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The Structure and Connexions of the Corpora Pedunculata
in Bees and Ants
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{Department of Zoology, University of Cambridge; present address, Department of Psychology,
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With two plates (figs. 3 and 6)

SUMMARY

1. A method is described of using high frequency radio waves to produce localized
and precisely controlled burns. The technique is employed to damage the cells of the
corpora pedunculata in bees and ants, and to follow the subsequent degeneration in
these lobes.

2. The corpora pedunculata on each side of the brain are composed of four lobes:
two calyces, an ct lobe and a /3 lobe. Each fibre originates from a cell in the calyx, and
has three branches, one to the calyx itself, one to the a lobe, and one to the /J lobe.
The arrangement of the tracts in these lobes is described.

3. The calyces and the a. lobe both receive tracts from all the sensory centres of
the brain, while the j8 lobe sends tracts to the motor regions. The detailed connexions
of these tracts are described.

4. It is suggested that in the functioning of the corpora pedunculata the excitations
from the calyx and the a lobe will interact, and that the excitation passing away down
the j8 lobe is the result of this interaction.

INTRODUCTION

DURING the past two years a physiological study has been made of the
corpora pedunculata (mushroom bodies) in bees and ants. The super-

ficial position of the cell-bodies in the central nervous system facilitated this
study, which involved localized damage to the cells of the brain, followed by
examination of subsequent degeneration. It is believed that the application of
such a technique to invertebrates has seldom been attempted, and one object
of this paper is to draw attention to the possibilities of the method. The use
of this technique has enabled various assertions made by previous authors,
on the basis of silver staining alone, to be re-examined.

Since the description of the 'corps pedoncules' by Dujardin (1850) these lobes
have attracted much attention from microscopists. Papers by Kenyon (1896),
Jonescu (1909), and Sanchez (1941) on the honeybee, and by Pietschker (1911)
on the ant, are perhaps the most important contributions for the Hymenoptera.
Thompson (1913) described various tracts within the mushroom bodies of ants,
but the present study has failed to confirm many of her assertions, owing
perhaps to her use of haematoxylin, which does not lend itself to detailed
neurological studies. Hanstrom (1928) gives a survey of the older literature.

All these descriptions of the corpora pedunculata fall into two main groups:
those dealing with the gross anatomy of the organ, and those concerned with
minute details of individual neuron connexions. Between these two extremes
lies what may be called the functional anatomy of the organ, dealing with a
level of organization intermediate between the general form and the fine
[Quarterly Journal of Microscopical Science, Vol. 96, part 2, pp. 239-255, 1955.]
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detail. It is knowledge of precisely this level which was required in the present
physiological study. This knowledge was unfortunately lacking, and, indeed,
the detailed descriptions of the mushroom bodies already available, while
important for some purposes, have tended to obscure the fundamental sim-
plicity of their organization. The present paper attempts to remedy the
deficiency and to give an account of the functional anatomy of the corpora
pedunculata in bees and ants.

MATERIAL AND METHODS

The brain of the honey bee, Apis mellifica, and of the ants Camponotus
pennsylvannicus, Formica rufa, Eciton hamatum, Paraponera clavata, and
Cryptocerus angulosus, were examined; only the media workers were studied,
and no attempt to compare either castes or species has been made. All the
brains were stained by the silver-pyridine technique developed by Holmes
(1947), which gave a consistently good result both for tracts and for individual
axons. Two fixatives were found to be suitable: mercuric formaldehyde gave
a good, rather bluish, stain with ants, while alcoholic Bouin gave a good
reddish stain with bees.

The insects to be fixed were first anaesthetized with carbon dioxide, while
the chitin overlying the brain was removed: this was found to be necessary
to allow adequate penetration by the fixative. The toughness of the chitin
precluded the regular preparation of a complete series of sections of the whole
head, and the fixed brains were therefore dissected out before being embedded
in the usual way.

