Local Ras Activation, PTEN Pattern, and Global Actin Flow in the Chemotactic Responses of Over-sized Cells

Markus Lange¹, Jana Prassler¹, Mary Ecke¹, Annette Müller-Taubenberger², and Günther Gerisch¹,*

¹Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
²LMU Munich, Department of Cell Biology (Anatomy III), BioMedical Center, Großhaderner Str. 9, D-82152 Martinsried, Germany.

*Correspondence: gerisch@biochem.mpg.de

Keywords: actin flow, cell fusion, cell polarity, chemotaxis, PTEN, Ras
Summary Statement

The chemotactic response system of *Dictyostelium* cells can accommodate to large sizes involving asymmetric Ras activation in turning protrusions, unconventional PTEN patterns, and tail-directed actin flow in polarity establishment.

Abstract

Chemotactic responses of eukaryotic cells require a signal processing system that translates an external gradient of attractant into directed motion. To challenge the response system to its limits, we increased the size of *Dictyostelium* cells using electric-pulse induced fusion. Large cells formed multiple protrusions at different sites along the gradient of chemoattractant, which independently turned into the gradient direction and competed with each other. Finally, these cells succeeded to re-establish polarity by coordinating front and tail activities. To analyze the responses, we combined two approaches, one aimed at local responses by visualizing the dynamics of Ras activation at the front regions of re-orientating cells, the other at global changes of polarity by monitoring front-to-tail directed actin flow. Asymmetric Ras activation in turning protrusions underscores that gradients can be sensed locally and translated into orientation. Different from normal-sized cells, the polarity of large cells is not linked to an increasing front-to-tail gradient of the PIP3-phosphatase PTEN. But even in large cells, the front communicates with the tail by an actin flow that may act as carrier of a protrusion inhibitor.
Introduction

Orientation of eukaryotic cells in a gradient of chemoattractant requires a signal processing system that translates an external gradient of signaling molecules, recognized by receptors on the cell surface, into a directed motion based on the polarization of cytoskeletal activities. Models of chemotaxis emphasize either a global view or they focus on local responses. The global aspect of front-to-tail polarization has been addressed in the reaction-diffusion model of Meinhardt and Gierer (2000) and in various versions of the local excitation global inhibition (LEGI) model (Iglesias and Devreotes, 2008). Local aspects are underlined in pseudopod-based models as the split-pseudopod model of Insall (Insall, 2010) or the local coupling model of Arrieumerlou and Meyer (2005).

Our goal was to challenge the response system by increasing its size. A large cell needs to coordinate local activities over long distances, in order to reorientate when the direction of a gradient is changing. By electric-pulse induced fusion we produced large cells of *Dictyostelium discoideum* (Gerisch et al., 2013) and allowed them to align in a gradient of attractant. Subsequently, the cells were forced to reorientate by moving a stimulating micropipette behind their tail. To analyze the responses of these cells, we combined two approaches, one aimed at local activities, the other at global responses. Local activities were recorded by visualizing the dynamics of Ras activation at protrusions formed during re-orientation of the cells. The large cells formed multiple protrusions, which independently turned into the direction of the gradient. Asymmetric Ras activation across the diameter of the tubular protrusions indicates that the gradient is locally sensed and translated into a response.

In global terms, the reorientation of over-sized cells is characterized by the conflict between persistent cell polarity and the reversed direction of an attractant gradient. In this conflict, the response was often initiated opposite to the source of attractant: protrusions were first formed at the previous front at sites of lowest attractant concentration, and only subsequently at the previous tail that received the strongest attractant signal. To monitor how a response governed by the intrinsic polarity of the cell is converted into a response directed by the external gradient, we used a Ras binding domain (RBD) as a front marker (Zhang et al., 2008). The RBD from human Raf1 recognizes the GTP-bound state of Ras G (Kae et al., 2007) that is important for chemotaxis in *D. discoideum* (Takeda et al., 2012).

The recording of activated Ras was combined with that of membrane-bound PTEN. In chemotaxing cells of normal size, the binding of this PI3-phosphatase to the inner face of the
plasma membrane has been reported to increase from the front to the tail (Funamoto et al., 2002, Iijima and Devreotes, 2002). The question was whether this gradient can accommodate to an enlarged cellular space. Quantitative fluorescence imaging revealed that on the substrate-attached surface of large cells, PTEN reached a peak behind the front and declined then up to the tail; it thus did not reflect the polarity of the cell.

As an alternative mechanism of front-to-tail coordination, we explored the possibility of a directed actin flow. In normal-sized Dictyostelium cells that expressed a talin fragment as an actin binding probe, an actin flow directed from higher to lower attractant concentrations has been demonstrated (Weber et al., 2002). By simultaneously recording Ras activation and direction of the actin flow, we show that even over the increased distances of a large cell a global actin flow connects the front with the tail, and that the flow is redirected when the attractant gradient is changed. This finding prompted us to discuss the possibility that in the chemotactic response the front-to-tail polarity might be established by molecules that are carried by an actin flow and specify the tail of the cell.
Results

Chemotaxis of large cells
Under stationary chemotactic stimulation, a cell moves with its axis of polarity pointing into the direction of the concentration gradient of chemoattractant. To study how a large cell responds if its polarity and the attractant gradient point into opposite directions, we stimulated fused cells of *D. discoideum* with cyclic AMP through a micropipette, allowing them to align their polarity with the gradient, and then suddenly reverted the gradient direction by moving the pipette. To trace changes in cell polarization, we used cells that expressed the mRFP-tagged Ras binding domain (RBD) from human Raf1 as a front marker (Zhang *et al.*, 2008). This front marker was combined with GFP-tagged PTEN. In a normal-sized chemotaxing cell, binding of this PI3-phosphatase to the inner face of the plasma membrane is considered to rise from the front to the tail (Funamoto *et al.*, 2002, Iijima and Devreotes, 2002).

