyrosine phosphorylation of proteins such as Cas

Cytoskeletal regulation by SOCS6-Cul5 and Cas

Cul5 profoundly affects cell motility. Cul5 knockdown stimulated migration, creating an oversized, dynamic leading lamellipodium, tiny focal adhesions and decreased stress fibers. Cell-cell contacts were maintained and the cells migrated as a sheet. Combined knockdown of SOCS2, 4, 5 and 6 had the same effect. Since these SOCS proteins all contain SH2 domains, and since the increased migration of Cul5-deficient cells requires Src, we may infer that many or all of the Cul5 substrates that limit migration in normal cells may be pY proteins. When Cul5 is absent, increased levels or decreased turnover of these substrates increases the speed of migration. However, no single SOCS protein had a significant effect on migration speed. This suggests that SOCS2, 4, 5 and 6 are non-redundant, and target different pY proteins that collectively regulate cytoskeletal, membrane and adhesion dynamics and ensure normal migratory behavior.

Although no one SOCS protein is limiting for normal migration, SOCS6 has a special role in leading edge ruffling. We observed that either inhibiting SOCS6 or increasing Cas expression or stability induced leading edge ruffling, consistent with the hypothesis that the SOCS6-Cul5 CRL stimulates the turnover of Cas and possibly other phosphoproteins involved in actin dynamics at the leading edge. The importance of Src and Cas for leading edge extension and ruffling is well established and likely occurs by the following mechanism (Cheresh et al., 1999; Klemke et al., 1998; Sawada et al., 2006; Schrecengost et al., 2007; Sharma and Mayer, 2008; Stupack et al., 2000). Cas may be stretched by tension in the cytoskeleton, revealing sites for Src-family kinase-dependent phosphorylation. Src-dependent phosphorylation recruits a Crk-DOCK180-ELMO complex that activates Rac. Rac then stimulates dendritic actin networks that drive membrane ruffling and forward movement.
Although the Src-Cas-Crk-Rac pathway is specifically associated with ruffling, it may also be involved, although not sufficient, to regulate the tiny focal adhesions and lack of stress fibers at the front of Cul5-deficient cells. One possible mechanism is that active Rac might inhibit Rho-dependent tension in the actin cytoskeleton, with predictable defects in focal adhesion growth and formation of stress fibers. However, other Src and Cul5 targets are likely to be involved.

Inactivation of Cas by phosphorylation-dependent ubiquitylation and proteolysis provides a radically different alternative to inactivation by dephosphorylation. Cas turnover requires multiple steps, presumably including pY-Cas association with SOCS6 (and possibly EloB/C), interaction with Cul5-Rbx2, assembly of polyubiquitin chains and association with the proteasome. Presumably Cas loses activity at some stage of this process prior to complete degradation. If we allow for an estimated ~10% phosphorylation stoichiometry and overall Cas half life of 2-3 h in fibroblasts with active Src, individual phospho-Cas molecules may be active for ~12-18 min before degradation. As pY-Cas leaves focal adhesions, new Cas molecules may enter, become phosphorylated, signal downstream, and associate with SOCS6. Globally, at steady state, the rate of Cas turnover by pY-dependent and -independent mechanisms must match the rate of synthesis. Locally, increased Cas phosphorylation in focal adhesions will stimulate turnover, new Cas will be incorporated more rapidly, and the local concentration of Cas available for new assembly will decrease. Thus inactivation by ubiquitylation and proteolysis allows for negative feedback control with a time delay. In the absence of Cul5 or SOCS6, there is more active Cas and it signals for a longer time. In contrast, dephosphorylation is typically rapid and reversible, and may occur while Cas is still in focal adhesions. Dephosphorylation does not have an inherent time delay, and does not alter the local pool of free Cas molecules. For these reasons, the SOCS6-Cul5 CRL potentially plays a unique role in cytoskeletal regulation. An important task for the future will be identifying other SOCS adaptors and their substrates that regulate cell movements, and how the localization or activity of individual SOCS-Cul5 CRLs may be regulated as cells move.
Materials and Methods