In the experiments, in which the brains were intentionally damaged, two
types of cautery were used. The first type was simply a nickel needle, of
suitable size, heated to a dull red in the flame from a spirit lamp, and then
placed immediately against the surface of the brain. With practice this gave
fairly good results, and the method has the advantage of simplicity; there
were, however, two serious disadvantages, both the result of lack of control
of the heating effect: firstly, if the needle was too hot it seared the tissue for
an ill-defined area around the point of contact, and, secondly, if the needle
was too cold no damage was caused, and the operation was wasted.

It was obvious that what was required was a cautery, the power of which
could be varied, and which would damage a well-defined and precisely con-
trolled area. Such a cautery was constructed by utilizing the property of high
frequency radio waves to produce burns when concentrated in a small area,
while not harming a tissue in which they are dispersed. It is not proposed
here to give details of the R.F. cautery which was constructed, for the same
output could be achieved by a variety of different arrangements, all equally
satisfactory, and indeed it is hoped to improve on the present apparatus. The
output available was as follows:

Frequency: 1-97 megacycles.
Max. power: 25 volts.
Min. power: 9 volts.
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The most variable factor is the contact between the electrode and the tissue;
a close, firm contact is essential for a good result. With the maximum power
the damage produced made a small hole extending down from the electrode
into the brain; with the minimum power the effect was only to coagulate the
protoplasm of the cells with which the electrode made contact. The minimum
power was therefore used when operating on the calyx, while the maximum
power was employed in cauterizing the a lobe (see later).

The electrodes used were of platinum wire, insulated to the tip with glass.
They were prepared by the method given by Johnson and Manhoff (1951).
The area of damage to the brain coincided with the area of contact with the
electrode; the diameter of the wire was therefore selected according to the
amount of damage intended. For the success of the operation it was necessary
that the insect should have a large capacity to earth: this was obtained by
placing the abdomen in contact with an earthed metal plate.

The operating table was made of soft plasticine, moulded into a groove to
fit the animal's body; the insect, with its head exposed, was then covered by
another layer of plasticine over the thorax and abdomen. The bee or ant was
thus held firmly by the plasticine which was, however, sufficiently yielding
to prevent damage to the body or its appendages.

A series of exploratory dissections was done, and the various parts of the
brain were localized with respect to various external features of the head. An
experimental bee or ant was anaesthetized with carbon dioxide and placed on
the operating table, which was set up on the stage of a dissecting microscope.
A slit was made in the chitin of the head over the region to be cauterized.
The electrode was then inserted until it was in contact with the surface of the
brain, and the power switched on for 2-3 seconds; if a successful contact had
been made the antennae usually twitched when the current was first switched
on. The electrode was then removed and the slit in the head closed by flowing
dental wax over the surface; this wax was eminently suitable for the purpose
as it had a low melting-point, could be moulded easily with a warm needle,
and formed a good joint with chitin. The operated insect was marked with
cellulose paint for identification, and kept alive for several days. Degeneration
was usually complete after 3 days from the time of operation. The brain was
then fixed and sectioned as described.

A series of operations was done, both with bees and with all the species of
ant listed. In the initial series the mushroom bodies on one side of the brain
were completely destroyed, while in subsequent series the area of damage
was progressively reduced until only small portions of the calyx were injured.
The relatively small injuries were more easily produced on the bee's brain
than on the ant's, owing to the larger size of the former, and for this reason
the mushroom bodies of the bee have been studied in the more detail. So far,
the damage has been restricted to the mushroom bodies themselves, but it is
hoped to extend the study to other tracts and lobes of the brain. The use of
electrodes insulated to the tip raises the possibility of causing damage deep
in the brain—a technique which should give interesting results.
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The general form of the corpora pedunculata

