Microtubule-independent secretion requires functional maturation of Golgi elements

Lou Fourriere1,2,3, Severine Divoux1,2, Mila Roceri1,2, Franck Perez1,2,* and Gaelle Boncompain 1,2,*

1 Institut Curie, Centre de Recherche, PSL research University, Paris, France
2 CNRS UMR144, Paris, France
3 UPMC, Paris, France

* contributed equally to this work
correspondence should be addressed to F.P. (franck.perez@curie.fr)

\textbf{Key words:} intracellular trafficking, microtubules, Golgi apparatus
Summary statement

Functional maturation of Golgi elements is necessary to make them competent for secretion. We highlighted this process in cells without microtubules and showed that recycling of Golgi factors is essential.

Abstract:

The Golgi apparatus is responsible for processing and sorting of secretory cargos. Microtubules are known to accelerate the transport of proteins from the endoplasmic reticulum to the Golgi apparatus and from the Golgi to the plasma membrane. However, whether post-Golgi transport strictly requires microtubules is still unclear. Using the retention using selective hooks (RUSH) system to synchronize the trafficking of cargos, we show that anterograde transport of tumor necrosis factor (TNF) is strongly reduced without microtubules. We show that two populations of Golgi elements co-exist in these cells. A centrally located and giantin-positive Golgi complex sustains trafficking while newly formed peripheral Golgi mini-stacks accumulate cargos in cells without microtubules. Using a genome-edited GFP-giantin cell line, we observe that the trafficking-competent Golgi population corresponds to the pre-existing one that was present before removal of microtubules. All Golgi elements support trafficking after long-term microtubules depletion or after relocation of Golgi proteins in the endoplasmic reticulum using Brefeldin A. Our results demonstrate that functional maturation of Golgi elements is needed to ensure post-Golgi trafficking and that microtubule-driven post-Golgi transport is not strictly required.
Introduction

In animal cells, proteins to be transported to the cell surface enter the secretory pathway at the level of the endoplasmic reticulum (ER) after their synthesis. They leave the ER via the ER exit sites (ERES) spread throughout the cell toward the Golgi apparatus. Proteins are then extracted from the trans-Golgi network toward the cell surface in post-Golgi carriers. The Golgi apparatus ensures correct targeting of secretory cargos and their correct processing. The Golgi apparatus and the secretory pathway are closely connected to the microtubule network (de Forges et al., 2012). Direct connection of the dynactin, a regulatory factor of the dynein complex, with COPII-positive carriers at the level of the ERES (Watson et al., 2005) enables ER-to-Golgi transport of cargos along microtubules. Later in their journey, cargos are transported in post-Golgi carriers along microtubules by plus end directed motors, kinesins. In addition, microtubules are essential for the integrity of the Golgi apparatus (Sandoval et al., 1984). In interphase mammalian cells, the Golgi apparatus is composed of stacked flattened cisternae forming a long ribbon (Farquhar and Palade, 1981). A Golgi matrix surrounds the Golgi apparatus which is composed of large coiled coil proteins like giantin or GM130. The perinuclear localization of the Golgi apparatus, close to the centrosome, is mediated by microtubules and dynein (Corthesy-Theulaz et al., 1992; Ho et al., 1989). Upon disruption of the microtubule network Golgi mini-stacks keep their internal polarity from cis to trans and are apposed to the ERES (Cole et al., 1996). This apposition allows normal ER-to-Golgi transport in the absence of microtubules. In addition, the Golgi apparatus as an entire organelle or as mini-stacks nucleate microtubules and thus, like the centrosome, also play the role of a microtubule organizing center (Chabin-Brion et al., 2001; Efimov et al., 2007). Consequently, compaction and clustering of dispersed Golgi elements restart quickly after repolymerization of microtubules, for example upon nocodazole wash-out. Despite this clear link between microtubules and Golgi complex dynamics, it is still unclear whether microtubules are indispensable for an efficient trafficking of cargos to the plasma membrane. This question was already assessed in the 1990s-2000s but discrepancy exists (Cole et al., 1996; Hirschberg et al., 1998; Parczyk et al., 1989; Presley et al., 1997; Rindler et al., 1987; Rogalski et al., 1984; Van De Moortele et al., 1993). It was well demonstrated by these studies that ER-to-Golgi transport occurs in the absence of microtubules and that formation of peripheral mini-stacks requires ER export.

The mechanisms of formation of Golgi elements in the absence of microtubules have thus been well studied. The question we addressed here is whether post-Golgi transport intermediates can be produced in the absence of microtubules. We monitored secretory
cargos transport in normal and in microtubule-depletion conditions using the retention using selective hooks (RUSH) assay (Boncompain et al., 2012). We revealed the co-existence of distinct subpopulations of Golgi elements early after removal of microtubules and assessed their secretion capacity. Our results demonstrated that, although secretory cargos are blocked in newly formed mini-Golgi elements, microtubule-independent secretion occurs from the pre-existing mature Golgi complexes. Upon longer incubation time in the absence of microtubules, or by forcing relocation of proteins in mini-stacks, all Golgi elements support transport in the absence of microtubules. Altogether, this indicates that production of post-Golgi transport intermediates does not require microtubules and that functional maturation of Golgi mini-stacks is essential to support transport. This functional maturation is likely to be the critical step that is responsible for the block in transport observed at early stage upon microtubule removal.

Results

Anterograde transport of secretory cargos is strongly reduced in the absence of microtubules

To analyze the involvement of microtubules in the transport of secretory cargos we took advantage of the retention using selective hooks (RUSH) assay that we developed and which allows quantitative and real-time analysis of the secretory pathway. Briefly, reporter proteins fused to a Streptavidin Binding Peptide (SBP) are retained in the endoplasmic reticulum (ER) by an ER-resident protein fused to core Streptavidin. Synchronous release of the cargo is achieved at physiological temperature using biotin (Boncompain et al., 2012). In this study, we focused our attention on the anterograde transport of TNF (Tumor Necrosis Factor) and mannosidase II (ManII), which are efficiently synchronized using the RUSH assay (Boncompain et al., 2012) although other cargos were also analyzed. Importance of microtubules in post-Golgi transport is still unclear in the literature. Part of the discrepancy may be due to incomplete depolymerization of microtubules in certain studies. In the present study, we ensured complete removal of microtubules before release of the cargos from the ER by first incubating cells on ice for 90 min before warming them up in medium containing nocodazole for 30 min. This treatment ensures complete removal of microtubules while incubation with nocodazole alone keeps stable microtubules (Fig. S1A). In control cells, TNF-SBP-EGFP and ManII-SBP-mCherry reached the Golgi apparatus within 15 min after biotin addition and TNF-SBP-EGFP was expressed at the cell surface from 30 min (Fig. 1A,
The amount of TNF at the plasma membrane was strongly reduced when microtubules were removed (Fig. 1B, Movie 2). Even after longer time of trafficking, the level of TNF at the plasma membrane in the absence of microtubules was lower than in control cells as quantified by flow cytometry (Fig. 1C). The same phenotype was observed for VSVG (both the wild-type VSVG in the RUSH system and the thermosensitive mutant tsO45) (Fig. S1B,C) and for others cargos (not shown). Thus, as described (Cole et al., 1996; Presley et al., 1997; Storrie et al., 1998), the absence of microtubules does not inhibit ER-to-Golgi transport. However, it strongly reduces trafficking of secretory cargos towards the plasma membrane.

