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Introduction
In response to a specific developmental or homeostatic signal, the

average transcriptional output from a cell population is typically

regulated in a reproducible manner, giving rise to deterministic

models of gene expression. Deterministic models predict that

increasing concentrations of activated nuclear transcription factor

complexes will uniformly interact with the target gene promoters

and cause homogenous transcription in all of the individual cells

within the population. By contrast, numerous studies reveal that

expression of a given gene is highly variable between individual

isogenic cells in the population. This heterogeneous gene expression

exists in systems ranging from bacteria and yeast to mammalian

cells derived from normal tissue, suggesting that cell-to-cell

variation is fundamental to the process of gene activation (Bahar

et al., 2006; Blake et al., 2003; Elowitz et al., 2002). These results

have led to the development of stochastic gene expression models

(reviewed by Kaern et al., 2005; Kaufmann and van Oudenaarden,

2007), where each allele is activated by multiple regulatory events

that occur with some controlled probability. However, the

mechanistic details of how the probabilistic transcription factor

interactions with chromatin give rise to the deterministic

transcriptional response observed in the averaged cell population

require further clarification.

Transcriptional heterogeneity can be caused by regulatory events

that occur independently at each allele. This variability, termed gene

intrinsic noise, is predicted to be caused by the inherently random

association of low concentrations of transcription factors with the

limiting number of regulatory elements in the target gene promoters

(Elowitz et al., 2002; Raser and O’Shea, 2004; Swain et al., 2002).

Additionally, random transitions in the surrounding chromatin

environment also affect the heterogeneous transcription of individual

homologous alleles. Studies in yeast reveal that the state of the

surrounding chromatin regulates all the promoters at a single genomic

locus in a coordinated manner, but individual homologous loci have

variable regulation (Becskei et al., 2005). Mammalian cells exhibit

similar behavior (Raj et al., 2006), suggesting a strong evolutionary

conservation of the mechanisms that link the local chromatin

environment to the probabilistic regulation of gene expression.

The mouse mammary tumor virus long terminal repeat (MMTV-

LTR) promoter provides a well-characterized system to define the

probabilistic transcriptional mechanisms that underlie the apparent

deterministic behavior of the averaged mammalian cell population.

When bound by the synthetic steroid dexamethasone (Dex),

glucocorticoid receptor (GR) protein associates with six DNA

response elements located in the MMTV-LTR to strongly activate

transcription (Huang et al., 1981; Payvar et al., 1983; Scheidereit

et al., 1983). When the GR binds to the response elements, there

is an extensive reorganization of the chromatin, which allows

additional DNA-binding transcription factors and coregulators to

access the site (Richard-Foy and Hager, 1987). This change in the

Gene regulation often appears deterministic in the average cell

population, but transcription is a probabilistic process at the

single-cell level. Although many mechanisms are invoked to

account for this behavior, it is difficult to determine how cell-

to-cell variation in the interactions of transcription factors with

target chromatin impact transcriptional output. Here, we use

cells that contain a 200-copy tandem array of promoter or

reporter gene units to simultaneously visualize transient

interaction, equilibrium or steady-state binding of fluorescent-

protein-labeled glucocorticoid receptor with its DNA response

elements, the recruitment of diverse coregulators, and

transcriptional output at the single-cell level. These regulatory

proteins associate with target chromatin via a probabilistic

mechanism that produces cell-to-cell variability in binding. The

multiple steps of this process are partially independent and

differ between individual regulators. The association level of

each regulator influences the transcriptional output in

individual cells, but this does not account for all transcriptional

heterogeneity. Additionally, specific combinatorial interactions

of the glucocorticoid receptor and coregulators with response

elements regulate transcription at the single-cell level. Like

many endogenous genes, the average array transcriptional

activity evolves over time. This apparently deterministic average

temporal promoter progression involves changes in the

probability that specific combinatorial glucocorticoid receptor

and coregulator interactions will occur on the response elements

in single cells. These data support the emerging ‘return-to-

template’ transcription model, which mechanistically unifies the

observed extremely transient interactions between the

transcription factor and response elements, cell-to-cell

variability in steady-state association of factors with chromatin,

and the resulting heterogeneous gene expression between

individual cells.
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chromatin conformation involves the action of the Brg1 containing

ATP-dependent nucleosome-remodeling complex (Fryer and

Archer, 1998). GRs also recruit many other coregulator protein

complexes to activate the promoter, including complexes that

contain the p160 coactivator GRIP, additional histone

acetyltransferases (HATs), and histone deacetylases (HDACs) (Li

et al., 2003; Qiu et al., 2006). The GR-dependent activation of

MMTV transcription is temporally complex, reaching a maximal

level within 30 minutes then rapidly evolving to an attenuated state

within 2 hours (Archer et al., 1994; Becker et al., 2002). This

reproducible, time-dependent progression of the averaged cell

population appears to be strongly deterministic.

We have previously studied how GR association with response

elements and the surrounding chromatin environment interact to

control transcription using a cell line that contains a 200-copy

MMTV-LTR reporter gene tandem array integrated at a single

genomic locus (referred to as the MMTV array) (McNally et al.,

2000; Walker et al., 1999). Importantly, photobleaching experiments

on living cells demonstrate that the GR and coregulators

concentrated at the MMTV array are not stably bound, but are

dynamically exchanging with the surrounding nucleoplasm over a

time scale of seconds (Becker et al., 2002; McNally et al., 2000).