Antibodies, DNA constructs, and chemicals. Antibodies were obtained from the following sources: goat anti-actin, rabbit anti-Cul5, rabbit anti-Cas, rabbit anti-GAPDH and rabbit anti-FAK (Santa Cruz Biotechnology, Inc., Santa Cruz, CA); rabbit anti-Ki67 (Leica Biosystems, Buffalo Grove, IL); mouse anti-GM130 and mouse anti-extracellular signal-regulated kinase-2 (ERK2, BD Transduction, San Jose, CA); mouse anti-vinculin and rat anti-E-cadherin (Sigma-Aldrich, St. Louis, MO); rabbit anti-phospho-p130 Cas (pTyr165); rabbit anti-phospho-Src (pTyr416) and rabbit anti-cleaved Caspase-3 (Asp175) (Cell Signaling Technology, Beverly, MA); mouse anti-RhoGAP (Upstate Biotechnology, Inc., Lake Placid, NY); mouse anti-pTyr (4G10) and rabbit anti-GFP (Life Technologies, Carlsbad, CA); mouse anti-GFP (Roche, Indianapolis, IN); rabbit anti-HA (Bethyl Laboratories, Inc., Montgomery, TX); mouse anti-T7 (EMD Millipore, Billerica, MA); 327 anti-Src mouse monoclonal antibody (Joan Brugge, Harvard Medical School, Boston, MA); and P5G10, mouse anti-integrin α6 IgG1 (Elizabeth Wayner, Fred Hutchinson Cancer Research Center).

pMXpuroII containing the ubiquitin promoter and shRNAs against the Cul5 target sequence GCTGCAGACTGAATTAGTAG (shCul5), the Cul2 target sequence GAGCTAGCATTGGATATGTGG (shCul2), the Rbx2 target sequence GGGTCAGGTGATGCTGCTT (shRbx2-1) and the empty vector control plasmid pMXpuroII, were previously described (Kamura et al., 2004). The pMXpuroII-shSrc and pMXpuroII-shCas shRNA plasmids were made by PCR with pMXpuroII-shCul5 plasmid as template, a common primer 5'-GTCGACCACTGTGCTGGC-3' and a unique primer containing sequence homologous to the U6 promoter in pMXpuroII followed by the sense target sequence, a loop sequence, the antisense target sequence, a XhoI site, and 6 bases of random sequence. The target sequences used were: 5'-ACATGAGCAAGGGGAGTT-3' for Src, and; 5'-GGTCGACAGTGGTGTGTA-3' for Cas. The PCR products were cut with NotI/XhoI and cloned into NotI/XhoI-cut pMXpuroII-shCul5. Clones were sequenced. pLXSH-shCul5, pLXSH-shSrc and pLXSH-shCas shRNA plasmids were made by ligation of NotI/XhoI fragments from corresponding pMXpuroII plasmids into NotI/XhoI-cut pLXSH shCul5' (previously described, (Laszlo and Cooper, 2009)).

Mouse SOCS and Cul5 gene cDNA clones were obtained by RT-PCR from mouse brain mRNA and sequenced. They were inserted into pCAG-GFP which had been modified by inserting a T7 epitope tag at the N terminus and deleting GFP. Residue Lys799 was mutated to Arg to inhibit Neddylation using the oligonucleotide ATCATACAAATAATGCGAATGAGAAAGAAAATT.

Mouse wildtype and 15F mutant Cas cDNA clones (Shin et al., 2004) were obtained from Steve Hanks (Vanderbilt University, Nashville, TN) and the FF mutant (double mutation of
Y667 and Y669 in the sequence YDYV, corresponding to Y762 and Y764 in rat Cas) was made by Susumu Antoku. BamHI/NotI fragments were moved into the pCAG2-nHA vector for transient expression with an N-terminal HA tag. The same fragments were moved into pMSCV_puro_EYFPC1 (pMSCV with an N-terminal EYFP tag and modified polylinker; S. Antoku, unpublished) for retrovirus production. Clones were confirmed by sequencing.

MG132, epoxomycin and mitomycin C were from Sigma-Aldrich (St. Louis, MO), SU6656 from Sugen (San Francisco, CA) and 4-hydroxy-tamoxifen from Sigma-Aldrich.