Blockade of post-Golgi transport is not due to Golgi dispersion

Washout of nocodazole induces a fast re-polymerization of the microtubule network and subsequent re-clustering of Golgi elements and their centripetal movement (Ho et al., 1989). After washout of nocodazole, TNF reached the plasma membrane emptying dispersed Golgi elements as observed by real-time imaging (Fig. 2A, Movie 3). Microtubule regrowth and post-Golgi trafficking occurred concomitantly with clustering and compaction of the Golgi elements at the cell center (Fig. 2B). The reasons why trafficking resumed from these dispersed Golgi elements as soon as microtubules regrow were unclear. It may be due to Golgi elements re-clustering and fusion because isolated Golgi elements may not be competent for trafficking (Glick and Luini, 2011; Pfeffer, 2010). We thus dispersed Golgi elements without removing microtubules and analyzed transport in these conditions. This was achieved by overexpressing a dominant negative dynactin construct (p150-CC1) that perturbs dynein activity (Quintyne et al., 1999). As expected, in cells overexpressing p150-CC1, the Golgi apparatus was dispersed throughout the cell. However, TNF was normally transported to the plasma membrane (Fig. 3A,B). If nocodazole was added to p150-CC1 expressing cells, a Golgi block was observed (Fig. 3C,D). Nocodazole washout allowed transport of TNF to resume even in cells where Golgi elements remained dispersed due to overexpression of p150-CC1 (Fig. 3E). Thus, Golgi dispersion is not responsible *per se* for the Golgi block observed in the absence of microtubules.
Two populations of Golgi elements co-exist early after removal of microtubules

Golgi dispersion observed upon removal of microtubules is due to the formation of Golgi mini-stacks apposed to the ER exit sites (ERES) (Cole et al., 1996; Storrie et al., 1998). In the absence of microtubules, TNF released from the ER accumulated in dots co-localized with ManII and GM130 after 90 min of transport (Fig. S2A). Cryo-immunoelectron microscopy confirmed that, in this condition, TNF was accumulated in “onion shape” Golgi mini-stacks positive for GM130 (Fig. 4A). In control conditions, in the presence of microtubules, TNF was detected in Golgi stacks after 15 min of trafficking but not after 90 min (Fig. S2B).

Surprisingly, careful examination of time-lapse imaging revealed that the block observed in nocodazole treated cells was not complete. In microtubules-depleted cells, TNF reached the scattered Golgi elements homogenously within 15 min (Linescans 1 and 2 Fig. 4B) and a fraction of TNF was then able to exit perinuclear Golgi elements (Linescan 3 Fig. 4B) while another pool of TNF accumulated in peripheral mini-stacks (Linescan 4 Fig. 4B and Movie 4). This was confirmed by cryo-immunoelectron microscopy since we observed in the same cell some GM130-positive mini-stacks that contain TNF while others do not (Fig. 4A). These results suggest that two functionally different populations of Golgi apparatus coexist in cells after microtubules removal. We reported before that two pools of Golgi elements can be distinguished in cells using giantin as a differential marker (Nizak et al., 2003). We also looked at the localization of proteins involved in nucleating microtubules at the Golgi apparatus. AKAP450 was detected on the Golgi apparatus and GFP-CLASP2 on Golgi and microtubules in control cells. In the absence of microtubules, AKAP450 and GFP-CLASP2 were observed on Golgi mini-stacks as previously described (Efimov et al., 2007; Rivero et al., 2009). AKAP450 and GFP-CLASP2 were less abundant on newly formed, peripheral Golgi mini-stacks, behaving like giantin (Fig. S3A,B).

We observed that TNF was able to leave the giantin positive Golgi pool even in the presence of nocodazole, demonstrating the ability of the giantin positive pool to perform secretion (Fig. 4C). To get access to the dynamics of endogenous giantin, we developed a gene-edited GFP-giantin cell line using CRISPR/Cas9 (see Materials and Methods, Fig. S3C,D). All giantin alleles were targeted with GFP in the HeLa clone used in this study (GFP-giantinEN). Dispersion of Golgi elements was imaged in real-time upon warming-up cells in nocodazole using the GFP-giantinEN cell line. Giantin positive Golgi elements were kept more compact while ManII-mCherry appeared quickly in newly formed peripheral mini-
stacks (Fig. S3E). We confirmed that giantin-positive Golgi elements were found close to the centrosome in the absence of microtubules after seeding cells on micro-patterns to homogenize their shape (Fig. S3F,G). These results confirmed the coexistence of two populations of Golgi elements early upon removal of microtubules. The giantin-positive population corresponds to the Golgi that was present before microtubules removal while newly formed mini-stacks are giantin-negative and appeared throughout the cell. Our results suggest that the giantin-positive Golgi elements are able to perform secretion of cargos in the absence of microtubules.

The two populations of Golgi elements show different secretion ability

We then assessed the functional state of the two populations of Golgi elements. Upon removal of microtubules, not only the quantity of TNF that reached the plasma membrane was reduced but its localization was not homogenously distributed. A stronger surface staining was observed at the giantin-proximal side of the plasma membrane (Fig. 5A). To assess the secretion capability of the central Golgi apparatus, we performed iFRAP experiments after microtubules removal. The quantification shown in Figure 5B is the mean +/- SD of 5 independent measurements. After 14 min of trafficking when TNF is localized in all Golgi elements, the entire cell fluorescence was bleached (blue cell, Fig. 5B) except the area corresponding to the compact Golgi elements (area 3 in red, Fig. 5B). Time lapse analysis showed that fluorescence signal decreased in the compact Golgi apparatus (area 3, Fig. 5B). Signal increase at the plasma membrane could not be detected, probably because the intensity was too low. In the control non-bleached cell, fluorescence decreased at one side of the cell that we identified as the compact Golgi apparatus (area 1, Fig. 5B). At the other side of the cell, that corresponds to peripheral mini-stacks, fluorescence was kept at the same level showing that TNF is accumulated and does not exit from these Golgi elements (area 2, Fig. 5B, Movie 5). iFRAP experiments thus confirmed that the presence of two populations of Golgi elements with different trafficking ability. The compact giantin positive pool of Golgi elements sustains TNF transport to the plasma membrane in the absence of microtubules. Transport carriers probably reach the plasma membrane by diffusion.