The ‘return-to-template’ model proposes that the transient

recruitment of multiple transcription factor-coregulator complexes

over time causes multiple stochastic regulatory events at each

promoter during transcriptional activation (Hager et al., 2004; Hager

et al., 2006). In the current report, we reveal how the probabilistic

formation of many different transcription-factor–chromatin states

at the MMTV promoter can give rise to both heterogeneous

transcriptional behavior within single cells, and also produce an

apparent deterministic response in the averaged cell population.

Results
Steady-state binding of GR and associated coregulators with
chromatin and resulting transcription in the averaged cell
population
We generated two stable inducible cell lines to explore the actions

of the GR and interacting coregulator proteins at the single-cell level.

The 3617 cell line, which contains the integrated MMTV promoter-

reporter gene array and expresses GFP-labeled GR (GFP-GR), was

the founder cell line for the two additional lines. The resulting 6643

cell line and 6790 cell line express exogenous Brg1 or GRIP,

respectively, as a fusion protein labeled with the monomeric Cherry

red fluorescent protein (Ch-Brg1 or Ch-GRIP). High-resolution

fluorescence micrographs show the subnuclear localization of each

separate fluorophore signal (Fig. 1, left three panels). The overlay

images demonstrate that in response to Dex treatment Ch-Brg1 and

Ch-GRIP concentrate with GFP-GR at the site of MMTV array

transcription (Fig. 1, right panel). This increased steady-state

concentration of transcription factors in a distinct subnuclear region

results from the balance of highly transient interactions with the

MMTV promoter chromatin (Hager et al., 2006).

We have previously developed an unbiased high-resolution

microscopy method and an automated image analysis algorithm

that together systematically measure the factors associated with

the MMTV array and the resulting transcriptional output in large

numbers of cells (Voss et al., 2006). Averaging the measurements

from more than 500 individual 3617 cells reveals a ~tenfold

increase of MMTV-dependent transcription following 30 minutes

of Dex treatment (Fig. 2A). After 4 hours of continuous Dex

Journal of Cell Science 122 (3)

Fig. 1. Transcriptional coregulators concentrate at the MMTV gene array when
expressed in stable inducible cell lines. (A,B) Fluorescence microscopy images
are shown for (A) the 6643 cell line expressing Ch-Brg1 or (B) the 6790 cell
line expressing Ch-GRIP. The images from each fluorescence channel are
shown individually (left panels), and merged in the overlay images (far right
panels).

Fig. 2. Temporal progression of MMTV promoter activity in the averaged cell
populations. The parental 3617 cell line, the Ch-Brg1-expressing 6643 cell
line, and the Ch-GRIP expressing 6790 cell line were treated with 100 nM Dex
for the indicated lengths of time, and processed for RNA FISH.
(A-C) Quantitative microscopy techniques measured the levels of (A) RNA
FISH signal, (B) GFP-GR array loading ratio, (C) and Ch-coregulator array
loading ratio for each cell. The plotted values represent the means of
measurements from greater than 300 cells for each condition. The error bars
denote the s.e.m.
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347Probabilistic chromatin interactions

treatment, the RNA FISH signal decreases ~40% compared with

maximal levels. The intensity of fluorescent protein at the MMTV

array relative to the surrounding nucleoplasm intensity, referred to

as the array loading ratio, approximates the amount of steady-state

association with the promoters in each cell (Voss et al., 2006). An

example of the automated image analysis algorithm measurement

of cell line 3617 with different levels of GFP-GR array loading is

shown in supplementary material Fig. S1. Although this assay of

GR-MMTV array interaction utilizes measurement of a single pixel,

the method is not dominated by random noise in the images

(supplementary material Fig. S2). In the averaged cell line 3617

populations, the average GFP-GR array loading ratio significantly

increases threefold after 30 minutes, then decreases slightly but

significantly from the maximal level after 4 hours of continuous

Dex treatment (Fig. 2B). The details of all statistical pairwise

comparisons of the mean values in Fig. 2 are shown in

supplementary material Table S1.

The ATP-dependent Brg1-containing chromatin-remodeling

complexes, have an important role in the regulation of GR-mediated

transcription. Exogenous expression of Ch-Brg1 in cell line 6643

causes a modest increase in the average MMTV transcriptional

activity compared with cell line 3617 (Fig. 2A). This slight

difference becomes statistically significant when comparing the

6643 cell line with the 3617 cell line after 4 hours of Dex treatment

(Fig. 2A; supplementary material Table S1). Ch-Brg1 expression

also leads to a modest but significant decrease in the mean steady-

state association of GR with the MMTV array (Fig. 2B;

supplementary material Table S1). In response to hormone, there

is a slight but significant increase in the average steady-state

association of Ch-Brg1 with the MMTV array (Fig. 2C;

supplementary material Table S1). Although it is clear that

exogenous Ch-Brg1 regulates MMTV promoter activity, the general

behavior observed in cell line 6643 is probably similar to that of

cells expressing only endogenous Brg1. Western blots reveal that

there is relatively little overexpression of Ch-Brg1 compared with

endogenous protein (supplementary material Fig. S3B), consistent

with the minor effects observed in the Ch-Brg1 cells.

The p160 coactivator GRIP directly interacts with GR (Hong et

al., 1996; Hong et al., 1999). In turn, GRIP facilitates the recruitment

of additional coregulator proteins, which possess enzymatic

functions required for gene activation (Li et al., 2003; Ma et al.,

2001). Unlike Ch-Brg1, exogenous Ch-GRIP has statistically

significant effects on transcription only after long-term hormone

treatment compared with short-term treatment, preventing the time-

dependent decrease seen in cell line 3617 (Fig. 2A; supplementary

material Table S1). Ch-GRIP expression also causes significantly

increased steady-state association of GR with the MMTV array

compared with cell line 3617 (Fig. 2B; supplementary material Table

S1), suggesting that additional GRIP modifies the balance of

dynamic GR association-dissociation rates with the MMTV-LTR.