Multifold increases of cell size by electric-pulse induced fusion are illustrated in Figure 1A and Supplemental Movie 1, where a normal cell and two large ones responded concomitantly to attractant gradients of changing directions. In Figure 1B to D, quantitative data on the chemotactic response of a cell 5-times larger than a normal one are presented. The large cell was forced to reorientate repeatedly in response to changing positions of a micropipette (Fig. 1B), and its velocity in terms of the centroid displacement was measured. In the stationary state of movement up a gradient, the cell had an average velocity of 0.116 µm ∙ s⁻¹ ± 0.016 (s.e.) (Fig. 1C). This means, the large cell was slower than normal-sized cells, for which a velocity of 0.253 µm ∙ s⁻¹ ± 0.022 (s.e.) was obtained as an average of 10 cells orientated in a cAMP gradient under the same conditions.

For the same large cell, a chemotactic index (CI) was calculated from the cosine of α, the angle between the direction of centroid displacement and the direction of the micropipette tip. CI can vary between 0 and +1 for positive chemotaxis and between 0 and -1 for negative chemotaxis. During cell movement toward stable micropipette positions, an average value as high as CI = 0.912 ± 0.036 (s.e.) was reached, indicating efficient orientation of the large cell in the gradient (Fig. 1D). Upon changing the position of the micropipette, CI became temporarily negative since the cell continued to move in the previous direction. However, the recovery of CI to positive values indicates reorientation of the large cell within 61 seconds or less, as indicated in Figure 1D. Since this time comprises the reversal of the diffusion gradient and the cell’s response to the reversed gradient, it is an upper limit for reorientation of the large cell.
Strategies to reorientate

Upon the sudden reversal of the external gradient, the established front of the cell still pointed into the direction of the previous gradient such that the attractant hit preferentially the tail region of the cell. To re-adjust their polarity to the new direction of the gradient, the large cells employed a variety of strategies. In one type of response, cell polarity was controlled by the external gradient of chemoattractant. The cells reversed their polarity as a whole, converting the previous front into a tail, and vice versa. However, in the majority of responses, the established polarity of the cells influenced the way they reorientated. The variability of responses in a single cell is illustrated in Movie 2, where a cell reorientated first by reverting its polarity and, after repositioning the micropipette, by forming multiple protrusions.

Three characteristic examples of reorientation are illustrated in Figure 2. These images highlight activated Ras (in red), together with membrane-bound PTEN (in green) against a low cytoplasmic background of unbound PTEN. The cell of Figure 2A and Movie 3 shows the turning of a lateral protrusion combined with asymmetric Ras activation at the side exposed to the higher attractant concentration. The relatively small cell of Figure 2B and Movie 4 had two fronts marked by activated Ras. One front turned into a tail, while the other one branched and continued to protrude. Notably, it was the front closest to the source of attractant that became inhibited and converted into the tail. Upon moving the micropipette, this tail finally turned into a new front, suppressing other protrusions. The cell in Figure 2C and Movie 5 initially formed a protrusion that emanated from its established front. This protrusion turned into the direction of the new gradient, until a lateral protrusion dominated the response and became the new leading edge. In its orientation toward the source of attractant, this protrusion showed a split-pseudopod behavior as described for the chemotactic orientation of Dictyostelium cells (Andrew and Insall, 2007) and also for their unbiased movement (Bosgraaf and Van Haastert, 2009). These three image series indicate that protrusions are induced at multiple sites along the surface of large cells, not only at regions of highest attractant concentration. Irrespective of the site of their induction, protrusions recognize the new gradient and turn into its direction, indicating that turning of the protrusions is a response to the gradient separable from their induction.

Dual-front movement

Taken together, of the 66 large cells tracked during reorientation, 23 cells transiently responded by the formation of two protrusions, 11 cells formed multiple fronts and 32 cells single, often broad and subdivided ones. The responses of cells protruding two fronts were analyzed in detail.
The question was how these two fronts cooperate in driving the cell body toward the source of attractant, and also compete with each other such that eventually one front maintains the anterior position while the other being retracted may turn into a tail. In Figure 3 and Movie 6, movement and shape changes are represented at intervals of about 9 s by indicating in red the gain of area covered by the cell body, and in blue the loss of area. The three cells shown illustrate various features of the interplay of protrusion and retraction. In Figure 3A, the bifurcation of the cell into two lobes develops out of a state with multiple protrusions (0-s to 101.0-s frames, and 165.2-s to 192.8-s frames during reorientation). In the first period, the two fronts coexist for more than 95 s before one of them starts to retract (45.9-s to 101.0-s frames). The cell in Figure 3B and Movie 6 shows the formation of two protrusions that are separated by a retracting zone (18.4-s and 27.5-s frames). Subsequently, the protrusions merge into one broad front while the retracting zone between them disappears (36.7-s to 64.3-s frames). In the cell shown in Figure 3C and Movie 6, protrusive activities progress from the previous front region toward the previous tail. Simultaneously the cell retracts, until two fronts are formed that protrude into the direction of the gradient.

Tracking the centroid of the cells enabled us to relate the velocity of centroid displacement and the chemotactic index to the balance of protrusions and retractions (Fig. 3D to I). When the cell of Figure 3A switched from movement with two fronts to movement with one front between the 101.0-s and the 128.5-s frame, the velocity did not obviously change because the fast protrusion of the remaining front compensated for the retraction (Fig. 3D). At a later switch, net movement stopped shortly at 206 seconds when one front was retracted. In this cell, a high chemotactic index was reached during the initial period of continuous dual-front progression (Fig. 3E). During this period, an average CI = 0.857 ± 0.041 (s.e.) was obtained from the centroid displacements measured over 10 frame-to-frame intervals.

The cell of Figure 3B stopped net movement at 5 seconds upon repositioning of the micropipette (Fig. 3F), but continued to form protrusions and to retract locally (18.4-s frame in Fig. 3B). Subsequently, the cell moved again well orientated in the attractant gradient (Fig. 3G), while its two protrusions fused into one (36.7-s to 64.3-s frames in Figure 3B).