We also investigated the glycosylation capacity of the populations of Golgi elements. Lectins recognize with high specificity different types of sugars and sugar branching. They can be used as marker of the glycosylation state of proteins. *Helix pomatia* agglutinin (HPA) binds to α-N-acetylgalactosamine which is added to proteins in early Golgi compartment. Wheat germ agglutinin (WGA) which binds to N-acetylglucosamine and sialic acid, is
commonly used as a marker of the trans-Golgi. HPA showed a differential staining between the two populations of Golgi elements in the absence of microtubules (Fig. 5C). HPA signal was stronger in peripheral Golgi mini-stacks compared to central giantin-positive Golgi elements. In contrast, the distribution of WGA signal did not show obvious differences between control cells and cells without microtubules. These results show different glycosylation status of proteins present in the Golgi when cells were fixed. Golgi glycosylation enzymes responsible for the modifications probably relocalize to the peripheral Golgi elements with different kinetics as previously described (Yang and Storrie, 1998). Enzymes responsible for sugar branching detected by HPA may quickly relocalize to peripheral Golgi elements while the ones detected by WGA may stay longer in the compact Golgi. In the same line, we cannot rule out that additional glycosylation branching occurs in the compact Golgi that would prevent detection by HPA. In addition, cargos substrate for the different glycosylation enzymes may not accumulate in the compact Golgi since it is competent for secretion.

Functional maturation of Golgi elements is required for secretion in the absence of microtubules

Why Golgi mini-stacks were incompetent for secretion was unclear. It is indeed intriguing to see that Golgi export can occur from the giantin-positive Golgi elements indicating that microtubules are not essential to drive cargo export from Golgi membranes. We reasoned that mini-stacks may be unable to sustain secretion because components, present in giantin-positive Golgi complexes, were missing in Golgi elements formed within 30 min of nocodazole treatment. To enable functional maturation of Golgi mini-stacks, cells were kept without microtubules overnight before inducing the trafficking of TNF. In this condition, TNF reached the plasma membrane almost at the same level as in control cells with microtubules (Fig. S4A,B). A similar result was obtained after 6 h of nocodazole pre-treatment. In these conditions, TNF transport the plasma membrane reached about 70 % of DMSO control while it reached only 15% after 30 min of nocodazole treatment (Fig. 6A,B). Interestingly, after long treatment with nocodazole, Golgi elements were scattered throughout the cytoplasm and giantin was detected on all of them (Fig. S4A). These results suggest that mini-stacks formed in the absence of microtubules need time to become functional and to sustain cargo transport. We imaged in real-time the appearance of the two populations of Golgi elements after microtubules removal using fluorescently tagged giantin and ManII. Giantin-edited cells were transiently transfected with ManII-Cherry and were imaged during
long-term nocodazole treatment. As expected, re-localization of Golgi enzymes to scattered dots was rapid due to fast recycling through the ER. In contrast, giantin-positive compartments were kept more compact and centrally located for a longer time after microtubules removal (Fig. 6C). However, giantin was stepwise enriched in dispersed Golgi mini-stacks and was clearly visible in these elements after 4 h of incubation with nocodazole. Thus, giantin, and probably other Golgi proteins, only slowly reach newly formed Golgi mini-stacks in the absence of microtubules. We showed that the slow appearance of giantin in peripheral mini-stacks is mediated by relocation of pre-existing giantin from older Golgi elements and not by neosynthesis. We pre-treated cells with cycloheximide to inhibit protein synthesis and confirmed by the SUnSET assay (Schmidt et al., 2009) that strong inhibition was still observed after 8 h of treatment (See Material and Methods). Even in these conditions, giantin relocalized to peripheral Golgi elements in the absence of microtubules, demonstrating that its late appearance on mini-stacks is due to slow recycling (Fig. 7A,B).

This slow functional maturation is responsible for the lack of transport at early time points after microtubule removal. While the missing factors on newly formed Golgi mini-stacks were still unknown but giantin was an attractive candidate. On the one hand, we forced giantin to be present on all mini-stacks at early time points by overexpressing giantin but this did not allow TNF to be efficiently exported from mini-stacks in the absence of microtubules (Fig. S4C). On the other hand, we depleted giantin by siRNA to test its involvement in the functional maturation of Golgi mini-stacks. Even though giantin was strongly depleted, TNF reached the plasma membrane with the same rate than in cells transfected with control siRNA (Figure S4D,E). These results suggest that other factors may be missing on newly formed mini-stacks.

Because slow recycling from older Golgi elements to newly formed mini-stacks seem to be responsible for transport block in the absence of microtubules, we thought to artificially accelerate functional maturation of mini-stacks. We pre-treated cells with Brefeldin A (BFA) before removing microtubules to accumulate most Golgi proteins in the ER. Then BFA was washed out in the presence of nocodazole to form mini-stacks that may contain the majority of Golgi proteins, without the need for slow recycling. For example, in these conditions, giantin was detected on all Golgi mini-stacks (Fig. S4F). These mini-stacks were functional and sustained transport. TNF released from the ER in these conditions was able to traffic to the plasma membrane at a level similar to microtubules-containing control cells (Fig. 7C,D). This suggested that Golgi-to-ER recycling was the limiting factor for functional maturation, and not Golgi dispersion per se. Accordingly, rapid dispersion of Golgi elements, without
affecting Golgi-to-ER recycling should not inhibit secretion. To test this hypothesis, dynein activity was rapidly inhibited by acute expression of p150-CC1 using a cycloheximide wash-out protocol to accumulate p150-CC1 mRNA and pulse its expression for a short time (see Materials and Methods). 2 h of pulse was long enough to induce Golgi dispersion (Fig. 7E). In this condition, TNF trafficking was induced by addition of biotin. TNF transport at the plasma membrane was slightly decreased but much less than in the absence of microtubules (Fig. 7F). This demonstrates that the block observed in the absence of microtubules is due to defects in functional maturation, mostly based on recycling through the ER, and not to a direct role of microtubules in export form the Golgi. In the condition of the rapid dynein inhibition, microtubules are still present and kinesin-dependent Golgi-to-ER transport is active while it is inhibited in the absence of microtubules. When dispersed mini-stacks are functionally mature, upon long nocodazole incubation time or upon BFA washout, then microtubules are dispensable for Golgi-to-plasma membrane transport. This indicates that microtubule-driven transport is not strictly required for secretion of cargos in mammalian cells.