In response to hormone, there is also a large increase in the amount

of Ch-GRIP associated with the MMTV array (Fig. 2C;

supplementary material Table S1). Unlike the response in cell line

3617, the steady-state levels of GR and GRIP at the array do not

decrease significantly at the later time point in cell line 6790

(supplementary material Table S1). Ch-GRIP is expressed

approximately twofold over endogenous protein levels in these cells

(supplementary material Fig. S3C). Although it is clear that this

Ch-GRIP expression level alters normal MMTV promoter

progression in the 6790 cell line, the cell line provides insight

into how this important coregulator influences probabilistic

transcriptional regulation.

Fig. 3. Cell-to-cell variability during MMTV promoter progression. The single-cell microscopy measurements, which were averaged in Fig. 1, were sorted into
histogram bins according to levels of the measured parameters: (A,C,F) RNA FISH signal, (B,D,G) GFP-GR array loading ratio or (E,H) Ch-coregulator array
loading ratio in each cell. The stair-step line plots represent the fraction of the cell populations in each histogram bin. Bin size was empirically set for each
parameter to highlight the shapes of the distributions. Bin size is 1 for RNA FISH Signal, 0.2 for GFP-array loading ratio, and 0.1 for Ch-coregulator array loading
ratio. The plots are grouped by cell line: (A,B) parental 3617 cell line, (C,D,E) the Ch-Brg1-expressing 6643 cell line, and (F,G,H) the Ch-GRIP-expressing 6790
cell line.
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Heterogeneity within the cell population of GR-coregulator-
chromatin association and transcriptional output
At the averaged cell population level, the time-dependent hormone

response is very reproducible and appears deterministic. However,

we questioned whether the system behaves probabilistically at the

single-cell level. Indeed, there is a large degree of heterogeneity

between individual cells within each population, suggesting

probabilistic mechanisms drive the process. This heterogeneity is

illustrated by histogram stair-step plots showing the fraction of the

cell population at each measured level of the response (Fig. 3). In

the absence of hormone, the majority of cells from the 3617 cell

line have low levels of RNA FISH signal (Fig. 3A). Treatment with

Dex for 30 minutes produces a broad shift in population where many

more cells have higher levels of RNA FISH signal. Strikingly, the

plot shows that the RNA FISH signal after 30 minutes of Dex

treatment varies by as much as 25-fold between individual cells.

Gene expression variability within a cell population can be

quantified using the noise strength term (calculated as the square

of s.d. divided by the mean) (reviewed by Kaern et al., 2005). The

statistically larger value of the FISH noise strength in 3617 cells

after 30 minutes compared with values before hormone treatment

indicates an increase in variability (Fig. 4A; supplementary material

Table S2). After 4 hours of hormone treatment, there is a broad

shift in the population to lower RNA FISH values, accompanied

by a further significant increase in the noise strength. Thus,

transcriptional output becomes more heterogeneous over time in

cell line 3617 populations. Similar transcriptional noise strength

trends are found for cells expressing Ch-Brg1 or Ch-GRIP, although

the values are not significantly different at 0.5 hours compared with

4 hours of Dex treatment (Fig. 4A; supplementary material Table

S2). This time-dependent trend of RNA FISH noise strength in the

Ch-GRIP cell line (Fig. 4A) suggests that the relative degree of

heterogeneity is independent of the average level of transcription,

but additional studies are required for confirmation.

Time-dependent changes in GR and MMTV array loading ratio

noise-strength values show similar trends to those measured for the

RNA FISH signal in all three cell lines (compare Fig. 4A with Fig.

4B). Similarly to the difference in RNA FISH noise-strength

values, the difference between 0.5 and 4 hour GR array loading

ratio noise-strength values is only statistically significant in the 3617

cell line (supplementary material Table S2). These trends provide

further evidence that probabilistic GR and MMTV association, and

transcriptional output might be linked at the single-cell level.

Interestingly, the loading ratios for the coregulators do not show a

strong time-dependent increase in noise strength (Fig. 4;

supplementary material Table S2). Therefore, the probabilistic

association of these coregulators with the promoter appear to be

partially independent from the GR, and less tightly correlated with

transcriptional output.

Some general mechanistic information can be derived from

measurements of heterogeneity within the cell populations.

Completely independent events occurring in a given time span

generate a Poisson distribution when sampled, and the Poisson

distribution, by definition, produces a noise-strength value equal to

1. Noise-strength values that differ from 1 indicate that the measured

events are not fully independent. The FISH signal noise strength

for each hormone treated condition is greater than 1 (Fig. 4). Also,

the array association noise strength values are greater than 1 for

GRIP. Single-cell gene expression analysis has previously revealed

noise-strength values greater than 1 (Becskei et al., 2005; Raj et

al., 2006). This has been interpreted as strong evidence for

transcriptional bursting, resulting from a temporary chromatin state

that allows rapid transcriptional reinitiation at a given promoter

(Kaufmann and van Oudenaarden, 2007). In contrast to the analysis

of transcriptional output and GRIP-MMTV association, GR and

Brg1 association with MMTV measurement produce noise-strength

values that are less than 1. Similar decreases in variability are

possible when negative-feedback loops regulate gene expression

(Becskei and Serrano, 2000). These data suggest that the two

coregulators associate with the MMTV array under control of

different probabilistic rules, which might involve multiple

interrelated steps. Interestingly, recent quantitative models suggest

that single-molecule experiments are necessary to dissect the

specific source of gene expression variability involving multiple

connected regulatory steps (Pedraza and Paulsson, 2008). Therefore,

additional experiments are required to expand these novel findings.