The corpora pedunculata in bees and ants are paired structures lying
symmetrically on either side of the midline of the brain, and occupying the
bulk of the protocerebrum. The structure on each side consists of a pair of
fibrous calyces, which occupy the whole posteriodorsal region of the brain
between the midline and the optic ganglia, and from which tracts descend to
other regions of the brain. The rim of each calyx is roughly oval in shape: the
medial calyx extends the further forwards, and overlaps the lateral calyx on
the frontal surface of the brain, the condition being reversed on the lower

medial calyx

lateral' calyx

medial pedunculus

a lobe

J3 lobe

FIG. 1. A reconstruction of the corpora pedunculata of the right side of the brain of Formica
rufa (worker), seen from the antero-lateral aspect. Inset: the head of the ant from the right

side, showing the position of the brain and the corpora pedunculata (stippled).

surface where the lateral calyx extends further back. The cell bodies of the
corpora pedunculata fill the calyces and slightly 'overflow' them. The rest of
the structure is fibrous in nature and fairly sharply delimited from the rest
of the brain tissue.

From each of the two calyces a short stalk, or pedunculus, extends down-
wards and forwards into the protocerebrum; the two stalks fuse with each
other after a short distance and immediately after the point of fusion two other
lobes are formed: the first of these passes forwards and upwards to the frontal
surface of the brain, where it ends abruptly as a flat disk beneath the two or
three layers of cell bodies which cover this region of the protocerebrum;
the second lobe turns downwards and inwards and ends abruptly on the deep
midline of the brain, where it abuts against the similar structure from the
other side. The three lobes will here be referred to as the calyx, the a. lobe, and
the /? lobe, as shown in fig. 1. (See discussion below.)

All the nerve fibres constituting the corpora pedunculata originate from
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cells within the bowl of the calyx. Each fibre has three branches, one to each
of the three lobes, where they make synaptic connexions with incoming fibres
from other parts of the brain. The calyx and the a lobe receive fibres from
sensory centres, while the /? lobe gives connexions to fibres going to motor
centres (see later).

The names of the various lobes of the corpora pedunculata have suffered
from much confused variation. The terms 'calyx' and 'pedunculus' which are
apt when applied to the Hymenoptera, and have the authority of long usage,
will be used here; they would not be applicable to such orders as the Diptera,
in which the equivalent of the calyx is a mere aggregation of cells (Bretschneider
1913; Power 1943). The other lobes have usually been referred to in English
as 'roots', e.g. the anterior root and inner root of Kenyon (1896). The use
of these terms has two disadvantages:

1. The word 'root' implies in its general sense both a source, or origin, and a
means of attachment. In neither of these senses can the term be applied to the
corpora pedunculata, for the fibres of this organ all originate in the calyx, and all end
within the other lobes, making it a discrete structure, which is attached to the rest
of the brain only by tracts originating in other parts of the brain, and most of
which come to the calyx.'

2. The word 'root' is used in a specifically neural sense to designate those parts
of peripheral, segmental nerves which lie immediately outside the central nerve
cord. The 'roots' of the corpora pedunculata in no way resemble these.

Power (1943) has used the term 'stalk' in preference to 'root', following some
other authors, but this does not resolve the problem, and indeed he is forced
into the paradoxical situation of referring to the same structure both as a root
and a stalk. It would seem preferable to avoid the use of botanical terms
altogether, as Hanstrom (1928) and some other German authors may have
tried to do by employing the terms 'riicklaufiger Stiel' and 'Balken': these
terms still have some disadvantages, however, for in some insects, e.g.
Drosophila, the 'Balken' appears more recurrent than the 'riicklaufiger Stiel'.
It is also difficult to give a precise English translation of these two terms.

The three main subdivisions of the corpora pedunculata are in fact lobes,
each with its own function, and it would seem desirable to refer to them as
such. The lobes could then be further distinguished by reference to their
relative positions, e.g. the upper lobe and the lower lobe, or the anterior and
the posterior lobe. This would be unwise, however, for in different insects
the apparently homologous lobes occupy very different positions: in the
Lepidoptera and Hymenoptera, for example, the two homologous lobes (a
lobe) run posteriorly and anteriorly respectively. In our present state of
knowledge, therefore, it is preferable to give the lobes only general names
which can be more precisely defined by future work in this field.