A natural stage where functional maturation of Golgi complexes may be particularly important is mitotic exit. It is known for decades that the Golgi apparatus disassembles during mitosis (Lucocq and Warren, 1987; Shima et al., 1998) and that anterograde transport is arrested. During mitosis, Golgi to ER transport is still efficient. It was shown that Golgi enzymes for instance relocate to the ER during mitosis (Sengupta et al., 2015). Using the GFP-giantinEN cell line and an antibody directed to GM130 we observed the behavior of these two Golgi matrix proteins during mitosis. As previously demonstrated, the Golgi apparatus disassembles in metaphase, Giantin and GM130 being scattered in multiple tiny dots (Fig. 8A). Careful examination showed that giantin and GM130 displayed distinct behavior. GM130 positive structures were kept dotty in metaphase and early anaphase while giantin became completely diffuse. No visible giantin positive structures were distinguishable. In late anaphase, Golgi elements became clearly giantin and GM10 positive, concomitantly with their clustering. According to our model, anterograde trafficking should resume at the step when giantin is present on Golgi mini-stacks. To assess this question, we imaged living cells stable expressing TNF-SBP-EGFP and ManII-SBP-mCherry. DNA was stained using SiR-DNA to evaluate mitotic stage. Biotin was added when the cells were in metaphase. Post-Golgi transport of TNF resumed during late anaphase (Fig. 8B) which is the stage where giantin was clearly detected on Golgi elements in fixed samples. One can note that in the interphase surrounding cell, post-Golgi TNF transport occurred earlier than in the
mitotic cell. These results suggest that upon mitosis exit post-Golgi trafficking resumes when functional maturation of Golgi elements occurred, which is similar to what was observed in the absence of microtubules.

Discussion

Role of microtubules in Golgi-dependent transport

Microtubules are essential to organize and connect intracellular compartments (de Forges et al., 2012). However, despite many studies, the role of microtubules in controlling Golgi-dependent transport is still unclear (Cole et al., 1996; Hirschberg et al., 1998; Parczyk et al., 1989; Presley et al., 1997; Rindler et al., 1987; Rogalski et al., 1984; Van De Moortele et al., 1993). Combining the RUSH assay with a complete removal of microtubules, we show here that, early after microtubules depletion, a large fraction of cargos is blocked in newly formed peripheral Golgi mini-stacks. The same result was also observed using the classical VSVGtsO45 assay.

Why transport is blocked in the absence of microtubules is unclear. One possibility was that dispersed mini-stacks may be incompetent for transport. However, we show here that the dispersed state of mini-Golgi stacks is not directly responsible for the observed block because dispersion of the Golgi apparatus upon inhibition of dynein function did not perturb secretion. This is in line with a study by Yadav et al. (Yadav et al., 2009) who reported that secretion is not affected by dispersion of Golgi elements mediated by depletion of some Golgins. Golgi size and integrity may be more important for particular cargos, such as large cargos as recently suggested (Ferraro et al., 2014; Lavieu et al., 2014).

A second possibility was that microtubules, and their associated kinesin motors, were essential to enable export from Golgi/TGN. However, we showed here that microtubule-driven mechanisms are dispensable for Golgi export. First, we observed that older, centrally localized and giantin positive Golgi complexes support transport in the absence of microtubules. Second, we observed that after an extended period of time in the presence of nocodazole, cells are able to transport secretory cargo normally toward the plasma membrane. Third, cargos were able to leave dispersed mini-Golgi elements produced in a BFA wash-out experiment in the absence of microtubules. Altogether, this indicates that neither the overall size of Golgi mini-stacks, nor the need for motor-driven export from Golgi membranes are responsible for inhibition of transport observed at early time points in the
absence of microtubules. We propose that functional maturation is necessary to enable Golgi transport (see below) and this may also be at work during mitosis exit.

In the absence of microtubules, it is likely that movement of transport intermediates toward the cell surface occurs by diffusion. This is suggested by the fact that secretion occurs in a Golgi proximal area of the plasma membrane when partial transport occurs exclusively from older giantin-positive Golgi elements upon short nocodazole treatment. Similar results were obtained by Schmoranzer et al. (Schmoranzer et al., 2003) when they reported that fusion of exocytotic vesicles was clustered around central Golgi elements in the absence of microtubules. Thus, although microtubules are often described as essential to support polarized trafficking to sub-domains of the plasma membrane, we show here that, conversely, they are also essential to support homogenous transport to the cell surface when a unique central Golgi is present because they support long-range transport (Fig. 8C). This is different in specialized cells as it has been well established that very long range and polarized transport depend on microtubules (Conde and Caceres, 2009; Sugioka and Sawa, 2012).

Functional maturation of Golgi mini-stacks

Our data thus suggest that neither the small size of mini-stacks nor the obligatory use of microtubule-based motors are likely to explain the block in transport observed at early time point in the absence of microtubules. As an alternative model to explain why cargos cannot cross Golgi mini-stacks in these conditions, we propose that functional maturation of Golgi elements is essential to make them competent for secretion.

Soon after microtubules depletion, transport can only occur through fully mature Golgi apparatus that existed prior to depletion (Fig. 8D early). At a later stage, upon long nocodazole treatment, all mini-stacks become functionally mature and competent for transport (Fig. 8D late). Experiments done in the presence of cycloheximide suggested that functional maturation of newly formed Golgi elements mostly occurs by recycling of key factors from older Golgi complexes. Golgi dispersion throughout the cytoplasm after depolymerization of microtubules does not result from unlinking of the Golgi ribbon but to appearance of Golgi mini-stacks at peripheral sites. It has been clearly demonstrated that mini-stacks are formed at ERES from recycling of Golgi proteins through the ER (Cole et al., 1996; Sengupta et al., 2015; Storrie et al., 1998). In addition, removal of microtubules does not prevent retrograde transport of Golgi proteins to the ER. This was well demonstrated by preventing ER export (using BFA/H89 or Sar1 dominant negative) at the same time as microtubules disruption (Jiang et al., 2006; Puri and Linstedt, 2003; Storrie et al., 1998).
In our study, inhibiting neo-synthesis of proteins did not prevent functional maturation of Golgi elements. After several hours of incubation with nocodazole and cycloheximide, giantin, marker of pre-existing central Golgi, relocalized to peripheral mini-stacks. In the same line, forcing recycling of Golgi proteins through the ER before removal of microtubules induced a full maturation of dispersed Golgi elements. In this condition, all newly formed mini-stacks were competent for secretion.