Cell culture and retroviral infection. MCF10A cells were maintained in growth media using DMEM/F12 (Life Technologies) with 5% horse serum (Life Technologies), 20 ng/ml EGF (Life Technologies), 0.5 µg/ml hydrocortisone (Sigma-Aldrich), 0.1 µg/ml cholera toxin (EMD Millipore), 10 µg/ml insulin, and penicillin/streptomycin both at 100 U/mL (Life Technologies). Recombinant retroviruses containing pLXSH empty vector, pMXpuroII empty vector, shCul5, shSrc or shCas were packaged using HEK 293T cells, and infections of MCF10A cells were carried out by standard protocols (Miller and Rosman, 1989). Following initial selection of stable cell lines in 0.25-0.5 µg/ml puromycin or 50-100 µg/ml hygromycin for 10 to 15 days lines (selected as pools, not clones) were maintained in the absence of selective agent. Cas-deficient MCF10A cells stably expressing EYFP-Cas from the MSCV promoter were prepared by retrovirus infection with pMSCV_puro_EYFPCas and selection with puromycin. MCF10A cells expressing vSrc-ER were a kind gift of Senthil Muthuswamy (University of Toronto) (Reginato et al., 2005). 4-hydroxy-tamoxifen (0.25 µM, Sigma-Aldrich) was added 24 h before scratch wound assays to activate the vSrc-ER fusion protein.

SV40 large-T antigen immortalized csk/-, Csk and Csk R222 cell lines, infected with recombinant retroviruses containing pLXSH empty vector/pMXpuroII empty vector or shCul5, were described before (Howell and Cooper, 1994; Laszlo and Cooper, 2009). HeLa cells were cultured in DME supplemented with 10% FBS and penicillin/streptomycin both at 100 U/ml.

siRNA transfection 2 x 10⁴ MCF10A cells were resuspended in 800 µl of growth media (described above) and added directly to wells of a 12-well plate containing 50 pmol of a pool of four siRNA oligonucleotides specific for Cul5 (SMART pool siGENOME, Thermo Fisher Scientific, Waltham, MA), SOCS1-7/CisH, Src or Cas (Qiagen, Germantown, MD), and 1.25 µl Lipofectamine2000 (Life Technologies). Control siRNA (Qiagen) targets a sequence AATTCTCCGAACGTGTCACGT, which lacks homology to any known mammalian gene. Assays were performed 96 h after transfection.
DNA transfection HeLa cells were grown in 6-well plates to near confluence and transfected with HA-tagged Cas (WT, FF or 15F), GFP and active Src using Lipofectamine2000 (Life Technologies). Cells were lysed 24 h later and analyzed by Western blot.

Proliferation. Cells were plated in growth media containing 2% horse serum and 0 or 20 ng/ml EGF. For Figs. 1B, C, S1B, 3D and 4A, triplicate wells were stained with crystal violet the next day (day 0) and on day 3 and the fold increase in cell number was measured. For Figs S1A, 3B, and 4D, cell number was counted on day 8.

Matrigel 3D growth and imaging. Three-dimensional culture of MCF10A cells on reconstituted basement membrane (growth factor-depleted Matrigel) using the overlay method, with EGF at 5 ng/ml (Debnath et al., 2003). Immunofluorescence staining of acini has been described (Debnath et al., 2003). Sequential optical sections were taken using a Zeiss LSM510 laser scanning confocal microscope fitted with a Zeiss Plan Apochromat 20x/0.75 objective.

Scratch wound. Scratch-wound migration assays were performed as previously described (Dow et al., 2007). Briefly, confluent MCF10A monolayers were EGF-starved overnight, wounded by scratching the surface with a P200 micropipette tip, and the medium replaced with fresh medium lacking EGF and containing 1 ng/ml Mitomycin C. Phase contrast micrographs of triplicate wounds were taken shortly after wounding and at intervals thereafter. The difference in distance between wound edges at the start and end of the experiment was converted to microns.

Boyden chamber assay. Migration assays were performed in a 48-well micro chemotaxis chamber (Neuroprobe, Gaithersburg, MD). The lower wells of the chamber were loaded with DMEM/F12 supplemented with 5% horse serum and 20 ng/ml EGF. An 8-μm pore size polycarbonate filter (VWR, West Chester, PA) coated with 2 μg/ml collagen IV separated the upper and lower wells. MCF10A cells were detached using a solution of 0.25% Trypsin, 2 mM EDTA, and PBS for 20 min at 37°C. After inactivating trypsin with 10% FBS, cells were resuspended in DMEM/F12 at 250,000 cells/ml and added to the top wells. The chamber was incubated in a humidified atmosphere of 5% CO₂ at 37°C for 12 h. The cells on the top side of the membrane were removed, and the migrated cells on the bottom side were stained with 0.1% crystal violet in 20% ethanol. Each condition was analyzed in triplicate.