Figure 3C exemplifies a cell that needed longer than the previous ones to reorientate, but eventually responded efficiently to the changed gradient, as shown in Movie 2. In a first phase, the cell formed protrusions near the previous front. However, retraction of the previous tail shifted the centroid away from the source of attractant, such that the chemotactic index became negative (Fig. 3I). In an interphase from about 50 to 110 seconds, protrusive and retractive
activities brought net movement repeatedly to a halt (Fig. 3H), before the cell moved with two protrusions efficiently toward the micropipette.

The gain of area as a measure of the local protrusion rate can be compared with the centroid displacement reflecting global translocation of the cell mass. As shown in Table 1, local protrusions reached velocities about 3-times higher than the corresponding centroid displacements.

In summary, dual-front movement is compatible with effective chemotactic orientation. Details of the interplay of local protrusions and retractions in a reorientating large cell are, however, not reflected in the chemotactic index based on displacement of the centroid.

Asymmetric Ras activation in turning protrusions

Since Figure 2A suggested a link of the turning to asymmetric Ras activation, we localized activated Ras in optical sections across turning protrusions. The time series of Figure 4 shows the local evolution of asymmetric Ras distribution in a protrusion that turned toward a gradient of attractant, as opposed to the changes in PTEN distribution. Comparison of the 24.5-s to 27.5-s frames reveals that Ras became activated at the membrane area proximal to the micropipette already before PTEN disappeared. After the asymmetric activation of Ras, PTEN declined at that area to a level lower than at the opposing distal membrane region (27.5-s frame and following ones).

A special case of membrane dynamics in a protrusion is displayed in Figure 5. During turning into the direction of the gradient, the membrane area decorated with activated Ras was endocytosed by two events of macropinocytosis, indicating that protrusion and turning is compatible with the internalization of membrane. This finding underlines the dynamics of Ras activation, indicating that the attractant-induced pattern of activated Ras is restored within 5 s on a new membrane area.

The local control of Ras activation is underlined by the fact that Ras can be activated at the front of a large cell pointing into the direction of an attractant gradient and simultaneously activated in the form of waves on the substrate-attached surface. Cells of the *D. discoideum* AX2 strain used form actin waves on their substrate-attached surface, which circumscribe a membrane territory rich in PIP3 and separate this inner territory from an outer PTEN-decorated area (Arai et al., 2010, Gerisch et al., 2012). The inner territory is also distinguished by the activation of Ras (Huang et al., 2013). In Movie 7 a very large cell is shown to demonstrate that wave formation
and chemotaxis do not exclude each other; the activation of Ras within large territories of one part of the cell concurred with the chemotactic response of another part.

PTEN dynamics in large cells that respond to changing gradients

PTEN has been reported to be depleted from the membrane at the front of chemotaxing cells and to be highest at the tail (Funamoto *et al.*, 2002, Iijima and Devreotes, 2002). The question was whether in enlarged cells PTEN continues to increase along the entire front-to-tail axis of the cell. To obtain comprehensive information on the pattern of PTEN, we determined its distribution in two planes of focus: in a view on the substrate-attached membrane and in a cross-section through the free membrane at 1.5 µm on top of the substrate surface.

The double-view imaging revealed two different patterns of PTEN distribution in chemotaxing cells. At the substrate-attached membrane, PTEN showed a characteristic enrichment in an anterior zone (Fig. 6A-C). The posterior region of the cell became almost depleted of PTEN; nevertheless, the formation of pseudopods was suppressed in this region. Upon chemotactic reorientation, this PTEN pattern was re-established within less than 40 s of exposing a cell to a new direction of the gradient. The change in the PTEN pattern requires an increase in membrane binding near to the new front zone and a decrease in the previous front region. The decrease proceeded as previously reported for the PTEN regulation in actin waves (Gerisch *et al.*, 2012). PTEN was down-regulated by local depletion, often resulting in the formation of “PTEN holes”, before the typical enrichment of PTEN at the new anterior region of the cell was re-established (Fig. 6D and Movie 8, left panel).

In cross-sections through the cell at 1.5 µm above the substrate-attached surface, Ras was locally activated in protrusions, and PTEN strongly decorated the membrane up to the tail region (Fig. 6E and Movie 8, right panel). At an early stage after changing the gradient direction, the protrusions were distributed over most of the cell surface (0-s, 188-s, 219-s, and 401-s frames of Fig. 6E). At later stages, the large cells became clearly polarized, with less patches of activated Ras at the tail region (88-s and 299-s frames). In these polarized states, the fluorescence intensities of GFP-PTEN were scanned in the cross-sections along the perimeter of the cell, beginning with the front and ending with the tail (Fig. 6F). The scans did not show an increase of PTEN decoration from the front to the tail, although the tail appeared to be more uniformly decorated than the front region.
Redirected actin flow in polarity establishment

The absence of a continuous PTEN gradient has prompted us to search for other mechanisms of coordinated front and tail establishment in large cells. Since previous work on normal-sized cells revealed a retrograde actin flow in chemotaxing Dictyostelium cells (Weber et al., 2002), we asked whether a continuous flow would connect front and tail along the entire length of a fused cell. A GFP-fusion of the C-terminal actin-binding domain of talinA (GFP-talC63) has been shown to be transported with the flow and, because of its slow dissociation, to accumulate at the tail of the cell (Weber et al., 2002). To simultaneously monitor actin flow and changes in polarity, we used cells that expressed the flow reporter (green) together with mRFP-RBD as a front marker (red). Figure 7 illustrates how, in large cells, changes in polarity upon chemotactic reorientation are reflected in altered directions of the flow. In Figure 7A and Movie 9 the position of the micropipette was changed twice. In the first phase (frames 72-s to 108-s of Movie 9), multiple protrusions identified by Ras activation were induced. The actin flow was directed away from these protrusions that competed with each other. In the second phase (frames 108-s to 260-s of the Movie), a new front opposite to the previous one was established, and the actin flow was accordingly reversed.