In the present work it is proposed to refer to the two lobes as the a. lobe
and the fl lobe respectively, as shown in fig. 1. This is preferred as the terms
are indifferent as to structure, function, and orientation; thus one avoids con-
fusion in comparative studies of orders in which the homologous lobes may
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differ in all three factors. At the same time the general nature of the terms
leaves the field clear for more precise definition in the future.

The relationships of the corpora pedunculata to the other lobes of the
brain are shown in fig. 2. The relative sizes of the corpora pedunculata differ
in different species of ants, being smallest in Eciton hamatum and largest in
Formica rufa; this may be related to the fact that the eyes and optic ganglia

oriqin of a lobe

/8 lobe
lateral calyx

outer optic
qlomerulus

Apis mellifica

middle optic
qlomerulus

inner optic
qlomerulus

antennal qlomerulus

1mm.

, Formica rufa

FIG. 2. Frontal sections of the brains of the honey bee (Apis mellifica) and the Wood ant
(Formica rufa).

are small and degenerate in the Army ant, but large and well developed in the
Wood ant (Werringloer, 1932). Goossens (1951), like other workers, has shown
that the sizes of the mushroom bodies and the central body are inversely
proportional, a fact which he attributes to the limited space available in the
brain.

The fibres within the mushroom bodies are of two types, those originating
within the organ and those arising from other association cells and connecting
the mushroom bodies with the sensory and motor lobes of the brain. The
fibres originating within the organ all arise from the cell-bodies in the calyces.
According to Kenyon (1896) these neurons are all of one basic type: from
each cell-body a projection passes down into the calyx where it divides into
two parts, one forming arborescent synaptic connexions within the calyx, and

Fie. 3 (plate). A series of frontal sections of the brain of Apis mellifica. The outer half of
the lateral calyx has been cauterized, and the degeneration can be seen spreading through the
lobes of the corpora pedunculata. Only the damaged half of the brain is shown in full. A, the
6th section, counting from the frontal surface of the brain; B, the 16th; C, the 19th; D, the 26th.

The sections were cut at 15 n and stained with Holmes's silver stain.
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FIG. 3
D. M. VOWLES
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the other passing on down the pedunculus until it reaches the origin of the
a lobe, where it bifurcates, sending one branch up this lobe and the other
down the /J lobe, making synaptic connexions in both regions. The course of
these fibres, provisionally established in silver preparations of normal material,
has been confirmed in the present work, from the study of their degeneration.
In fig. 3 is shown a series of sections of a bee's brain in which the lateral half
of the lateral calyx has been cauterized; the degeneration can be seen passing
from the calyx, down the pedunculus, and along the whole length of both
the a and fi lobes. Detailed examination of such preparations reveals that the
amount of degeneration remains fairly constant at all levels of the pedunculus
and the lobes, which suggests that all the fibres extend for the whole distance.
After leaving the calyx the degeneration also preserves its position relative
to the circumference of each lobe, showing that the fibres do not deviate from
their approximately straight course. The degeneration always ends within the
mushroom body itself, which suggests that the fibres do not pass out into the
mass of the brain; this should be particularly noted in reference to Thompson's
(1913) assertion that the tubercles of the central body are continuations of the
f$ lobe, for the degeneration never extends into these tubercles, neither does
the degeneration spread from one calyx into its neighbour, although Thompson
also claimed that fibres take this course.

The association fibres from other parts of the brain pass in at the base of
each calyx, and all round the sides of the a, lobe and £ lobe. These fibres do
not degenerate together with those of the mushroom body; in fig. 6, B can be
seen fibres from the optic ganglia passing through a degenerated region of the
a lobe.