Immunofluorescence of migrating cells. Cells were grown on coverslips. After scratch wounding and migration for 6 hr, cells were fixed and permeabilized with 0.1% Triton X-100 in
PBS for 5 min at 25°C. Cells were blocked in a solution of 2% BSA, 5% normal goat serum, and PBS for 30 min at 25°C. Primary antibodies were diluted in blocking solution and added either for 3–4 h at 25°C. Coverslips were rinsed three times in PBS before the addition of Alexa Fluor-labeled secondary antibodies (Life Technologies), diluted 1:1,000, for 1 h at 25°C. Alexa Fluor-tagged phalloidin (Life Technologies) was used to visualize actin. After several PBS rinses, coverslips were mounted in ProLong Gold solution (Life Technologies).

Imaging Cells were visualized using 40x/1.3 or 60/1.42 oil objectives on a DeltaVision microscope (IX71, Olympus). Images were recorded using fixed camera settings (Photometrics HQ2 CCD camera; Olympus). Images were acquired and deconvolved using SoftWorx (Applied Precision), and all exposure times and image scaling were equal within an experiment.

Movies of membrane ruffles were captured on a Nikon LiveScan (Prairie technologies swept field) system, equipped with a high resolution Photometrics Coolsnap HQ2 scientific CCD camera. A 40x phase objective was used. Images were recorded every minute for 60 minutes. The movies were used to confirm that phase dense areas were dynamically ruffling, then one frame of the movie was analyzed using ImageJ (National Institutes of Health) to measure ruffle area for each cell along the wound edge. Average ruffle area per cell was calculated for ~50 cells along three wounds. The entire experiment was repeated to obtain biological replicates.

Figures were assembled using Photoshop (Adobe) and Canvas (Deneba) software.

Protein analysis. Cells were washed 2 times in phosphate-buffered saline (PBS), and lysed in RIPA buffer containing 1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate, 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 5 mM EGTA, 1 mM phenylmethylsulfonyl fluoride, 20 μg/ml leupeptin, 20 μg/ml aprotinin, and 1 mM sodium orthovanadate. Protein concentration was assessed using Bradford assay. Samples were adjusted to 1x SDS sample buffer, boiled, and resolved by SDS-10%-PAGE using 30:1 or 75:1 acrylamide:bisacrylamide ratio. Proteins were transferred onto nitrocellulose (Osmonics, Minnetonka, MN), blocked in 5% non-fat dry milk (or BSA for pY) in Tris-buffered saline with 0.1% Tween, probed first with the indicated primary, followed by either goat anti-mouse- or goat anti-rabbit-horseradish peroxidase-conjugated secondary antibody and visualized using Amersham ECL Plus Western Blotting Detection System (GE Healthcare Biosciences, Piscataway, NJ).

Immunoprecipitation. For immunoprecipitation from HeLa cells, T7-tagged SOCSS proteins were transfected into HeLa cells using Lipofectamine2000 according to the manufacturer’s protocols. After 48 hours, cells were incubated with 1 mM sodium pervanadate for 30 min then lysed at 4°C in buffer containing 150 mM NaCl, 10 mM HEPES pH 7.4, 2 mM EDTA, 50 mM
NaF, 1% Triton-X-100 and protease inhibitors followed by centrifugation for 15 minutes at 14,000xg. Lysate was rotated with mouse anti-T7 antibody for 3 hours at 4°C. Protein A+G beads were added to the lysate/antibody mix for 1 hour at 4°C. After centrifugation, the protein/antibody/bead complex was washed 3 times in lysis buffer, resuspended in Laemmli buffer, then resolved by SDS-PAGE. Immunoprecipitation from Cul5-deficient CskR222 or Csk+ MEFs used a similar protocol, except that 10 μM Src inhibitor PP2 or 1 mM sodium pervanadate were added before lysis, and lysates were prepared using RIPA buffer (Howell and Cooper, 1994).