Figure 7B and Movie 10 show a tail region established in the middle of a large cell, at the junction between two or three front zones. Finally, Figure 7C and Movie 11 display a complex response in which the modes of re-orientation shown in Figure 7A and B were combined with each other. The first phase of reorientation led to two fronts connected by a tail region (330-s frame). At the end, one half of the cell reverted polarity by the emergence of a new front that redirected the actin flow toward the proximal part of the cell (460-s to 476-s frames of Figure 7C). Strong accumulation of the talC63 fragment resulted in a rounded cluster at the tail of the cell. During chemotactic reorientation, such clusters can be seen to glide along the cortex of the moving cell toward the new tail, suggesting that they are carried by the actin flow (one of these clusters is seen in Movie 11, 239-s to 343-s frames). Taken together, these examples indicate that an actin flow can connect the front (or multiple fronts) with the tail of a large cell, and changes in the direction of an attractant gradient can redirect the actin flow.
Discussion

Reorientation of large cells
In *Dictyostelium* cells that move along a gradient of increasing chemoattractant, the axis of polarity coincides with the direction of the gradient; the front of the cell pointing toward the source of attractant and the tail in the opposite direction. When the gradient is suddenly reversed, the front of the cell still points into the direction of the previous gradient, such that the attractant hits preferentially the tail region of the cell. The question addressed here is: how do cells of increased size respond in this conflict?

The strategies of re-orientation in a reversed gradient of chemoattractant varied between two extremes. When the new direction of the gradient determined the response, the cell changed polarity by converting the previous tail into a front. Even very large cells are capable of immediately adjusting their polarity according to changing gradient directions and to orientate with remarkable precision (Fig. 1B). However, when the polarity of a large cell dominated the response, protrusions were induced at the established front, this means at the site of lowest attractant concentration (Figs. 2B and C). Most informative are cases in which one type of behavior followed the other, as in the cell shown in Movie 2.

A point to emphasize is the highly variable period of time that large cells require to reorientate. Protrusions decorated with activated Ras may be induced at the previous tail region of the cell within 15 s of reverting the direction of the gradient, as shown in Movie 3. But other cells need much longer until a new front is established, which dominates then the movement of the entire cell. This is particularly evident in Movie 2, where the cell started to retract its tail rather than to protrude it toward the source of attractant. Simultaneously, short-lived protrusions appeared at multiple sites of the cell surface. Two of these protrusions persisted, the lateral one turning into the direction of the gradient.

Large cells tended to form multiple protrusions that competed with each other (as in normal-sized cells), but often co-existed for extended periods of time and responded independently to chemoattractant (Fig. 3A and E). Nevertheless, the large cells eventually succeeded in coordinating protrusion at the new front and retraction at the tail. Even fused cells enlarged to a length of 45 µm proved to be capable of coordinating front and tail activities, such that they moved with a defined front pointing to the source of attractant and a tail pointing in the opposite direction (Movie 8).
The display of gain and loss of area in large cells moving in a gradient enables one to identify local activities that are not reliably reflected in the displacement of the cells’ centroid, routinely used to calculate the velocity or the chemotactic index as a measure of orientation. An evident discrepancy between local activities and centroid displacement is illustrated in the 8.6-s to 51.6-s frames of Figure 3C and I: upon reverting the gradient, the cell formed protrusions beginning in the previous front region, but its previous tail retracted in a direction opposite to the new gradient, causing the chemotactic index to become negative.

A local response: the turning of protrusions

Because of the extended periods of independently responding protrusions, the large cells were well suited to study local responses in chemotaxing cells. The protrusions shown in Figure 2A, B, and C have cross-sections of 2 to 4 µm in the direction of the gradient. The turning of these protrusions requires an asymmetry across their diameter, and the activation of Ras on one side of these protrusions reveals that such an asymmetry exists. This asymmetry argues for a bistable system that creates a plus-minus pattern of Ras activation in the membrane over a cross-section of about 3 µm. In the generation of this pattern a local inhibitory mechanism induced by cyclic AMP may be involved (Xu et al., 2007). The asymmetry is likely generated by a spatial rather than a temporal sensing mechanism, since protrusions become asymmetric even when they extend into a tangential direction with respect to the gradient (Fig. 2A).

The responses of large cells underscore that protrusions can act as separate response units, which independently sense the attractant gradient at different ranges of concentration according to their position along the cell surface. For the turning response, the cell does not need to sense concentration differences over its entire length, but only locally over the cross-section of the protrusion. This local response is in accord with a pseudopod-centered model of chemotaxis (Insall, 2010) and is consistent with the view that there are independent spatial signaling domains, each coupled to local pseudopod extension (Arrieumerlou and Meyer, 2005).

Gradient sensing with no requirement for a global inhibitor has been proposed for the chemotropic response to a gradient of α-factor in budding yeast (Hegemann et al., 2015). In this case, the polarity of the cell is established independently of the gradient direction. In a second step, the polarity is aligned with the gradient by local sensing, permitting biased movement of a polarity site along the membrane toward higher density of activated receptors. It has been argued that bacteria cannot sense concentration differences of attractant along their surface because they
are too small, whereas eukaryotic cells, owing to their larger size, are capable of sensing gradients by a spatial mechanism. In this context we note that the cross-section of turning protrusions is in the same order of size as an *E. coli* cell.

Gradient independent front-to–tail differentiation

In order to move in one direction, cells need a global mechanism to coordinate local protrusion and retraction such that finally a unidirectional front-tail polarity is established. In two models of eukaryotic chemotaxis, the inhibition of front formation along the axis of a polarized cell has been attributed to a diffusible inhibitor: in the Gierer-Meinhardt model of short-range activation and long-range inhibition (Meinhardt, 1999) and in the LEGI model of local excitation and global inhibition (Levchenko and Iglesias, 2002). In the Turing type reaction-diffusion system proposed by Meinhardt and Gierer (2000), the local production of a short-range activator is accompanied by the production of a long-range inhibitor. At the core of the LEGI model is a global mechanism that inhibits the protrusion of a cell front depending on the position in a gradient of chemoattractant (Devreotes and Janetopoulos, 2003). According to this model, all receptors activated on the cell surface by the chemoattractant contribute to an inhibitory signal that equilibrates throughout the entire cell by diffusion. The formation of a protrusion depends on where the local activation exceeds the global inhibition (Iglesias and Devreotes, 2008).