Connections between transcription factor and chromatin
association, and transcriptional output at the single-cell level
Locally weighted scatter-plot smoothing (Loess) analysis was used

to calculate the average level of RNA FISH signal for the entire

range of GR array loading ratios measured in individual cells.

Analyzing cell line 6643 cells that express Ch-Brg1, the Loess

Journal of Cell Science 122 (3)

Fig. 4. Mean noise strength for the cell populations. For each biological
condition, a noise-strength value was calculated for individual cells in each
replicate culture that was assayed. These noise-strength values from replicate
cultures were averaged to generate the plotted mean noise-strength values.
Error bars in the plots denote s.e.m. Mean noise-strength values are displayed
for the following parameters: (A) FISH signal, (B) GR array loading ratio, and
(C) Ch-coregulator array loading ratio.
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349Probabilistic chromatin interactions

average line confirms that there is a non-linear relationship between

the GR-MMTV association, and transcriptional output (Fig. 5A).

Low level increases in GR-MMTV association stimulate

transcription, illustrating that GR interactions with chromatin at the

single-cell level influence transcriptional output. The transcriptional

response plateaus at higher levels of GR-MMTV association,

suggesting that other factors become limiting under these conditions.

The measurements from individual cells are widely scattered

around the average line, and additional probabilistic factors must

be responsible for the remaining transcriptional heterogeneity.

Best-fit Loess lines from cell line 6643 show a decrease in the

transcriptional efficiency at any given level of GR-MMTV

association at the 4 hour time point compared with that at the 0.5

hour time point (Fig. 5A). This difference is statistically significant

over the GR array loading ratio range of 1.8 to 4.3 (supplementary

material Fig. S4F), suggesting that the activation is mediated by

factors other than GR changes during promoter progression. These

non-linear relationships are qualitatively similar to those observed

in cell line 3617. However, at either time point, expression of Ch-

Brg1 significantly increases the transcriptional output over a broad

range of GR-MMTV association values, as determined by

comparison with Loess lines calculated from cell line 3617 data

(Fig. 5A; supplementary material Fig. S4B,E). These single-cell

data demonstrate how the loss of GR-MMTV association can

coincide with increased transcription in the cell population. The

relationships between Ch-Brg1–MMTV association and

transcriptional output are qualitatively similar to those observed for

GR-MMTV association and transcription (compare Loess lines for

cell line 6643 in Fig. 5A,C). At the 4 hour time point compared

with the 0.5 hour time point, the relationships between Ch-

Brg1–MMTV association and transcriptional output also show a

significant decrease in the transcriptional efficiency over a broad

range of GR-MMTV association levels (Fig. 5C; supplementary

material Fig. S6A). Together, these results suggest that GR and Brg1

association with the array are partially correlated at the single-cell

level.

Qualitatively similar non-linear relationships between the GR-

MMTV association and transcriptional output are also present in

the Ch-GRIP-expressing cells from the 6790 cell line (Fig. 5B),

again indicating that other factors contribute to the variable

transcription within this cell line. The Loess average lines show

that the non-linear relationship between GR-MMTV association and

transcription only changes slightly over time in these cells. However,

the slight differences between these relationships are statistically

significant, except near the GR-MMTV association value range

where the lines cross each other (supplementary material Fig. S5F).

Furthermore, the non-linear relationship between GR-MMTV

association and transcription in Ch-GRIP-expressing cells is

quantitatively similar to the relationship in cell line 3617 after 30

minutes of hormone treatment (supplementary material Fig. S5B).

However, comparing cell line 6790 and cell line 3617 after 4 hours

of hormone treatment, the transcriptional efficiency increases

dramatically in individual cells from the 6790 cell line at any level

of GR-MMTV association (Fig. 5B), and this difference is

statistically significant (supplementary material Fig. S5E). This

indicates that exogenous GRIP expression alters the balance of

complexes at the promoter to increase the efficiency of GR-

dependent transcription at later time points. Consistent with this

finding, the non-linear relationship between Ch-GRIP–MMTV

association and transcription also remains relatively constant over

Fig. 5. Pairwise statistical modeling of
GR-chromatin association, coregulator-
chromatin association and transcriptional
output in single cells during MMTV
promoter progression. (A) The GFP-GR
array loading ratio and RNA FISH signal
or (C) Ch-Brg1 array loading ratio and
RNA FISH signal were plotted for cell
line 6643 populations. For cell line 6790,
(B) GFP-GR array loading ratio and
RNA FISH signal or (D) Ch-GRIP array
loading ratio and RNA FISH signal were
also plotted. Each ‘+’ symbol represents
the measurements from a single cell,
treated with Dex for 0.5 hours (cyan or
green) or 4 hours (purple or red).
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time (Fig. 5D; supplementary material Fig. S6B). These results

reveal how the Ch-GRIP-induced changes at the single-cell level

alter promoter progression in the averaged cell population.

Association of GR with chromatin influences the recruitment of
coregulators at the single-cell level
Analysis of single-cell data also delineates the quantitative

relationships between the steady-state association of GR with the

MMTV array and the association of the coregulators with the

MMTV array. The Loess line shows that the average amount on

Ch-Brg1 associated with the array plateaus in cells with increasing

GR-MMTV association (Fig. 6A). Other factors that are required

for GR to interact with Brg1, such as BAF60a (Hsiao et al., 2003),

might become limiting and cause this non-linear relationship. By

contrast, the association of Ch-GRIP with the MMTV array linearly

correlates with the increases in GFP-GR-MMTV association (Fig.