The missing components in immature mini-stacks

It is still unclear what are the Golgi factors needed to get functionally mature Golgi elements. We observed that Golgi enzymes may be only partly relocalized to new mini-stacks at early time points. Indeed, we showed a differential staining pattern with the lectin HPA between the central Golgi and peripheral mini-stacks. Staining by WGA was homogenously distributed to all Golgi elements, central and peripheral ones. This may be due to different rates of relocalization of Golgi enzymes to peripheral mini-stacks after microtubules depolymerization as reported before (Yang and Storrie, 1998) and a functional glycosylation machinery may be essential to enable normal Golgi transport. However, this may also be due to the observed differential post-Golgi trafficking ability of the two populations of Golgi elements, since cargos (glycosylation substrates) do not accumulate in the central Golgi elements.

The prominent Golgi proteins missing in immature mini-stacks is giantin and is thus tempting to consider it as a key maturation factor. We show here that relocation of giantin to peripheral mini-stacks upon removal of microtubules takes several hours. This may be explained by slow dynamics, in particular slow ER recycling of this very large protein. In contrast, GM130 or Golgi enzymes are quickly relocalized on newly formed mini-Golgi. However we reported before that other proteins, like dymeclin (Dimitrov et al., 2009) are also localized on old and centrally localized Golgi elements shortly after nocodazole treatment indicating that giantin is not the only Golgi protein to be retained on older Golgi structures. We observed that forced localization of giantin on all mini-stacks did not render them competent for secretion in the absence of microtubules. In addition, post-Golgi transport of cells depleted from giantin still occurs normally. This indicates that giantin is not the only missing factor responsible for functional maturation of Golgi elements.

In conclusion, we show here that transport is blocked in cells depleted of microtubules but that this block is not due to the role of microtubule-dependent export from the Golgi but rather to a slow functional maturation of reforming mini-Golgi. It will now be important to
look for the key factors that are missing in early mini-stacks and that are essential for the Golgi complex to become functionally mature.

Materials and methods

Cells, plasmids and transfection

HeLa wild-type cells and GFP-giantin edited cells were grown at 37°C with 5% CO₂ in DMEM (high glucose, GlutaMAX, LifeTechnologies) supplemented with 10% FCS (GE Healthcare), pyruvate sodium 1mM (Life Technologies), penicillin and streptomycin (Life technologies). HeLa cells stably expressing RUSH constructs were cultured as described previously supplemented with 4 µg/ml of puromycin (Invivogen). Cells were transfected 24 to 48 hours before observation with calcium phosphate (Jordan et al., 1996). The HeLa GFP-giantin cell line was obtained using the CRISPR/Cas9 technology. A guide RNA targeting the ATG region (GAAATGCTGAGCCGATTATC) of the GOLGB1 gene coding for giantin was constructed. This gRNA was co-transfected with Cas9, a donor DNA coding for GFP-giantin with 1kb left and right homology arms. The positive cells were enriched by two consecutive sorting and cloned. The clone used in this study contains only edited alleles. For immunoblots, giantin was probed with polyclonal anti-giantin from Covance and a polyclonal antibody anti-GFP obtained from the recombinant antibody platform of the Institut Curie. RUSH plasmids and ManII-mCherry were constructed as previously described (Boncompain et al., 2012). The RUSH stable cell lines expressing the ER hook Str-KDEL and TNF-SBP-EGFP and Str-KDEL and ManII-SBP-mCherry were established using lentiviral transduction. VSVGtsO45-EGFP was obtained from J. White. p150-CC1-BFP was constructed from p150-CC1-GFP given by S. Miserey-Lenkei (Institut Curie, Paris). Plasmid coding for GFP-CLASP2 was given by A. Akhmanova (Utrecht University, The Netherlands). The siRNA sequence to target giantin was GAA GGU CUG UGA UAC UCU A. The control siRNA targeting luciferase was CGU ACG CGG AAU ACU UCG A. SiRNA were transfected with Lipofectamine RNAi MAX (Thermo Scientific) at 14.5 nM for 72 h and a second transfection was performed in the same conditions for 48 h to ensure efficient depletion of giantin.
Acute expression of p150-CC1

HeLa cells were transfected with a plasmid encoding for tagBFP-p150-CC1 and Str-KDEL_TNF-SBP-EGFP or with tagBFP and Str-KDEL_TNF-SBP-EGFP as a control using calcium phosphate transfection (see above). After 3h of transfection, cycloheximide (Sigma) was added at 0.1 mg/ml final and incubated overnight to accumulate mRNA. Then cycloheximide was extensively washed out to allow protein synthesis. Incubation in the absence of cycloheximide was performed for 2 h before induction of trafficking by addition of biotin.

Treatments

Depolymerization of microtubules was performed with a cold treatment in HBSS (Life Technologies) at 4°C during 1h30. Cells were then warmed up in complete medium containing either nocodazole at 10 µM final or DMSO as control for 30 min at 37°C. Synchronization of the trafficking with the RUSH system was induced by addition of biotin 40 µM final as described previously (Boncompain et al., 2012). Cycloheximide (Sigma Aldrich) was used at 10 µg/ml. The efficacy of cycloheximide treatment was confirmed using the SUnSET assay (Schmidt et al., 2009). Cells were incubated with puromycin for 30 min before the end of cycloheximide treatment. Protein synthesis was monitored by detection of puromycin incorporation by western blot using an anti-puromycin antibody (clone 12D10 Millipore). In these condition, we confirmed efficient inhibition of translation up to 8 h of treatment. Brefeldin A was used at 1 µM final. Washout of nocodazole was performed by 3 washes with complete medium and washout of Brefeldin A was performed with 10 washes. All molecules were purchased from Sigma-Aldrich.