Tracts within the calyx

Most previous workers have noticed that the cells in the central region of
each calyx stain more deeply with haematoxylin and silver than do the peri-
pheral cells. This has been confirmed in the present work, and the appearance
of these cells is shown in figs. 3, 4, and 6, c. Thompson claimed that in
Camponotus pennsylvannicus she could identify several groups of cells of
different sizes across a single section of a calyx; these groups of cells have not
been distinguished in my preparations. Fibres from the cells of the calyx are
very fine, and have not stained individually or distinctly, except in a few
cases. The fibres entering the corpora pedunculata, on the contrary, are fairly
coarse and have stained clearly and precisely. In neither case, however, have
fine terminations been seen, and it appears that Holmes's stain is not suitable
for such regions of these nerves. It is assumed that the synapses are of the
arborescent type as described by Kenyon (1896) and confirmed by Sanchez
(1941).

The fibres from the cell-bodies in the calyx pass directly outwards into
the calyx wall. The fibres from the central group of cells stain more deeply
than those from peripheral cells, and can be seen lying in a compact mass
which forms a ring around the centre of the calyx. Degeneration studies show



246 Vowles—The Corpora Pedunculata in Bees and Ants

that fibres run for a considerable distance around this 'central ring', often
passing around to a point diametrically opposite to their place of entry. This
is unlike the fibres from the peripheral cells, which do not pass far around
the calyx.

The descending fibres from the peripheral cells are gathered into a series
of radially arranged bundles, which become sharply defined as they pass
downwards, and then turn horizontally inwards over the central ring, fuse
with each other in the centre, and pass directly down through the ring into
the pedunculus. Fibres from the central ring are not gathered into bundles,

descendinq
fracrs

tracts from
sensory centres

pedunculus

O-4i

FIG. 4. A diagram to show the arrangement of tracts within the calyx of Apis mellifica.

but pass directly inwards to the middle of the pedunculus and then turn
down it.

The association fibres which enter the calyx from other parts of the brain
do so at the junction of the calyx and the pedunculus. They then pass upwards,
both inside and outside the central ring, to which they remain closely apposed,
and pass around the calyx below the descending bundles, giving off branches
into the peripheral region of the calyx and into the central ring. These afferent
fibres form synaptic connexions with the fibres of the calyx itself, and Kenyon
has recorded that a single afferent fibre may have connexions with many
different calyx fibres.

Tracts within the <x lobe

There are no separate tracts within the « lobe. The fibres coming from the
pedunculus run straight along the lobe to its termination, and in sections
transverse to its long axis it has a fairly homogeneous appearance. Association
fibres from the rest of the brain enter over the whole of the surface, except
at the extreme frontal tip. Tracts of association fibres which reach the surface
immediately spread out and run around the lobe in both directions, sometimes
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almost completely circumscribing it, and resembling in appearance a current
of water eddying and swirling round a rock. Individual fibres are thus enabled
to enter the lobe all around its surface; once inside they branch fairly pro-
fusely in all directions and run through the whole substance of the lobe,
forming synaptic connexions with the mushroom body fibres. A typical

O-35
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FIG. 5. Drawings of a calyx of Apis mellifica as it appears in a series of frontal sections of the
brain.

arborescent fibre is shown in fig. 6, A. Sections at various levels of the lobe
show a striated appearance, as in fig. 3, A. Kenyon claims that these striae
are concentrations of synapses: if this is so then many association fibres must
run along the length of the lobe for some distance, for at any one level the
striae are restricted to one or two chords across the lobe, although the fibres
spread out through the whole area.

Tracts within the /? lobe
The appearance of the fibres within the /? lobe is very similar to that de-

scribed for the a lobe above. The tracts of association fibres coming to this



248 Vmoles—The Corpora Pedunculata in Bees and Ants

lobe are, however, much fewer in number (see later), more diffuse, and run
along rather than around the surface of the lobe, see fig. 6, c.

The association fibres which run along the surface of the lobe turn into it,
branch, and synapse with the mushroom body fibres. Striations can again be
seen, but they lie in bands parallel to the long axis of the lobe, rather than across it.