5B). This is consistent with the direct physical interaction between

the GR and GRIP (Hong et al., 1996; Hong et al., 1999), and further

highlights the differences between the two coregulators at the single-

cell level. For both coregulators, the Loess lines only slightly change

from 0.5 to 4 hours of hormone treatment (Fig. 6). These

relationships are statistically different only over relatively limited

ranges of GR array loading values (supplementary material Fig.

S7), indicating that on average, a given level of GR at the MMTV

array has a relatively constant probabilistic efficiency for recruiting

these coregulators during temporal promoter progression.

Importantly, the data from individual cells is widely scattered around

the average Loess lines (Fig. 6), suggesting that the level of

associated coregulator is not strictly determined by the level of GR-

MMTV association.

GR and coregulators combinatorially interact with chromatin to
influence probabilistic transcription
The wide distributions of array loading values for the individual

transcription factors demonstrate the probabilistic nature of GR

and coregulator interactions with chromatin targets (Fig. 3). The

probabilities of these individual interactions change over time,

and contribute to time-dependent regulation of transcription.

Since there are detectable relationships between GR-MMTV

association and the recruitment of the coregulators (Fig. 6), we

must understand how the probability of combinatorial GR-

coregulator-MMTV interactions change during promoter

progression. The distribution of individual cells exhibiting

different combinations of GR loading ratios and coregulator

loading ratios can be analyzed using local-likelihood statistical

methods. The fraction of cells with any given GR and cofactor

loading-ratio combination is related to the probability that this

specific combination of interactions will occur in an individual

cell. The resulting probability plots are similar to the results from

multi-factor FACS analysis, and represent the relative number

individual cells with each combination of GR and coregulator

interaction in a color-coded format (Fig. 7).

After 30 minutes of hormone treatment, the highest probability

combination in an individual cell for GFP-GR and Ch-Brg1 array

loading ratio is approximately 3.7 and 1.9, respectively (Fig. 7A).

Therefore, the highest probability combination of GR-MMTV and

Brg1-MMTV association in single cells closely agrees with the

single-parameter measurements averaged for the cell population

(compare with Fig. 2B,C). There is a continuous decrease in

probability that radiates from the maximal point in an ellipsoid

fashion (Fig. 7A), with more variability in the GR parameter relative

(range laterally) to the Brg1 parameter (range vertically). After 4

hours of hormone treatment, the highest probability combination

moves to lower values of GR and Brg1 loading ratios (Fig. 7B),

again in agreement with the averaged measurements (compare with

Fig. 2B,C). The more widely spread probability combinations (the

decrease in the area of the red region indicating high probability

combinations) show the effect of additional variability in GR-

MMTV association after 4 hours of hormone treatment (Fig. 7B).

By subtracting the earlier time point distribution from the later one,

the array association combinations with higher probability and lower

probability at the later time point become more easily detected (Fig.

7C, note the green color indicates no time-dependent change). The

most probable combination of loading-ratio values in an individual

cell is approximately 4.5 for both GFP-GR and Ch-GRIP after 30

minutes of hormone treatment (Fig. 7D). The distribution of

probabilities shifts at the later time points, with a single cell having

a higher probability of associating combinations of more GR and

more GRIP with the array (Fig. 7E). The red areas in the difference

plot highlight this time-dependent increase in probability (Fig. 7F).

These data demonstrate that the probability of specific combinatorial

protein and chromatin interactions changes during promoter

progression.

The large amount of transcriptional scatter surrounding the best-

fit relationship with single factor and array association indicated

that additional factors must be also be variable at the single-cell

level to produce the transcriptional heterogeneity within the cell

populations (Fig. 5). Multivariate local regression methods were

Journal of Cell Science 122 (3)

Fig. 6. Relationships between GR-
chromatin association and coregulator-
chromatin association in single cells
during MMTV promoter progression.
(A) The GFP-GR array loading ratio and
Ch-Brg1 array loading ratio were plotted
for cell line 6643 populations. Each ‘+’
symbol represents the measurements from
a single cell from the 6643 cell line,
treated with Dex for 0.5 hours (cyan) or 4
hours (purple). (B) The GFP-GR array
loading ratio and Ch-GRIP array loading
ratio were plotted for cell line 6790
populations. Each ‘+’ symbol represents
the measurements from a single cell from
the 6790 cell line, treated with Dex for 0.5
hours (green) or 4 hours (red).
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351Probabilistic chromatin interactions

Fig. 7. Distribution of combinatorial GR-array association
and cofactor-array association in the cell populations.
Local-likelihood statistical methods calculate the
probability that an individual cell will concentrate any
given level of GFP-GR and coregulator protein (A-B, Ch-
Brg1 or D-F, Ch-GRIP) on the MMTV array after 0.5 or 4
hours of Dex treatment (See color bar, red color denotes
increased probability). (C,F) Subtracting the probability
values at 0.5 hours from the 4 hour probability values
shows how the cell distributions change during promoter
progression (see color bar).

Fig. 8. Multivariate statistical modeling of GR-coregulator-
chromatin association and transcriptional output in single
cells during MMTV promoter progression. Multivariate
local regression was used to calculate the average FISH
signal in individual cells that exhibited different
combinations of GFP-GR array loading ratios and (A,B)
Ch-Brg1 array loading ratios or (D,E) Ch-GRIP array
loading ratios. The color indicates the average level of the
measured RNA FISH signal in cells with each combination
of factor array loading ratios. These values were calculated
from cells treated with Dex for (A,D) 0.5 hours or (B,E)
4 hours. The 0.5 hour average FISH values were subtracted
from the 4 hour average FISH values to highlight how the
relationships between factor array loading ratios and
transcriptional output change during promoter progression.
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used to test this prediction further. Local regression calculated the

average transcriptional output for each measured combination of

GR and coregulator-array association. The calculated transcriptional

output relative to the mean transcription in cells without hormone

is presented for each level of GR array loading ratio and coregulator

array loading ratio (Fig. 8). After 30 minutes of hormone treatment,

the transcription levels from combinations of GFP-GR array loading

and Ch-GRIP array loading show a complex pattern. The pattern

demonstrates that for a given level of steady-state GR-MMTV

association (all the cells on a given vertical column on the graph,

Fig. 8B) a critical level of Brg1-MMTV association is also required

to efficiently activate transcription at the single-cell level (increase

in transcription along the same vertical column on the graph).