Immunofluorescence, antibodies and microscopy

Cells fixation was performed with paraformaldehyde 3% (Electron Microscopy Sciences) for 15 min at room temperature or with methanol for 5 min at -20°C. For permeabilization, cells were incubated in PBS supplemented with BSA and saponin for 10 min at room temperature. The surface staining was performed at 4°C on non fixed cells, the primary antibody is incubated in cold PBS for 40 min. Cells were then fixed with paraformaldehyde 2% for 10 min at room temperature. Primary antibodies used in this study are anti-GFP (Roche catalog number 11814460001, batch 11063100, dilution 1:1000),
mouse anti-GM130 from BD Bioscience (catalog number 610823, batch 4324839, dilution 1:1000), rabbit anti-GM130 from Abcam (catalog number ab52649, batch GR147765-1, dilution 1:2000), anti-GaIT from CellMAB (catalog number CB02, batch 001, dilution 1:100), anti-giantin TA10 (Nizak et al., 2004), anti-VG (from T. Kreis, University of Geneva), anti-ninein 1H2 (A-R-H-29, dilution 1:200), anti-beta-tubulin S11B (A-R-H-23, dilution 1:25), anti-giantin TA10 (A-R-H-03, dilution 1:250) and anti-Cherry (A-P-R#13 dilution 1:1000) were obtained from the recombinant antibody platform of the Institut Curie. HPA and WGA lectins were purchased from Life Technologies (Thermo scientific). Conjugated secondary antibodies were purchased from Jackson Immunoresearch. SiR-DNA was purchased from Spirochrome. Fixed pictures were acquired with an epifluorescence microscope (Leica) equipped with a Coolsnap camera (Roper Scientific). Timelapse acquisitions were done at 37 °C in a thermostat-controlled chamber using an Eclipse 80i microscope (Nikon) equipped with spinning disk confocal head (Perkin) and a Ultra897 iXon camera (Andor). Cells were incubated in Leibovitz’s medium (Life Technologies) with or without drugs. FRAP experiment was performed on the same type of spinning disk microscope but equipped with a FRAP laser and a cool-SNAP HQ2 camera (Roper Scientific). The area of interest is bleach with a 405 laser (40x repetitions) 15 minutes after the addition of biotin. Image acquisitions in real time or on fixed samples were performed using Metamorph software (Molecular Devices).

Quantification of microscopy pictures

For Figure 2B and Figure 7B, the number of the Golgi apparatus was quantified with the « Analyze Particles » plugin of the ImageJ Software. For Figure 3D, the surface staining performed by immunofluorescence was quantified using the Icy software after drawing the regions of interest corresponding to cells. Background average intensity was subtracted from the average intensity of the surface staining and normalized by the GFP expression level from which background was also subtracted. For Figure 6B, Figure 8B, Figure S1C and Figure S4B, the arrival at the plasma membrane was quantified using the average intensity of the anti-GFP surface staining normalized by the GFP signal. Number of cells quantified for each experiment is indicated in Figure legends. For Figure S3C, the distance was calculated between the centrosome (ninein staining) and each Golgi dot (GM130 or giantin positive) using X and Y coordinates Mean distance was calculated for each cell and then for each condition.
Flow cytometry.

Cold treatment (HBSS, 4°C, 1h30) and nocodazole treatment (10 µM, 37°C, 30 min) were performed on HeLa cells on dishes as described above. Cells were detached with 0.5 mM EDTA and pelleted by centrifugation at 4°C for 5 min. Immunostaining was performed on ice. The primary antibody was incubated during 45 min on ice. Cells were post-fixed with paraformaldehyde 2% after incubation with the primary antibody and the washes with PBS containing BSA. The conjugated secondary antibody was incubated at room temperature for 30 min. Data were acquired with an Accuri C6 flow cytometer. The median intensity of the anti-GFP surface staining (FL4 channel) was divided by the median intensity of the GFP signal (FL1 channel) for each time point. These numbers were multiplied by 100 to express percentages.

Cryo-immuno-electron microscopy

Cells were fixed with 2% paraformaldehyde and 0.2% glutaraldehyde in 0.1M sodium phosphate buffer, pH 7.4. After washing in PBS/Glycine 0,02M, cells were pelleted by centrifugation, embedded in 12% gelatin, cooled in ice and cut into 5-mm3 blocks. The blocks were infused overnight with 2.3 M sucrose at 4°C, frozen in liquid nitrogen and stored until cryo-ultramicrotomy. Sections of 80 nm were cut with a diamond knife (Diatome) at -112°C using Leica EM-UC7. Ultrathin sections were picked in a mix of 1.8% methylcellulose and 2.3 M sucrose (1:1) according to Liou et al. (Liou et al., 1996) and transferred to formvar carbon-coated copper grids. Double immunolabeling was performed as described before (Slot et al., 1991) with optimal combination of gold particle sizes and sequence of antibodies. Cryosections were incubated with rabbit polyclonal anti-GFP antibody (Invitrogen, catalog number A11122, batch 939-306, dilution 1:150) followed by protein A gold (Slot and Geuze, 1985). A rabbit anti–mouse immunoglobulin antibody was used as a bridging antibody with monoclonal anti-GM130 antibody (Becton Dickinson, catalog number 610823, batch 4324839). After labeling, the sections were treated with 1% glutaraldehyde, counterstained with uranyl acetate and embedded in methyl cellulose uranylacetate (Slot et al., 1991). Electron micrographs were acquired on a Tecnai Spirit electron microscope (FEI, Eindhoven, The Netherlands) equipped with a 4k CCD camera (EMSIS GmbH, Münster, Germany).
Micro-patterns. Glass coverslips were activated with plasma before incubation with PEG-polylysine during 1h. After mask activation with O₃ during 5 min, coverslips were put on the mask, incubated 5 min in O₃ and then washed. Before seeding cells, coverslips were incubated in fibronectin solution during 30 min.
Acknowledgments

We acknowledge Vincent Fraisier and François Waharte from the PICT-IBiSA Lhomond imaging facility of Institut Curie and Olivier Leroy from the PICT-IBiSA BDD imaging facility of the Institut Curie. The authors also acknowledge the recombinant antibody platform of the Institut Curie. The authors would like to thank Emilie Colin and Arnaud Echard for discussion about the results. We thank Ana Joaquina Jimenez for commenting the results and for her help with the micro-patterning.

Competing interests

The authors declare no competing or financial interests.

Author contributions

L.F. carried out most of the experiments, analyzed the data and wrote the manuscript. S.D. performed some experiments and electron microscopy experiments. M.R. established the gene-edited GFP-giantin cell line. G.B. and F.P. designed the study, directed the work, analysed the data and wrote the manuscript.

Funding

Electron microscopy work was supported by the Agence Nationale pour la Recherche through the "Investments for the Future" program (France-BioImaging, ANR-10-INSB-04). We acknowledge the PICT-IBiSA, member of the France-BioImaging national research infrastructure, supported by the CelTisPhyBio Labex (N° ANR-10-LBX-0038) part of the IDEX PSL (N°ANR-10-IDEX-0001-02 PSL). The work in F.P. lab was supported by the Institut Curie, the CNRS and by grants from the Fondation pour la Recherche Médicale (DEQ20120323723) and from the Agence Nationale pour la Recherche (ANR-12-BSV2-0003-01).
References

Figures

A

Time with biotin (min)

0 15 50

control

without MT

B

Time with biotin (min)

0 15 60

TNF-SBP-EGFP
Manil-SBP-mCherry

control

without MT

C

Normalized surface staining (a.u.)

control without MT

Time with biotin (min)
Figure 1: TNF post-Golgi trafficking is strongly reduced in the absence of microtubules

HeLa cells stably expressing Streptavidin-KDEL and TNF-SBP-EGFP and ManII-SBP-mCherry (A) or TNF-SBP-EGFP only (B and C) were subjected to MT removal or with DMSO as a control. Induction of trafficking by addition of biotin was performed at time 0. Scale bar: 10 µm.