The connexions of the corpora pedunculata

The fibres of the corpora pedunculata all originate and end within the
organ itself, which therefore depends entirely upon tracts coming from and
originating in other regions of the brain. These tracts are of two types: those
coming from the sensory centres, which all go to either the calyx or the
a. lobe, and those going to motor centres from the j8 lobe. It is not proposed
to describe the course of these numerous tracts in any detail, but merely to
list them, together with a statement of their terminations. All the tracts will
be referred to by numbers, and their correspondence with previously named
tracts indicated where appropriate.

No detailed comparison of the insects studied has been attempted, for the
amount of work involved would not be merited by the little we know either of
true homologies in the insect brain or of the precise integrative functions of its
lobes. The most notable difference between bees and ants is the large size of
the optic glomeruli and their associated tracts in the former. Within the ants
studied themselves the Army ant has degenerate optic glomeruli, and the tracts
from them are insignificant. The brain of Paraponera clavata is very much
larger than that of the other species, and is more easily studied, but the more
common Formica rufa has been chosen for the type specimen here. However,
the fundamental plan of the brain and its tracts is the same in all the species
studied, which differ only in relative sizes and precise spatial relationships.

The numbers which have been given to the tracts indicate their order of
appearance in frontal sections, starting with that nearest to the frontal surface
of the protocerebrum. The size of the tracts has been exaggerated in the
diagrams, and many of them (e.g. 6, 8, and 10 in fig. 7) have previously been
referred to as bundles rather than as tracts; the latter term is used here for
the sake of uniformity.

(A) The tracts in the honey bee

Tracts to the a lobe
1. Passing between the two a lobes. (Cell group I of Kenyon.)
2. From the inner optic glomerulus to the a lobe, and then across tô

the opposite side of the brain, where it has the same connexions.

FIG. 6 (plate). The fibres of various lobes of the corpora pedunculata of Apis mellifica.
A, section across an intact a lobe.
B, section across a partially degenerated a lobe.
C, section through a calyx, corresponding to fig. 5, section 7.
D, section through the upper surface of the ft lobe.
All the sections are frontal; in each case the dorsal side is turned towards the right side of

the plate.
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3. From the optic tubercle to the a lobe. (Cell group V of Kenyon.)
4. From the inner optic glomerulus to the a lobe.
5. From the middle optic glomerulus to the a lobe. This tract has three

origins: one from the middle region of the glomerulus and one each
from the upper and lower surfaces.

O—14 15-18

0-7 mn

19-21 22-24

FIG. 7. Diagrams to show the tracts connecting the corpora pedunculata with the rest of
the brain in Apis mellifica. The numbers of the frontal sections in which the tracts appear

are shown below each picture. For description see text.
o.t. = optic tubercle.
a.m. = antenno-motor centre.

6. From the outer side of the antennal glomerulus to the a lobe. (Cell
group VII of Kenyon.)

7. From the optic tubercle to the a lobe. (Cell group IV of Kenyon.)
8. From the middle inner surface of the antennal glomerulus to the

<x lobe. (Cell group VII of Kenyon.)
9. From the inner optic glomerulus to the a lobe.

10. From the middle inner surface of the antennal glomerulus to the
a lobe. (Cell group VII of Kenyon.)
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11. From the optic tubercle to the a lobe.
12. From the suboesophageal region to the a. lobe.

Tracts to the calyces
I. From the optic tubercle to the calyces.

II. From the antennal glomerulus to the lateral calyx. (The outer
antenno-cerebral tract of Kenyon.)

III. From the inner optic glomerulus to the calyces.
III'. From the inner optic glomerulus to the calyces, but passing below

the pedunculi and originating lower in the optic glomerulus. (The
posterio-superior optic tract of Kenyon.)

IV, V, and VI. From the middle optic glomerulus to the calyces. (The
antero-superior optic tract of Kenyon.)

VII. From the suboesophageal region to the calyces. (The dorso-ventral
tract of Kenyon.)

VIII. From the antennal glomerulus to the medial calyx. (The inner
antenno-cerebral tract of Kenyon; the tractus olfactorio-globularis
of Hanstrom.)

IX. From the suboesophageal region of the opposite side to the lateral calyx.
X. From the suboesophageal region of the same side to the lateral calyx.