Cycloheximide chase. Cells grown to near-confluence, then treated with 25 μg/ml cycloheximide or vehicle (EtOH, 1% final concentration) for various times. Control untreated cells received vehicle for 10 h. In some cases cells were pre-treated for 1 h with 10 μM epoxomycin or vehicle (DMSO, final concentration 0.1%), followed with 25 μg/ml cycloheximide for various times.

Reverse transcription (RT)-PCR. RNA was extracted and cDNA synthesized as before (Laszlo and Cooper, 2009). The abundance of Cas, Src, and β-actin RNA was measured by RT-PCR as previously described (Laszlo and Cooper, 2009). Samples were removed after 21 and 24 PCR cycles and analyzed by 2% agarose gel electrophoresis and ethidium bromide stain. Amplification was in the linear range. For SOCS genes, qPCR was performed using QuantiTect SYBR green PCR kit (Qiagen), the 7900HT Real Time PCR System and SDS software (Applied Biosystems). Primers are listed in Supplementary Table 1.

Phosphoproteomics. MCF10A vector control and shCul5 cells were grown to 90% confluency in normal growth media on three, 15-cm plates. Cell lysis and protein digestion was performed as previously described (Zhang et al., 2005), except that a 20:1 substrate/trypsin ratio was used for digestion. Lyophilized peptides were resuspended in 0.5 ml of 100 mM Tris pH 7.4 with 100 mM NaCl, 0.1% NP-40, and immunoprecipitated overnight at 4C with 2.5 μg of anti pY antibody-conjugated beads (PY-99, Santa Cruz). Beads were then rinsed three times with 0.5 ml of 100 mM Tris pH 7.4, 100 mM NaCl. Phosphotyrosine-containing peptides were eluted using 50 μl of 100 mM glycine pH 2.5, and samples were desalted using microC18 Ziptips (Millipore, Billerica, CA) following manufacturer’s instructions. Dried samples were resuspended in 5 μl of 0.1% formic acid and analyzed with an LTQ-FT mass spectrometer in a configuration as described (Yi et al., 2003), collecting one MS scan followed by 5 MS/MS scans of the 5 most abundant ions in the MS scan. Peptide identifications were performed with X!Tandem using a variable modification of 79.9663 Da on tyrosine to search the IPI mouse (v3.44) protein database.
Acknowledgements
We are very grateful to Denis Smimov, Natalie Toida, Moham Ansari and Melanie Rivera for technical assistance during the course of the research. The work would not have been possible without valuable reagents and suggestions from Susumu Antoku, Steve Hanks, Takumi Kamura, Bruce Clurman, Markus Welcker, Roland Walter, Elizabeth Wayner, Bill Carter and Senthil Muthuswamy. This work was supported by research grant R01-CA41072 from the National Institutes of Health, a pilot grant from the Hutchinson Center Synergy Fund, the Breast Cancer Research Program Pilot Project Fund at FHCRC and the Safeway Foundation, postdoctoral fellowship PF-07-287-01-MGO from the American Cancer Society to GL, and a National Science Foundation Graduate Research Fellowship to CP.
Literature cited

Figure legends

Fig 1. Cullin 5 suppresses EGF-independent proliferation, migration and formation of transformed acini.

(A) Efficiency of Cul5 depletion. Western blot of control (pMXpuroII vector) and Cul5-deficient (pMXpuroII-shCul5) MCF10A cell lysates probed with antibodies against Cul5 and an internal control protein (actin). (B, C) Proliferation. Control and Cul5-deficient MCF10A cells were grown in the presence and absence of EGF, stained with crystal violet on days 1, 2 or 3 (B) or day 3 only (C) and intensity was measured. Cell counts were normalized to control cells grown in the absence of EGF. Mean and standard error, n=3. (D) Growth in Matrigel culture. Control and Cul5-deficient MCF10A cells were cultured in growth factor-depleted Matrigel with 5 ng/ml EGF for 14 days. Colonies were fixed, permeabilized and stained for dividing cells (a,b, Ki67, white arrowheads), apoptotic cells (c, d, cleaved Caspase 3, green arrowheads), Golgi apparatus (c,d, GM130, red arrowheads), basal membrane (e,f, α6 integrin, green arrowheads indicate presence, green stars indicate absence) and lateral membrane (e, f, E-cadherin). Optical sections through the centers of representative colonies are shown. (E, F) Quantification of Ki67 and cleaved caspase 3 staining. Serial optical sections were used to determine the percentage of stained cells in five colonies of each type. (G,H) Scratch wound healing assay in the absence of EGF. (G) Phase contrast images of monolayers 24 h after wounding. (H) Migration distance. Mean and standard error, n=3. (I) Migration in a Boyden chamber assay. Cells migrated through a collagen-coated filter in response to 5% horse serum and 20 ng/ml EGF. In all Figures, *, P < 0.05; **, P < 0.01; and ***, P < 0.001 by t test.
Fig 2. Cullin 5-deficient cells show increased membrane ruffling, larger leading lamella and smaller adhesions.