A. Cells were observed by time-lapse imaging using a spinning disk microscope and pictures were acquired at the indicated time.

B. Surface staining using an anti-GFP antibody (red) was performed on non-permeabilized cells at indicated time after induction of TNF trafficking.

C. Quantification by flow cytometry of cells treated as in B. The average of three independent experiments is shown with more than 5,000 cells per condition. a.u.: arbitrary units.
Figure 2: TNF trafficking resumes upon microtubules regrowth and clustering of Golgi elements

A. HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP and ManII-SBP-mCherry were subjected to MT removal. Cells were observed by time-lapse imaging using a spinning disk microscope and pictures were acquired at the indicated time. Biotin was added at time 0. After 69 min of incubation with biotin, nocodazole was washed out. Scale bar: 10 μm.

B. Quantification of Golgi elements from figure 2A before and 60 min after nocodazole washout.
Figure 3: Blockade of post-Golgi is not due to Golgi dispersion

A. HeLa cells transfected with Str-KDEL_TNF-SBP-EGFP and p150-CC1-tagBFP. Cells expressing p150-CC1-tagBFP are outlined in blue. Surface staining of TNF was
detected with an anti-GFP antibody on non-permeabilized cells. The Golgi apparatus was counterstained with an anti-GM130 antibody. Scale bar: 10 µm.

B. HeLa cells transfected with Str-KDEL_TNF-SBP-EGFP, Str-KDEL_ManII-SBP-mCherry and p150-CC1-tagBFP. Real time pictures were acquired with a spinning disk microscope. Biotin was added at time 0. Scale bar: 10 µm.

C. HeLa cells transfected with Str-KDEL_TNF-SBP-EGFP with or without p150-CC1-tagBFP were subjected to cold and DMSO (control) or nocodazole treatments. Cells over-expressing p150-CC1-tagBFP (p150-CC1-OE) are outlined in blue. Surface detection of TNF-SBP-EGFP was performed using an anti-GFP antibody (red). The Golgi apparatus was counterstained with an anti-GM130 antibody (blue). Scale bar: 10 µm.

D. Quantification of the surface staining was done using the ICY software (see Methods) At least 35 cells were quantified per condition.

E. HeLa cells transfected with Str-KDEL_TNF-SBP-EGFP and p150-CC1-tagBFP were subjected to MT removal. Cells over-expressing (OE) p150-CC1-tagBFP are outlined in blue. Washout of nocodazole was performed after 60 min of incubation with biotin. Surface detection and Golgi staining were performed as in C. Scale bar: 10 µm.
Figure 4: Two populations of Golgi apparatus coexist early after removal of microtubules

A. Cryo-immuno EM performed on HeLa cells stably expressing Str-KDEL_TNF-SBP-EGFP after microtubule removal. TNF-SBP-EGFP was labeled with an anti-GFP antibody and the Golgi complex with an anti-GM130 antibody. TNF is detected with 10 nm PAG (Protein A gold) and GM130 with 15 nm PAG (arrows). Scale bar: 200 nm.

B. HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP and ManII-SBP-mCherry after microtubules removal. Cells were observed by time-lapse imaging using a spinning disk microscope and pictures were acquired at the indicated time. Biotin is added at
time 0. Intensity profiles were performed with Metamorph software on indicated lines. Scale bar: 10 µm.

C. HeLa cells stably expressing Str-KDEL_TNF-SBP-EGFP after microtubule removal and after 60 min of addition of biotin. Immunostaining using an anti-GM130 (blue) and an anti-giantin (red) were performed. Scale bar: 10 µm.
Figure 5: The two populations of Golgi elements are functionally different.

A. HeLa cells stably expressing Str-KDEL_TNF-SBP-EGFP were subjected to microtubules removal. Surface staining was performed using an anti-GFP antibody (red) on non-permeabilized cells. The Golgi apparatus was then counterstained with an anti-giantin antibody (blue). Intensity profile was obtained with the Metamorph software along the indicated line. Scale bar: 10 µm.

B. HeLa cells stably expressing Str-KDEL_TNF-SBP-EGFP were subjected to microtubules removal and treated with biotin at 37°C. Cells were observed by time-lapse imaging using a spinning disk microscope. After 14 min of incubation with biotin, fluorescence in the cell outlined in blue was photobleached except the central Golgi apparatus area outlined in red. Scale bar: 10 µm. Fluorescence intensity was measured in the areas 1-3 indicated on the left panel 5 independent experiments (area 1 (n= 10), area 2 (n=16), area3 (n=7)).
C. Immunostaining using fluorescent HPA (blue), fluorescent WGA (green) and an anti-giantin antibody (red) were performed on HeLa cells after microtubules removal or DMSO as a control. Scale bar: 10 μm.
Figure 6: Golgi mini-stacks need time to become functional after microtubule removal

A. After a cold treatment, HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP were incubated with nocodazole for the indicated time (0, 0.5, 2, 4, 6 or 8 h). Surface staining was performed using an anti-GFP antibody (red) on non-permeabilized cells. Scale bar: 10 µm.

B. Quantification of the surface staining (37 to 97 cells were quantified depending on the condition from 2 independent experiments).

C. HeLa cells stably expressing endogenous giantin tagged with GFP (GFP-giantinEN) transfected with ManII-mCherry were subjected to a cold treatment. Pictures were acquired with a spinning disk microscope right after the addition of nocodazole in the medium at 37°C to observe Golgi apparatus dispersion. Scale bar: 10 µm.
Figure 7: Recycling of Golgi factors is sufficient for functional maturation of Golgi elements

A. HeLa cells gene-edited to express endogenous giantin tagged with EGFP (GFP-giantinEN) are subjected to cold and nocodazole treatments in presence or in the absence of cycloheximide (CHX). Cells were fixed after 1h or 8h of treatments. The Golgi apparatus elements were stained with anti-GM130 (red) and anti-GalT (blue) antibodies. Scale bar: 10 µm.

B. Quantification of Golgi elements (at least 45 cells from 2 independent experiments are quantified per condition).

C. HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP were subjected to cold and DMSO or nocodazole treatments. When indicated a BFA treatment followed by a
washout of BFA was performed before the cold treatment. Surface staining was performed using an anti-GFP antibody (red) on non-permeabilized cells. Scale bar: 10 µm.