Tracts from the ]8 lobe
a. Coarse fibres passing from the /} lobe to the central complex beneath

the central body. These are not gathered into a well-defined bundle.
b. From the /? lobe to the antenno-motor centre.
c. From the /? lobe to the suboesophageal region of the same side.
d. From the $ lobe to the suboesophageal region of the opposite side.

(B). The tracts in the ant Formica rufa
Tracts to the a. lobe

1. Passing between the two a lobes.
2. From the inner optic glomerulus to the a lobe.
3. From the optic tubercle to the a lobe.
4. From the middle optic glomerulus to the a lobe.
5. From the suboesophageal region to the a. lobe.
6. From the antennal glomerulus to the <x lobe.

Tracts to the calyces

I. From the optic tubercle to the calyces.
II. From the antennal glomerulus to the lateral calyx.

III. From the inner optic glomerulus to the calyces.
IV. From the antennal glomerulus to the lateral calyx.
V. From the middle optic glomerulus to the calyces.

VI. From the suboesophageal region to the medial calyx.
VII. From the suboesophageal region to the lateral calyx.
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VIII. From the antennal glomerulus to the medial calyx.
IX. From the antennal glomerulus to the lateral calyx.
X. From the antennal glomerulus to the lateral calyx.

XI. From the suboesophageal region to the lateral calyx.
XII. From the antennal glomerulus to the lateral calyx.

251

O-45mm,

O - 4 5 — 6
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FIG. 8. Diagrams to show tracts connecting the corpora pedunculata with the rest of the
brain in Formica rufa. The numbers of the frontal sections in which the tracts appear are

shown below each picture. For description see text.
o.t. = optic tubercle.
a.m. = antenno-motor centre.

Tracts from the j3 lobe

a. From the /? lobe to the central complex, beneath the central body.
b. From the /? lobe to the antenno-motor centre.
c. From the /S lobe to the suboesophageal region of the opposite side.
d. From the /? lobe to the suboesophageal region of the same side.

In view of Power's (1946) criticism of Sanchez's (1941) term 'antenno-
motor centre' it should be stated that the present study both confirms and
extends the latter author's observations. Unlike the situation in Drosophila
the major part of the antennal nerve does enter the antennal glomerulus in the
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honey bee and in ants. The fibres which pass by the morula are of two sorts:
numerous large, coarsely-staining motor fibres which pass on the ventro-
lateral side of the morula to the fibrous structure called the antenno-motor
centre; and much fewer lightly staining fibres which pass below the morula
to its medial, inner side, and end in a few glomerular bodies resembling those
of the true morula. In the above account the antennal glomerulus is taken to
include both the morula-like lobes: their tracts can be distinguished from that
to the motor centre. A commissure of the motor lobe has been distinguished
passing just above the oesophageal foramen, and this implies that the lobes
are of a deutocerebral nature, unlike the similar structures in Drosophila.
The present study differs from that of Sanchez in distinguishing between the
tract from the /J lobe to the antenno-motor centre, and the tracts from the cells
of the glomerulus to the medial calyx (A, VIII, the olfactorio-globularis):
the two tracts are not the same, as Sanchez suggests.

Several of the tracts listed above are shown to come from the suboeso-
phageal region, but their origins here have not been traced: Kenyon has
shown that some of the fibres from the /? lobe make connexions with those
from the thoracic ganglia. So little is known of the neurology of the suboeso-
phageal ganglia that there is no other indication whether the fibres to the
protocerebrum come from sensory or motor areas. .The following considera-
tions are however relevant here:

1. Tracts from the optic glomeruli and the antennal glomeruli, all of which
are sensory centres, go only to the calyces and the a lobes.

2. Tracts from the f$ lobes go to the antenno-motor centre and the central
body. The central body itself also receives tracts from all the sensory
centres and is intimately connected with the suboesophageal ganglia.

3. The suboesophageal ganglia, apart from their role as centres for the
mouthparts, have important functions in maintaining locomotor activity
in the insect.