Confluent monolayers of control and Cul5-deficient MCF10A cells were transferred to EGF-deficient medium, scratched and cells at the leading edge imaged 6 h later. Arrows indicate direction of migration. (A) Cul5-deficient cells have an elongated leading lamellipodium and increased membrane ruffling (arrowheads). (B, C) Cells were fixed, permeabilized, and stained with anti-vinculin, anti-FAK and anti-pY-Cas to visualize focal adhesions (B, single 0.2 μm slices at the bottom of the cells) and anti-GM130, a Golgi marker (C, 3 μm flattened Z-projections). Phalloidin was used to stain actin fibers. The white boxes indicate the regions enlarged in the insets.
Fig 3. Src is necessary but not sufficient for EGF-independent proliferation and migration of Cul5-deficient cells.

(A) Western blot analysis of MCF10A cell lysates. Cullin 5 deficiency increases the levels of Src and phospho-Src. Actin protein levels remained constant. Quantification of Western blots. Mean and standard error, n=3. (B) The transformed phenotypes of Cul5-deficient cells require Src. Proliferation: Single and double knockdown MCF10A cells were cultured in the presence and absence of EGF and counted after 5-7 days. Ratios of cell numbers in the absence and presence of EGF were averaged across n=3 experiments. Migration: Scratch wound healing assay in the absence of EGF. Distance measured 24h after wounding. Mean and standard error, n=4. (C,D) Active Src is not sufficient to induce proliferation or migration. (C) Western blot analysis of lysates of control and Cul5-deficient cells and cells expressing a vSrc-ER fusion protein. Note the phosphorylation of the vSrc-ER protein and increased tyrosine phosphorylation of cell proteins in vSrc-ER cells in the absence of 4-hydroxy-tamoxifen (4HT) compared with normal or Cul5-deficient cells. Phosphorylation was increased further with 0.25 μM 4HT. (D) Proliferation: Cell counts were normalized to control cells grown in the absence of EGF. Mean and standard error, n=3. Migration: Scratch wound healing assay in the absence of EGF. Distance measured 24h after wounding. Mean and standard error, n=3.
Fig 4. Cas is necessary for leading edge abnormalities of Cul5-deficient cells and is regulated by Cul5.

(A) Removal of SOCS2, 4, 5 and 6 phenocopies Cul5 KD. MCF10A cells were incubated with siRNA against control, Cul5 or SOCS proteins, and analyzed 4 days later. Proliferation: Cell counts were normalized to control cells grown in the absence of EGF. Migration: Scratch wound healing assay in the absence of EGF. Distance measured 24h after wounding. Mean and standard error, n=3 (B,C) Western blot analysis of MCF10A cell lysates. (B) Cullin 5 deficiency increases the levels of Cas. As a control, actin protein levels remained constant. Quantification of Western blots. Mean and standard error, n=5. (C) Transient KD of Cul5 or SOCS2, 4, 5 and 6 increases the levels of Cas and pYSrc. Actin protein levels remained constant. Quantification of Western blots. Mean and standard error, n=8. (D) The transformed phenotypes of Cul5-deficient cells require Cas. Proliferation: Single and double knockdown MCF10A cells were cultured in the absence and presence of EGF and counted after 5-7 days. Ratios of cell numbers in the absence and presence of EGF were averaged across three independent experiments. Migration: Scratch wound healing assay in the absence of EGF. Distance measured 24h after wounding. Mean and standard error, n=4. The control data are the same as those shown in Fig 3B. (E) Cas removal from Cul5-deficient MCF10A cells rescued lamellipodium length and ruffle area. Confluent monolayers were transferred to EGF-deficient medium and then scratched. Phase-contrast images of cells at the leading edge were captured 6 h after scratching. For each cell, the lamellipodia length (distance from the nucleus to the leading edge) and area of phase-dark membrane ruffles were measured. Graphs show the mean and standard error for ~ 50 cells/condition from n=3 experiments.
Fig 5. Cul5 regulates Cas protein stability and binds Cas via SOCS6.