There are three aspects in the chemotactic responses of large cells that need consideration in terms of modeling. First, if the established polarity of the cell dominates, a response is first induced at the established front, arguing for the absence of a global inhibition at this site of lowest attractant concentration. The chemotactic response is rather inhibited at the most strongly stimulated tail region opposed to the less strongly stimulated front region of the cell. We find the turning response at positions far from the source of attractant hard to reconcile with a LEGI mechanism, this means with a response based on an increment of local activation over global inhibition. Second, the LEGI model applies only to cases where inhibition acts along the gradient into the direction of lower chemoattractant concentrations. However, in large cells the inhibition often works perpendicular to the gradient or even in a reverse direction (Fig. 2C and Movie 5).

As third point to consider is that, according to the LEGI model, the activation of protrusion by chemoattractant is distinguished as a fast process from slow inhibition (Iglesias and Devreotes, 2008, Kutscher *et al.*, 2004). When the large cells had to coordinate the activities of multiple pseudopods, this temporal order of activation and inhibition was disturbed. For instance, the cell in Figure 2C formed first a protrusion at the established front (15-s frame), this
protrusion was subsequently retracted and simultaneously another protrusion was formed (46-s frame), which became the new leading edge (58-s to 98-s frames). In the cell of Figure 2A, retraction of the previous front was a fast response (25-s frame), and the establishment of a new front proceeded afterwards (31-s to 70-s frames). As shown in Movie 2, it may take as long as 97 s until a protrusion in the previous tail region is induced.

The distribution of PTEN on the substrate-attached and the free cell surface

The question of how an increased size of the chemotactic response system is reflected in the establishment of polarity, was addressed by the recording of activated Ras and membrane-bound PTEN during reorientation. According to data based on normal-sized cells, these markers are distributed along the axis of polarity, with Ras activated at the front and PTEN, being depleted from the front, increasing toward the tail of the cell (Funamoto et al., 2002, Iijima and Devreotes, 2002). These data suggested that PTEN is responsible for restricting PIP3 to the cell front by producing an increasing gradient of PIP3 hydrolysis from the front to the tail. To examine whether this is also true in large cells, the patterns of membrane-bound PTEN during chemotaxis and reorientation were explored.

At the substrate-attached membrane of the large cells, the PTEN distribution was unexpected in that it increased just behind the front and decreased then toward the posterior part of the cell (Fig. 6A to C). This means, at the substrate-attached membrane the increase of PTEN toward the tail of the cell has a size limit. Thus, the retracting tail of a large cell is distinguished by a low rather than a high decoration with PTEN at its substrate-attached membrane.

The fact that the binding of PTEN to the substrate-attached membrane is restricted to a zone behind the front, is underscored by the regulation of PTEN binding upon the reorientation of a cell. When the anterior region of the cell is converted into a posterior region, membrane-bound PTEN is down-regulated, characteristically by local detachment producing “PTEN holes” at the membrane (Fig. 6D and Movie 8). These PTEN-depleted patches increase in size until they fuse into a uniformly depleted area. This mode of down-regulation has previously been found in the context of actin-wave formation (Gerisch et al., 2012) and has been modelled by Knoch et al. (2014).

In cross-sections through large cells at 1.5 µm above their substrate-attached surface, the front proved to be sub-divided into clusters of activated Ras where protrusion occurs, indicating that the external gradient is not uniformly translated into a front-tail pattern at the membrane of the cells (Fig. 6E). This clustering is consistent with the patch formation of activated Ras and
PIP3 in chemoattractant-stimulated cells of normal size (Hecht et al., 2011, Postma et al., 2004, Xiong et al., 2010). PTEN was more uniformly distributed in the tail region, but not generally enriched there relative to the front (Fig. 6F). It appears unlikely, therefore, that a PTEN gradient is responsible for polarity of the large cells. This notion is in accord with the finding that PIP3, the substrate of this PI3-phosphatase, is not essential for the chemotactic responsiveness of *D. discoideum* cells (Hoeller and Kay, 2007).

A global actin flow connects the front and tail of a chemotaxing cell

The question is whether there are mechanisms other than diffusion that might transmit an inhibitory signal from an established front to the tail of a cell. One possibility is the inhibition of pseudopod formation by the increase of membrane tension caused by a local protrusion, as explored for neutrophil polarity by Houk et al. (2012) and reviewed by Sens and Plastino (2015). Another possibility is the retrograde transport of an inhibitor along the cell cortex. The polarity of a migrating *Dictyostelium* cell is reflected in the direction of an actin flow (Lee et al., 1998). This flow is a way of communication between the front and tail regions of a cell; it can be visualized by a reporter construct, GFP-tagged C63, based on an actin-binding domain of talin (Weber et al., 2002). As demonstrated by this reporter, a signaling molecule transported by a directed flow will accumulate at the tail of the cell, distinct from diffusion that would result only in a uniform concentration. In mammalian cells, the maintenance of cell polarity is coupled by a positive feedback loop to the velocity of an actin flow that transports polarization cues, and thus causes an asymmetry of their distribution depending on their affinity to actin (Maiuri et al., 2015).

We used the talinC63 probe to demonstrate that large cells produced by electric-pulse induced fusion can establish a monotonic front-tail polarity, and either turn or revert this polarity when they respond to changing directions of a gradient. The flow reporter accumulated at the actual tail region of a large cell (Fig. 7A), even when this region was located in the middle between two or three fronts (Fig. 7B). The induction of a new front redirected the flow, as shown in the 453-s to 476-s frames of Figure 7C. Thus, to account for global inhibition in a chemotaxing cell, one may assume an inhibitor that is linked to filamentous actin and is transported similar to the reporter used here. In accord with the removal of a protrusion inhibitor from the front of cells that respond to a reversed gradient, the established front remained sensitive to attractant and only the tail became desensitized until the polarity was reversed (Movie 2).
Conclusions

The chemotactic responses of eukaryotic cells can be conceptually subdivided into (1) the induction of protrusions, (2) turning of these protrusions into the direction of the gradient, (3) competition between the protrusions, and (4) global redirection of cell polarity.