Although the transcriptional output pattern is different for

combinations of GR and GRIP-array association, again the amount

of both GR and coregulator associated with the array at the single-

cell level control the level of transcription (Fig. 8D). For both

coregulators, the transcriptional output from GR and array binding

combinations changes over time (Fig. 8B,E). There is a general

trend for lower levels of GR-coregulator-MMTV association to

become less transcriptionally active whereas higher-level factor

combinations become more transcriptionally active over time. This

trend is illustrated in the time difference plots, with red values

showing the combinations of array association that increase

transcriptional output at the later time points (Fig. 8C,F). Taken

together, these results strongly support a general mechanism in

which probabilistic combinatorial interactions of regulatory proteins

with target chromatin contribute to the heterogeneous transcriptional

output observed at the single-cell level.

Discussion
Although much progress has been made in understanding the

probabilistic nature of gene expression, very little was previously

known about the connections between steady-state binding of

transcription factors with integrated DNA response elements and

transcriptional output at the single-cell level. Our analysis indicates

that the GR and interacting transcriptional coregulators associate

with the MMTV array to widely different degrees in individual cells

within the population. The quantitative microscopy methods used

in this study accurately measure the steady-state binding of array-

associated proteins as previously shown by comparison to chromatin

immunoprecipitation assays (Voss et al., 2006). The imaging assay

is further validated by the biologically induced statistical differences

that we observe in parameters (mean values, noise-strength values,

non-linear Loess relationships) that are derived from measurements

of many single cells. If the imaging assay results were dominated

by random methodological variation, then statistically significant

differences could not be detected between different biological

conditions. Our statistically validated results indicate that the

probabilistic interactions of multiple factors with promoter

chromatin produce the deterministic temporal progression of

transcriptional activity, which is observed in the averaged cell

population.

Probabilistic transcription factor association with target
promoters
Variable transcription factor binding to target promoters between

individual cells might be caused by many possible mechanisms.

However, the potential mechanisms probably exhibit a small set of

general underlying properties. In some systems, cell-to-cell variation

is due to finite number effects, in which limited numbers of

molecules cause random and infrequent productive biochemical

interactions with target promoters (Elowitz et al., 2002; Raser and

O’Shea, 2004; Swain et al., 2002). These inherently random

biochemical interactions make each promoter’s activity independent

of another homologous promoter. However, this type of gene

intrinsic noise is unlikely to be a major cause of the MMTV array

heterogeneity because the averaging of random independent events

at the 200 constituent promoters in the array would cause a

homogenous response in each cell.

Probabilistic mechanisms can coordinately regulate multiple

promoters when they are integrated at a single site in the genome.

When multiple copies of a promoter-reporter construct are tandemly

inserted into a single yeast genomic locus and compared with an

integrated single-copy promoter-reporter, the expression level

increases to the expected level, but the relative cell-to-cell variability

does not decrease (Becskei et al., 2005). As explained above, a

decrease in cell-to-cell transcriptional variability is expected when

multiple independently regulated promoters are in the same cell.

However, when a single promoter-reporter construct is integrated

in each homologous allele (two copies per cell), the expression level

increases and the relative level of cell-to-cell variation decreases

as expected (Becskei et al., 2005). Global extrinsic cell-to-cell

differences would affect homologous alleles identically and cause

relative variation levels to remain constant. Therefore, the decease

in variation indicates that extrinsic variability is not the major

determinant of heterogeneity in this system.

Transitions in the surrounding chromatin state also appear to

coordinately regulate promoters that are tandemly integrated in

mammalian cell (Raj et al., 2006). Diverse experimental evidence

suggests this property regulates many different promoters, including

the MMTV-LTR. For example, there is direct biochemical evidence

that the MMTV-LTR in the averaged hormone-treated cell

population exists in multiple native chromatin states (Georgel et

al., 2003). In addition to the MMTV gene array, another tandemly

integrated promoter-gene array model system is also

heterogeneously bound by the estrogen receptor (Sharp et al., 2006),

again suggesting that probabilistic association mechanisms might

be widely utilized in transcriptional regulation. Similarly to the

MMTV array, other tandem gene array systems are transiently

associated with their activating transcription factor proteins (Bosisio

et al., 2006; Sharp et al., 2006). Recent studies also demonstrate

that transient protein interactions are involved in changing steady-

state transcription-factor-chromatin interaction levels (Karpova et

al., 2008). Considering these results, cell-to-cell variability in

steady-state chromatin interactions probably involves changes in

the balance of the dynamic association and disassociation rates for

the interacting proteins.