(A) Cul5-dependent Cas turnover requires the proteasome. Western blots of lysates of control (vector) and Cul5-deficient CskR222 (active Src) and Csk+ (repressed Src) MEFs, incubated in the presence or absence of cycloheximide and epoxomycin for 10h. (B) Cas degradation. Western blots of Cas in lysates of vector and Cul5-deficient CskR222 MEFs, treated for various times with cycloheximide to inhibit new protein synthesis. GAPDH was used as a control. Half-life quantification. (C) Cas associates with Cul5. HA-Cas and Neddylation mutant T7-Cul5K799R were co-transfected into Cul5-deficient, CskR222 MEFs, in which endogenous Src is active. Cells were treated with pervanadate to stimulate tyrosine phosphorylation, lysates were prepared, immunoprecipitated with antibodies to T7, and Western blots probed for HA-Cas, pY-Cas, and total pY proteins. Note that many pY proteins were present in the cell lysate, but Cas was the only one immunoprecipitated with T7-Cul5K799R. (D) Cas associates with SOCS6. HeLa cells were transfected with control vector, T7-tagged SOCS1-7 or T7-tagged CisH, treated with pervanadate and lysed. Cell lysates were immunoprecipitated with anti-T7 antibody and immunoblotted with anti-Cas. (E) Drawing of Cas WT, 15F and FF mutants. (F) Cas tyrosine phosphorylation sites are required for SOCS6 binding. Wildtype or mutant HA-tagged Cas and T7-tagged SOCS6 were co-expressed in Cul5-deficient, CskR222 MEFs. Cells were treated with pervanadate, lysed and immunoprecipitated with T7 antibodies. Quantification of co-immunoprecipitation. Mean and standard error, n=4. (G) CasFF was expressed at significantly higher level than wildtype or Cas15F. HA-tagged Cas WT, FF or 15F were transiently transfected in to HeLa cells with active Src and GFP as a control. Quantification of Western blots. Mean and standard error, n=3.
Fig 6. SOCS6 targets active Cas for degradation and regulates membrane ruffling.

(A) Transient knockdown of SOCS6 increases the level of Cas protein but not Src. Actin protein levels remained constant. Quantification of Western blots. Mean and standard error, n=3. (B,C) Transient knockdown of SOCS6 or over-expression of Cas stimulates membrane ruffling at the leading edge. Confluent monolayers were transferred to EGF-deficient medium and then scratched. (B) Phase-contrast images of cells migrating into the wounded area show membrane ruffling in cells lacking Cul5, SOCS6 or overexpressing Cas (arrowheads). The arrow indicates direction of migration. (C) The area of phase dark membrane ruffles was measured 6 h after scratching. Mean and standard error for ~ 30 cells/condition from n=3 experiments. (G) Model for the roles of Cul5 and Src in epithelial cells. Cul5 represses Src-dependent transformed phenotypes, including increased migration and EGF-independence. We propose that Cul5 targets a subset of Src substrates (pY-A, pY-B, pY-C) for down-regulation by the proteasome. Various SOCS-Cul5 CRL complexes suppress different molecular pathways contributing to the transformed phenotype. One substrate for the SOCS6-Cul5 CRL is tyrosine-phosphorylated Cas, whose up-regulation when SOCS6 or Cul5 is absent is sufficient to stimulate membrane ruffling. Cas and Src are also required for other transformed phenotypes of Cul5-deficient cells.
Figure 2

A. Control vs. shCul5

B. Control vs. vinculin, actin, DAPI

C. Control vs. GM130, actin, DAPI vs. shCul5

of Cell Science: Accepted manuscript