(1) When the gradient of chemoattractant is reversed, protrusions can be induced at variable sites along the front-to-tail axis of large cells. If the induction is biased by the intrinsic polarity of the cell, protrusions will be preferentially induced at the established front of the cell, i.e. at sites of lowest attractant concentration. If the gradient is strong enough to override the polarity, the protrusions will be induced at sites of highest attractant concentration, i.e. at the previous tail of the cell. Details of the chemotactic responses of large cells are revealed by displaying gain and loss of cell area. These responses are not necessarily represented in the displacement of the cell’s centroid and therefore not reflected in the chemotactic index based on this displacement.

(2) Irrespective of the site of their origin, growing protrusions tend to turn into the direction of the gradient. Asymmetric Ras activation in turning protrusions argues for a local mechanism of gradient sensing.

(3) Multiple protrusions on the surface of a large cell compete with each other. The inhibition does not necessarily act in the direction of lower attractant concentration, suggesting a mechanism that is independent of the attractant gradient.

(4) Redirection of polarity is coupled to redirection of a global actin flow. This flow can transport actin-binding proteins from the front to the tail of a chemotaxing cell, where they reversibly accumulate.
Material and Methods

Cell culture and strains
Transformants expressing fluorescent proteins were derived from the AX2-214 strain of *D. discoideum* and cultivated in nutrient medium containing 10 µg/ml of blasticidin (Invitrogen, Life Technologies, Grand Island, NY, USA) and 10 µg/ml of G418 (Sigma-Aldrich, St. Louis, Missouri, USA). For the expression of PTEN-sfGFP, the full-length genomic sequence of *D. discoideum* PTEN (DDBG0286557) was cloned into the EcoRI-site of a pDEX-based expression vector in frame with superfolder GFP (Pedelacq et al., 2006) as described by Müller-Taubenberger and Ishikawa-Ankerhold (2013). Transformants were selected using 20 µg/ml of G418.

For the mRFP-Raf1-RBD construct, the minimal Ras-binding domain (RBD) of human Raf proto-oncogene serine/threonine-protein kinase (Raf-1) was employed as an activation-specific probe for Ras (de Rooij and Bos, 1997, Nassar et al., 1995). A gene fragment comprising amino-acid residues 55-131 was synthesized with the nucleotide sequence adapted to the *D. discoideum* codon usage (Eurofins MWG Operon), and cloned via BamHI and EcoRI into a pDEX-based mRFP-expression vector (Müller-Taubenberger, 2006). Double-transformants were selected using 10 µg/ml of blasticidin and 20 µg/ml of G418. For monitoring the actin flow a strain which expressed a GFP-tagged C-terminal 63-kDa fragment of talin A from *D. discoideum* was used (Weber et al., 2002). Cells were cultivated and imaged at 21 ±2°C.

Cell fusion
Cells from six sub-confluent Petri dishes were harvested in 60 ml of 17 mM K/Na-phosphate buffer, pH 6.0, washed with 20 ml buffer, adjusted to 1.5 x 10⁷ cells/ml, and gently shaken for 5 h in a roller tube, allowing the cells to agglutinate (Gerhardt et al., 2014). Using a pipette with the tip cut-off to prevent dissociation, aliquots of the suspension were transferred to electroporation cuvettes with an electrode distance of 4 mm and fused in a BioRad Gene Pulser Model 1652077 (Bio-Rad Laboratories, Hercules, CA, USA) by applying 3 pulses of 1 kV at 1 s intervals. A 20-µl aliquot of the fused cell suspension was transferred into a tissue-culture dish with cover glass bottom (FluoroDish, WPI, INC., Sarasota, FL, USA). After 5 minutes, 3 ml of the phosphate buffer supplemented with 2 mM CaCl₂ and 2 mM MgCl₂ were added, and after settling the cells were subjected to imaging.
Chemotactic stimulation and image analysis

For chemotactic stimulation, a Femtotip® microcapillary (Eppendorf, Köln, Germany) was filled with 10^{-4} M cAMP solution and connected to a micromanipulator (Micro Control Instruments Ltd., East Sussex, UK). The pipette tip was lowered until brought into the field of view and moved to the vicinity of a cell.

Confocal images were acquired at a Zeiss LSM 780 equipped with a Plan-Apo 63x/NA 1.46 oil immersion objective (Carl Zeiss Microscopy, Jena, Germany), and analyzed using the image processing package Fiji (http://Fiji.sc/Fiji) developed by Schindelin et al. (2012) on the basis of ImageJ http://imagej.nih.gov/ij).

To display gain and loss of cell area, cells expressing mRFP-RBD and PTEN-GFP were recorded at the substrate-attached surface and 1.5 µm beyond that surface. The two images were superimposed and the combined images used to determine the cell perimeter and centroid. Centroids were localized using the ROI tool of Fiji. Positions of centroids and pipet tips were plotted as an image sequence in Fiji, and with the MTrackJ tool the tracks between centroid to centroid and centroid to pipet position were identified and pasted in an Excel sheet. The angles of the tracks were used to gain the angle α between the tracks, and the chemotactic index was calculated by taking the cosine of α. Velocities of centroid displacement and the chemotactic indices were plotted with Excel versus time.
Table 1. Maximal velocities of protrusions compared to centroid displacements

<table>
<thead>
<tr>
<th>Cell and frame in Figure 3</th>
<th>Velocity of protrusion [µm ∙ s⁻¹]</th>
<th>Displacement of centroid [µm ∙ s⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>119.3 s</td>
<td>0.67</td>
</tr>
<tr>
<td>B</td>
<td>64.3 s</td>
<td>0.38</td>
</tr>
<tr>
<td>C</td>
<td>120.4 s</td>
<td>0.50</td>
</tr>
</tbody>
</table>

In each of the three image series of Figure 3, the maximal rate of local protrusion was scored and related to displacement of the cell’s centroid within the same interval in time.
Author contributions

M.L. performed experiments and evaluated the results, J.P. and M.E. analyzed data, and A.M.T. made the fluorescent protein constructs. G.G. designed the research project and wrote the paper.