Additional mechanisms might also regulate promoters that are

integrated at a single genomic locus. The controlled movement of

multiple promoters into specific subnuclear regions, which facilitate

efficient transcription, is proposed to coordinately regulate

promoters in a probabilistic manner (Faro-Trindade and Cook, 2006;

Osborne et al., 2004). Other dynamic mechanisms such as the self-

reinforcing linear spread of regulatory proteins along the chromatin

fiber, also coordinately regulate adjacent genes (Grewal and Jia,

2007). Although further experiments are required to delineate which

of these additional mechanisms are functioning at specific

promoters, it is clear that cell-to-cell variability of transcription-

factor-chromatin steady-state association contributes to probabilistic

gene expression in the cell population. Importantly, the presented

data indicate that probabilistic interactions of multiple factors with
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chromatin combine to produce transcriptional heterogeneity within

the cell population.

Multiple dynamic and probabilistic interactions account for both
single-cell and whole population behavior
The combinatorial probabilistic interaction hypothesis is consistent

with the ‘return-to-template’ model of transcription (Hager et al.,

2004; Hager et al., 2006; Voss and Hager, 2008), where the rapid

and transient interactions of GR and multiple coregulator complexes

with the promoter chromatin produce many different regulatory

events that together activate transcription (Fig. 9A). At the time of

maximal activation, illustrated by the peak in the line plot of

transcription level averaged for the cell population (Fig. 9C), there

is the highest average steady-state level of GR and coregulators

associated with the promoters (Fig. 9C). However, at the same time,

the promoters in individual cells are associated with heterogeneous

steady-state levels of GR and coregulators (Fig. 9B). According to

the combinatorial probabilistic interaction hypothesis, probabilistic

transitions in the chromatin environment occur at each promoter,

and the likelihood of these chromatin transitions is also influenced

by the steady-state combination of transcription factors at the

promoter. As discussed in the preceding section, transitions probably

coordinate large regions of chromatin. Different chromatin states

at the genomic loci of promoters alter the probability that a given

factor will associate and/or dissociate over a short time period, thus

modulating both rapid exchange and steady-state levels of

transcription factors at the promoter (Fig. 9B). This connection

between transient chromatin states and multiple transcription factor

interactions could account for noise-strength values (Fig. 4) that

indicate the multiple regulatory events are not completely

independent. In this way, the proposed model unifies the dynamic

interactions of transcription factors with target promoters, the cell-

to-cell variability in steady-state association of transcription factors

with target promoters, and the resulting heterogeneous gene

expression between individual cells.

Unlike the variable transcriptional activity measured at the

single-cell level, the intricate time-dependent transcriptional

response of the MMTV-LTR in the averaged cell population is

highly reproducible. The consistent peak activation at 0.5-1 hour

after hormone treatment followed by rapid attenuation of

transcription at later time points appears to be deterministic in nature

(Archer et al., 1994; Becker et al., 2002). In this study, we have

examined this apparent contradiction in detail. At least two

probabilistic mechanisms contribute to the temporal progression of

promoter activity. The first mechanism involves a time-dependent

decrease in probability of high-level GR and cofactor association

with the MMTV LTR (Fig. 5). This property of promoter

progression is illustrated at the level of the averaged population and

the individual cell several times during hormone treatment (Fig.

9B,C). However, in cell subpopulations with equal levels of GR-

MMTV association at early and late time points, the transcriptional

activity still decreases at later time points (Fig. 5). Therefore, the

loss of GR-MMTV association at later time points does not fully

account for the decrease in transcription during promoter

progression. These results are consistent with our previous single-

cell analysis of GR-dependent transcription following both short-

term and long-term glucocorticoid treatment (Voss et al., 2006).

The second mechanism drives promoter progression independently

of the time-dependent decrease in GR-MMTV association and the

correlated decreases in Brg1 and GRIP recruitment. The multivariate

analysis of the GR-coregulator-MMTV association and

transcriptional output reveals that the same combinations of GR-

coregulator binding are more transcriptionally active at the 0.5 hour

time point relative to the 4 hour time point (Fig. 7). Therefore, some

other modification of the proteins associated with the MMTV

promoter must change during temporal promoter progression. The

timing of maximal transcription at the average cell level is proposed

to be caused by an increase in this activating event, which occurs

probabilistically at the single-cell level (Fig. 9B,C).

Several previously identified events might drive temporal

promoter progression independently of the decrease in steady-state

Fig. 9. Multiple probabilistic interactions regulate transcription. (A) Many
different proteins rapidly exchange over the time scale of seconds with any
given target promoter. These proteins include sequence-specific DNA-binding
transcription factors such as GR, and diverse coregulator complexes that
contain p160 proteins, Swi/Snf chromatin-remodeling proteins, and unknown
factors with time-modified activity. (B) The local chromatin environment at
the promoter undergoes probabilistic transitions, effecting the balance of rapid
factor exchange, and resulting in heterogeneous steady-state binding of each
factor in the individual cells. At promoters with complex time-dependent
regulation, the probability of the combinatorial interactions changes over
minute to hour time scales. (C) The average behavior of entire the cell
population over time appears to be highly deterministic at the level of protein-
chromatin interaction and transcriptional output.
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GR-MMTV association. One likely candidate is the time-dependent

control of HDAC1 deacetylase activity, which is required for high-

level MMTV transcription (Qiu et al., 2006). Before hormone

treatment, HDAC1 is unacetylated and enzymatically active, but

between 15 minutes and 1 hour of hormone treatment there is a

significant acetylation of HDAC1 and a dramatic loss of its

deacetylase activity (Qiu et al., 2006). The acetylation of MMTV

core histones is also transiently modified during promoter

progression (Aoyagi and Archer, 2007), indicating that this might

be a downstream effect of the changes in acetylase and deacetylase

activities. The enzymatic activity of HDAC1 is regulated over time

even when the steady-state association with the GR does not change.