It therefore seems reasonable to suppose that the tracts from the suboeso-
phageal ganglia to the calyces and ex lobe are from sensory areas. It is further
suggested that tracts from the ft lobe are to motor regions; which implies that
the central body has motor functions, although there is no physiological
evidence on this point. These topics will be further discussed in the next
section.

DISCUSSION

Since the mushroom bodies were first described, over a century ago, their
function has been the subject of much speculation: all the fashionable
mysteries of behaviour have been successively attributed to them. It is not
proposed to add to these speculations here, but only to discuss the manner of
functioning which their anatomical properties may confer upon them.

The descriptions given make it clear that the calyces and the <x lobe both
receive connexions from all the sensory centres of the brain. Although the
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fibres entering the calyces and a lobe have not been counted, it is obvious
that they are very numerous, and this, allied with the fact that a single afferent
fibre makes synaptic connexions with many mushroom body fibres, makes it
probable that each of the latter fibres has at least two connexions with sensory
centres—one in the calyx and one in the a lobe. Although there is no evidence
that the insect synapse is polarized, it seems more probable that the flow of

FIG. 9. Diagram to illustrate the suggested paths of conduction in the corpora pedunculata.
Si and Sj = sensory centres.
M = motor centre.

excitation is from the sensory centres into the corpora pedunculata rather
than the reverse. If this is so, then when the sensory centres are active each
of the mushroom body fibres will be simultaneously excited both in the calyx
and in the a lobe. If the two excitations are not synchronized, then the
excitation which passes away down the /? lobe must be the result of a combina-
tion or interaction of the two initial excitations in the calyx and a lobe. The
possession of two reception areas, each with duplicate connexions, thus intro-
duces the possibility of a type of comparator system which can be used to
produce great variation in the transmitted information; this variation being
caused by excitations arising in either the same or in different sensory centres.
The mechanism for producing this variation will be discussed elsewhere.
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The hypothesis given above is not the only one which would explain the
facts. If, for example, it was supposed that tracts from the a lobe conducted
excitation away from the lobe to the sensory centres, then some sort of self-
exciting circuit might be set up, involving the series sensory centre —»- calyx
—»• a. lobe —> sensory centre —*• &c, with a continual excitation passing away
down the f$ lobe. Until some evidence is available to show that integrative
centres may react upon sensory centres, it seems wiser, however, to assume
that the flow of excitation normally passes from the sensory centres to the
mushroom bodies, with the results already proposed.

If, as suggested, the j8 lobe is a transmitting region, then it is clear that
tracts from this lobe must conduct excitation away to motor or integrative
centres, as has already been suggested in discussing the origins of these tracts.

The polysynaptic connexions and large number of the fibres entering the
calyx make it probable that the afferents must compete for the mushroom body
fibres, which thus exemplify the 'convergence' and 'final common path'
postulated for other neural organizations. If one afferent fibre can excite
several post-synaptic fibres, then the calyx will act as a primitive amplifier.
Perhaps more important, however, is the increased probability that in a
population of post-synaptic fibres with varying thresholds at least a few will
always be excited by the afferent impulse. This implies that on different
occasions the same afferent fibre excites different post-synaptic fibres, which
raises the question of the degree of localization of function, if any, which
exists in the calyx. On anatomical grounds one might expect the different
calyces, and the central and peripheral groups of cells within each calyx, to
have different functions. The arrangement of the synaptic striae across the
a lobe and along the j8 lobe, together with the observation that all the mush-
room body fibres rigidly preserve their relative positions in these lobes, might
indicate that the spatial distribution of the fibres has some functional signifi-
cance. Any final determination of the functional localization must, however,
depend upon physiological rather than histological observations.

It is indeed apparent that although we have a detailed knowledge of the
histology of the corpora pedunculata, our ignorance of their function remains
very great. Only physiological examination can clarify this matter, but it
should be stressed that comparative studies of a physiological and a histo-
logical nature are complementary, and both are essential to a further under-
standing of the problem.
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