Acknowledgements

We thank Martin Spitaler and his staff for providing imaging facilities, and Petra Fey and dictyBase for informations.

Competing interests

The authors declare no competing financial interests.

Funding

G.G. thanks the Max Planck Society for support, and A.M.T. the Deutsche Forschungsgemeinschaft for grants to SFB 914, TP7.
References

Figure 1. **Chemotactic reorientation of large cells in diffusion gradients of cyclic AMP.** (A) Three cells of different sizes responding to a micropipette filled with the attractant. The micropipette was moved from the right to the left. Its tip position is indicated by a dot if the tip is located within the frame, or by an arrowhead pointing toward a position outside the frame. The cells expressing mRFP-RBD to label activated Ras (red) and PTEN-GFP (green) illustrate size variations in a population subjected to electric-pulse induced fusion. The small cell on the
bottom is probably uninucleate. The confocal cross-sections through the cells are focused to a plane 1.5 µm beyond the substrate surface. Time is indicated in seconds after the first frame. The entire time series is shown in Movie 1. (B) Tracking a large cell that reorientates in response to changing micropipette positions. The area covered by the cell was 689 µm², as compared to 142 µm² ± 10 (s.e.), the area obtained from 10 non-fused control cells responding to cAMP gradients under the same conditions. Cell contours at different times are color-coded corresponding to changing micropipette positions, which are indicated by white dots within colored circles. The cell contour at the beginning of the sequence is displayed in gray. Centroid positions are plotted at intervals of 8.6 seconds as colored dots that are connected by a bold white line. (C) Velocities of centroid displacement of the cell shown in (B). The color bar indicates phases of micropipette position in accord with the color code in (B). (D) Chemotactic index calculated from displacement of the centroid. Numbers between dotted lines indicate delays in seconds of reorientation after moving the micropipette. Scale bars in (A) and (B), 10 µm. The cells displayed in (A) are shown in Movie 1.
Figure 2. **Overview on the chemotactic responses of large cells.** Images of reorientating cells are focused on the plane of the substrate-attached membrane. The cells expressed mRFP-RBD to label activated Ras (red) and PTEN-GFP (green). (A) At the beginning, the cell is orientated with a broad front and with a branched protrusion emerging from the tail region toward the source of the gradient. After repositioning the micropipette, a lateral protrusion expands into the direction of the new gradient, until a new front pointing into the direction of the gradient is established. (B) This cell forms two fronts, before the front that had been closest to the source of attractant turns into a tail. Upon reorientation, this tail is converted into a front that competes successfully with the previous front. Asymmetric Ras activation is indicated by an arrow in the 138-s frame.
(C) The first images illustrate a protrusion emerging from the previous front region, which turns into the direction of the gradient and finally converts into the tail of the reorientated cell. Thereafter, a lateral protrusion takes over the lead and guides the cell up the gradient. Arrows in the 80-s and 83-s frames point to split-pseudopodia formation. Scale bar, 10 µm. The cells displayed in (A), (B), and (C) are also shown in Movies 3 to 5.
Figure 3. **Gain (red) and loss (blue) of cell area in large cells responding to reversal of an attractant gradient.** (A-C) Three cells that reorientate by protruding two fronts. Micropipette positions are indicated as in Figure 1A and centroid positions as yellow dots. Time after the first frame of each series is indicated in seconds. The gain and loss of area represents the changes in cell shape and position between two frames recorded at intervals of 9.2 s in (A) and (B), or 8.6 s in (C). The cell in (C) is also shown in Movie 2. Bars, 10 μm. (D-F) Velocities based on centroid displacements in the three cells shown in (A), (B) and (C), respectively. (G-I) Chemotactic indices derived from centroid displacements corresponding to (D), (E), and (F), respectively. Gain and loss in the three cells displayed in (A) to (C) are also shown in Movie 6.
Figure 4. **Asymmetric Ras activation and membrane-bound PTEN pattern in the protrusion of a large cell that turns into the direction of an attractant gradient.** The same cell as in Figure 1A is shown expressing mRFP-RBD and PTEN-GFP. (A) Optical cross-sections through the protrusion at 1.5 µm above the substrate surface, showing mRFP-RBD images in the left panels, and PTEN-GFP images in the right panels. (B) Scans of fluorescence intensities across the turning protrusion along the bar shown in the first panel of (A). The scan direction is adjusted
to the position of the micropipette at the left of the scans. Up to the 24.5-s frame, the scan crosses two protrusions, the left one does not show asymmetric Ras activation and is retracting (indicated by brackets in the 0-s frame). Time is indicated in seconds; the 12.2-s image has been acquired at 3 s after positioning the micropipette to the left of the frame. The 24.5-s image corresponds to the 25-s image in Figure 1A. Scale bar, 10 µm. Six turning protrusions analyzed showed similar patterns of asymmetry.
Figure 5. A cell with a protrusion undergoing macropinocytosis during turning. (A) Merged RBD and PTEN images focused close to the substrate surface, showing asymmetric Ras activation in the 73-s frame between two events of macropinocytosis. (B) Merged images of the area framed in the 73-s image of (A), focused to 1.5 µm above the substrate surface. Time is indicated in seconds. Scale bars, 10 µm.
Figure 6. **PTEN patterns in large cells exposed to chemoattractant gradients that repeatedly changed their direction.** (A-C) PTEN patterns on the substrate-attached membrane of a reorientating cell. The 0-s images were acquired at 37 s after the pipette was brought into the position on the right of the frame, the 46-s images at 37 s after the pipette was moved to the top, and the 95-s images at 46 s after the pipette was brought to the bottom. The panels show merged images of activated Ras (red) and PTEN-GFP (green) (A), patterns of PTEN-GFP (B) as used for the scans of fluorescence intensities shown in (C). The intensities were scanned along the actual axis of polarity of the cell as indicated by the white bars in (B), and plotted in arbitrary units. Corresponding arrowheads in (B) and (C) indicate the scanning direction. (D and E) Images of a large reorientating cell focused either on the substrate-attached cell surface (D) or 1.5 µm above through the cell body (E). The cell is the same as in Figure 1B. Time is indicated in seconds after the first frame in (E). The 0-s image was acquired at 46 s after the pipette was brought into the position on top of the frame. At 132 s after the 0-s frame the pipette was moved to the bottom, at 201 s to the right, and at 341 s to the left. (F) Scans of fluorescence intensities of PTEN-GFP (green) along the perimeter of the polarized cell at the stages shown in the 88-s and 299-s frames of (E). Starting point of the scans is the position closest to the stimulating micropipette (red dot) in the diagrams on the left. From this point on, the cell perimeter was scanned up to the tail in clockwise (I) or anti-clockwise direction (II). Scale bars, 10 µm. The entire sequence is shown in Movie 8.
Figure 7. **Re-direction of actin flow in changing gradients of attractant.** Large cells expressing mRFP-RBD (red) and GFP-talC63 (green). (A) A cell reverting polarity after changing micropipette position twice. Finally, the actin flow is directed to the previous front. (B) Response with two fronts showing actin flow directed to the junction between the two portions of the cell. (C) Complicated response composed of the types of behavior shown in (A) and (B). Upon positioning the micropipette to the top of the image, the cell responded by forming two fronts, one close to the source of attractant, the other emerging from the opposite end of the cell. Consequently the actin flow was directed to the middle of the cell. After placing the micropipette
to the right, both the upper and lower part of the cell turned into the new direction by forming a new front. Redirection of the actin flow is evident in the lower part. The two halves of the cell remain connected up to the end of the sequence; although this is obscured by the approach of a third cell. For the 476-s frame, the plane of focus has been changed. Numbers indicate seconds after the first frame of each series. Bars, 10 µm. The cells are also shown in Movies 9 to 11.
Supplementary Information