D. Quantification of the surface staining (More than 50 cells were quantified per condition).

E,F. HeLa cells were subjected to acute expression of tagBFP-p150-CC1 or tagBFP as a control (blue). The Golgi apparatus was stained with anti-giantin (green) and anti-GM130 antibodies (red). Scale bar: 10 µm. (E). TNF trafficking at the plasma membrane was quantified after staining with an anti-GFP antibody on non permeabilized cells. Error bars represent SD from 2 independent experiments (F).
Figure 8: Post-Golgi trafficking resumes at the time when Golgi elements become giantin positive during mitosis

A. HeLa cells expressing endogenous giantin tagged with GFP (GFP-giantinEN, green) were fixed and stained for DNA (SiR-DNA) and GM130 (red). Scale bar: 10 µm.

B. HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP and ManII-SBP-mCherry were imaged in real time. DNA was labeled with SiR-DNA to monitor mitotic stage. Biotin was added when the cell was in metaphase. Scale bar: 10 µm.

C. control
D. without microtubules
 early
 late
C, D. Model for secretion in presence of microtubules (F), early after removal of microtubules (G) and late after removal of microtubules when mini-stacks are functionally mature
Figure S1: Microtubules depolymerization and slowed down of VSVGtsO45 trafficking without microtubules.

A. HeLa cells incubated with cold and/or nocodazole treatments as indicated. Cytoplasm was pre-extracted before Methanol fixation. Immunostaining using anti-tubulin (red) and anti-GM130 (green) antibodies was performed.

B. HeLa cells transfected with VSVGtsO45-EGFP were subjected to cold and nocodazole treatments (or DMSO as control). The Golgi apparatus was counterstained with an anti-GM130 antibody.

B. Quantification of the fluorescence intensity with the Icy software (More than 50 cells were quantified per condition).

Scale bar: 10 µm.
Figure S2: Golgi markers after removal of microtubules and cryo-immuno EM of TNF-SBP-EGFP in the Golgi apparatus in control condition.

A. HeLa cells expressing Str-KDEL, TNF-SBP-EGFP and ManII-SBP-mCherry were subjected to cold and nocodazole treatments. Cells were fixed after 15 min or 90 min of release by biotin and cells are counterstained with an anti-GM130. Scale bar: 10 µm.
B. Cryo-immuno EM performed on HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP after cold and DMSO treatments (control). TNF-SBP-EGFP was detected with an anti-GFP antibody and the Golgi apparatus was detected with an anti-GM130 antibody by protein A gold particles conjugates (PAG). TNF was detected with 10 nm PAG and GM130 with 15 nm PAG (arrows). Scale bar: 200 nm.
Figure S3: Dispersion of Golgi elements after microtubule removal.

A. Immunostaining of HeLa cells in control conditions or without microtubules using anti-GM130 (green), anti-giantin (red) and anti-AKAP450 (blue) antibodies.

B. HeLa cells transiently expressing GFP-CLASP2 (green) were subjected either to control or cold and nocodazole treatments. After methanol fixation, the Golgi apparatus was stained using anti-giantin (red) and anti-GM130 (blue) antibodies. Scale bar: 10 µm.

C. Immunostaining of GFP-giantinEN cells using an anti-giantin antibody and anti-GM130 as a Golgi marker. Scale bar: 10 µm.

D. Characterization of the GFP-giantinEN cell line by western blot. IB: immunoblot

E. HeLa cells gene-edited to express endogenous giantin tagged with EGFP (GFP-giantinEN) and transfected with ManII-mCherry were subjected to a cold treatment. Pictures were acquired with a spinning disk microscope right after the addition of nocodazole in the medium at 37°C to observe Golgi apparatus dispersion. Scale bar: 10 µm.

F. HeLa cells seeded on fibronectin circular micro-pattern were subjected to cold and nocodazole treatments (or DMSO as control) and then counterstained with anti-ninein (blue), anti-GM130 (red) and anti-Giantin (green) antibodies. Scale bar: 10 µm.

G. The distance from the centrosome (ninein) for each spot of GM130 and Giantin was measured using ImageJ to quantify the dispersion of Giantin and GM130 Golgi pools (More than 10 cells were quantified per condition).
Figure S4: Functionality of Golgi elements after long-term removal of microtubules, overexpression or depletion of giantin and forced recycling through the ER and.

A. HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP were subjected to a cold treatment and an overnight (OVN) nocodazole treatment. Surface staining was performed using an anti-GFP antibody (red) on non-permeabilized cells. Cells were counterstained with an anti-Giantin antibody (blue). Scale bar: 10 µm.
B. Quantification of the fluorescence intensity at the plasma membrane by flow cytometry.

C. HeLa cells transfected with Str-KDEL_TNF-SBP-mCherry and SBP-EGFP-giantin were subjected to cold and DMSO (control) or nocodazole (without MT) treatments. Cells were fixed after 60 min of release by biotin. Scale bar: 10 µm.

D. Giantin was depleted from HeLa cells stably expressing TNF-SBP-EGFP using siRNA. Experiments were performed after 2 transfections of siRNA over 5 days. SiRNA targeting luciferase was used as a control. Depletion was assessed by western blot (D). Effects of depletion of giantin were quantified by flow cytometry (E). Scale bar: 10 µm.

F. HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP were treated with brefeldin A followed by a washout of BFA and then microtubules were removed. The Golgi apparatus elements were stained with anti-GM130, anti-Giantin and anti-GalT antibodies.
Movie 1: Synchronized transport of ManII and TNF using the RUSH system in control conditions

HeLa cells stably expressing the ER hook Streptavidin-KDEL and TNF-SBP-EGFP and ManII-SBP-Cherry were subjected to cold treatment and incubated with DMSO as control. Induction of trafficking of TNF and ManII by addition of biotin was performed at time 0. Time in min : sec
Movie 2: Synchronized transport of ManII and TNF using the RUSH system after microtubule removal

HeLa cells stably expressing the ER hook Streptavidin-KDEL and TNF-SBP-EGFP and ManII-SBP-Cherry were subjected to cold treatment and incubated with nocodazole. Induction of trafficking of TNF and ManII by addition of biotin was performed at time 0. Time in min : sec
Movie 3: Trafficking of ManII and TNF after microtubule removal followed by washout of nocodazole

HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP and ManII-SBP-Cherry were subjected to cold and nocodazole treatments. Biotin is added at time 0. Nocodazole was washed out after 69 min of incubation with biotin. Time in min : sec
Movie 4: Two populations of Golgi elements co-exist in the absence of microtubules

HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP and ManII-SBP-mCherry after cold and nocodazole treatments. Biotin was added at time 0. Time in min : sec
Movie 5: The centrally located Golgi elements support trafficking of TNF

HeLa cells stably expressing Str-KDEL and TNF-SBP-EGFP after cold and nocodazole treatments. Photobleaching was performed after 14 min of incubation with biotin.