Movies

All movies show enlarged cells obtained by electric-pulse induced fusion. Tip positions of a micropipette filled with cyclic AMP are indicated by dots or arrowheads as in the figures. Seconds after the first frame of each sequence are indicated. The scale bars in the first frames indicate 10 µm.

Movie 1. Three cells of different sizes responding to changing positions of a micropipette filled with the chemoattractant. The cells are labeled for activated Ras (red) and express GFP-PTEN (green). The left panels display bright-field DIC images, the right panels confocal cross-sections though the cell at a plane 1.5 µm beyond the substrate surface. The middle cell exemplifies that large cells may respond almost as fast as small ones: when the micropipette is moved from the right to the left at 235.44 s and 514.08 s, the first protrusions with activated Ras which are formed at the previous tail become detectable at 252.72 s and 529.20 s, respectively. In particular the large cell entering from top responds with a broad front, which is sub-divided into sections occupied with activated Ras and interspersed with PTEN-decorated zones. The same cells are shown in Figure 1A; the 170-s image of the Movie corresponding to the 0-s frame in the Figure. Frame-to-frame interval 2.16 s.
Movie 2. **Merged confocal images of a large cell labeled for activated Ras (red) and expressing PTEN-GFP (green).** The left panels are focused on the substrate-attached cell surface, the right panels display cross-sections through the cell bodies at a plane 1.5 µm beyond the substrate-attached surface. The cell re-orientates twice, showing various responses to reversal of the attractant gradient. In the periods of the 51.60-s to 94.60-s frames and of the 172.00 to 268.75-s frames the previous tail, now exposed to the source of attractant, retracts rather than protrudes toward the micropipette. In the 174.15-s to 180.60-s period, a thin protrusion emanating at the right border of the frame is seen in the left panel to turn into the direction of the gradient, with activated Ras at its tip. In the 184.90-s to 245.10-s frames, the formation of protrusions progresses at the bottom part of the cell from the previous front (opposite to the actual micropipette position) toward the newly established front. Frame-to-frame interval 2.15 s.
Movie 3. **Recording similar to Movie 2. The same cell is displayed in Figure 2A;** the 9.18-s image corresponding to the 0-s frame in Figure 2A. Frame-to-frame interval 3.06 s.
Movie 4. **Recording similar to Movie 2 of the cell displayed in Figure 2B.** Frame-to-frame interval 3.06 s. The 15.30-s image corresponds to the 0-s frame in Figure 2B.
Movie 5. **Recording similar to Movie 2 of the cell displayed in Figure 2C.** Frame-to-frame interval 3.06 s. The 12.24-s image corresponds to the 0-s frame in Figure 2C.
Movie 6. **Gain (red) and loss (blue) of cell area from one frame to the next in three cells responding to reversal of an attractant gradient.** The cells in A, B, and C are the same as in Figure 3A, B, and C. Micropipette positions are indicated by white dots.

Frame-to-frame intervals are for A and B 9.18 s, for C 8.60 s.
Movie 7. A very large cell that forms waves on the substrate-attached membrane and responds to gradients of chemoattractant. The cell recorded similar to Movie 2, forms propagating waves of activated Ras (red) on the substrate-attached membrane and simultaneously responds to changing directions of chemoattractant. Frame-to-frame interval 2.16 s.
Movie 8. **Recording similar to Movie 2 of the cell displayed in Figures 6D and E.** Frame-to-frame interval 2.09 s. The 0-s image corresponds to the 0-s frame in Figure 6E.
Movie 9. Confocal section through a cell expressing mRFP-RBD to label activated Ras (red), and GFP-talC63 (green) that accumulates in the direction of actin flow. The focus is placed 1.5 µm above the substrate surface. The same cell is shown in Figure 7A. Frame-to-frame interval 2.50 s. The 30.00-s image corresponds to the 0-s frame in Figure 7A.
Movie 10. **Recording similar to Movie 9 of the cell displayed in Figure 7B.** Frame-to-frame interval 2.53 s. The 17.71-s image corresponds to the 0-s frame in Figure 7B.
Movie 11. **Recording of the cell displayed in Figure 7C, labeled as in Movie 9.** Left and right panels represent two planes of focus 1.5 μm apart of each other. Frame-to-frame interval 2.54 s. The 15.24-s image corresponds to the 0-s frame in Figure 7C.