Although this independence from the GR is a predicted property

of the hypothetical second mechanism, additional experiments are

required to define how HDAC1 regulates MMTV transcription at

the single-cell level. The dephosphorylation and loss of H1 linker

histone from MMTV has also been proposed to have a role in the

time-dependent suppression of transcription. However, significant

decreases in H1 phosphorylation are first detected after 7 hours of

hormone treatment (Lee and Archer, 1998), suggesting that this

mechanism does not significantly attenuate earlier MMTV

transcription. Additional experimental approaches are required to

confirm how the covalent modification of protein complexes

contributes to probabilistic behavior of promoters at the single-cell

level.

Along with previous studies, the presented data reveal how

multiple dynamic and probabilistic protein-chromatin interactions

act in combination to generate a controlled transcriptional response

in a eukaryotic cell population. Many endogenous genes exhibit a

high degree of transcriptional variability between individual

mammalian cells (Levsky et al., 2002), and it is likely that similar

probabilistic mechanisms regulate endogenous promoters. Several

lines of evidence suggest that probabilistic gene expression has

many crucial roles in higher eukaryotes. Increases in cell-to-cell

transcriptional heterogeneity correlate with aging in normal tissue

and are hypothesized to be involved in oncogenesis (Bahar et al.,

2006; Capp, 2005). These examples support the concept that

probabilistic gene expression decreases viability in higher

eukaryotes, but there are also cases where these mechanisms are

essential for normal physiology. For instance, stochastic gene

expression is thought to be critical for functional photoreactive cells

in the retina and for functional odorant-receptor-expressing cells in

the olfactory bulb (Shykind, 2005; Wernet et al., 2006). Considering

these important aspects of single-cell behavior, we propose that

probabilistic and dynamic interactions of multiple regulatory

proteins with chromatin control the physiological expression of

many genes.

Materials and Methods
Plasmids and generation of inducible cell lines
The coding sequence (CDS) for the monomeric Cherry red fluorescent protein (Ch)
was amplified from the pRSET bacterial expression vector (Shaner et al., 2004) using
primers with unique restriction enzyme sites. The Ch CDS was then cloned in-frame
upstream of Brg1 or GRIP (Baumann et al., 2001) using standard recombinant
methods. The fusion protein coding sequences were then subcloned into pRev-TRE
retroviral Tet-inducible expression vector (Clontech).

Retroviral particles were produced in Phoenix cells (Swift et al., 2001) by standard
methods. Mouse mammary carcinoma 3617 cells, which contain the integrated MMTV
reporter gene array and a Tet-inducible GFP-GR expression vector (Walker et al.,
1999) were infected with retroviral particles encoding Tet-regulated Ch-Brg1 or Ch-
GRIP to produce the 6643 cell line or 6790 cell line, respectively. Cells with integrated
retrovirus were selected with Hygromycin for at least 14 days prior to the start cell
line characterization. For maintenance, cell line 3617, cell line 6643 and cell line
6790 cells were cultured with DMEM supplemented with 10% fetal calf serum and

5 μg/ml tetracycline to repress expression of the Tet-regulated fusion proteins (Walker
et al., 1999).

RNA FISH, microscopy and automated image analysis
18 hours before RNA FISH experiments, cell lines 3617, 6643 and 6790 were plated
on number 1 German 22�22 mm square coverslips in DMEM supplemented with
10% charcoal-stripped calf serum. Tetracycline was omitted from the medium to
induce expression of the fluorescent fusion proteins. Cells on coverslips were treated
with 100 nM dexamethasone for 0, 0.5 or 4 hours then immediately processed for
RNA FISH to detect the MMTV-controlled reporter gene, as previously described
(Voss et al., 2006).

Following the RNA FISH detection, images of several randomly selected fields
of cells were digitally captured using a computer-controlled epifluorescence
microscope fitted with a �60/1.4 numerical aperture, oil-immersion objective
(DeltaVision RT, Applied Precision, Issaquah, WA). Movement of a high-precision
stage in the optical axis (9.3 μm range at 0.3 μm spacing between images) allowed
digital imaging of the full volume of each nucleus. Automated filter wheels and a
polychroic light splitter were used to capture images of each fluorophore. Images
were batch processed with a commercially available constrained iterative digital
deconvolution algorithm (Softworx Explorer Suite; Applied Precision) to
quantitatively reassign out-of-focus light and restore signal contrast in the
epifluorescence images.

The deconvolved images were processed and analyzed using a custom automated
algorithm that was implemented in the Matlab scientific computing software, as
previously described (Voss et al., 2006). Briefly, the nucleus of each cell is
automatically identified. The algorithm then defines the discreet region in each nucleus
containing the RNA FISH signal. The fluorescence intensity and size of the FISH
signal are measured as an indicator of MMTV promoter activity in each cell. The
positional information defining the FISH signal is then used to measure the degree
of FP-fusion protein enrichment at the MMTV array. For each fluorescent protein
image, the algorithm calculates the relative transcription factor concentration on the
array as the maximal fluorescent protein pixel intensity value in the defined FISH
signal region divided by the mean intensity of the fluorescent protein in the nucleus.
Measurement from the individual nuclei were exported to spreadsheet software (Excel,
Microsoft) for further analysis.

The images of three cells from the 3617 cell line illustrate the biological
heterogeneity that exists between the individual clonal cells (supplementary material
Fig. S1). The size and fluorescence intensity of the RNA fish signal varies between
the cells, but because this area is much brighter than the surrounding nucleoplasm,
the automated analysis algorithm uses this local intensity difference to reliably identify
the region of interest (ROI) that contains the MMTV array (supplementary material
Fig. S1B). In some cells the XFP-protein associated with the MMTV array is highly
concentrated (supplementary material Fig. S1C,D, Cell 1), whereas in other cells,
the local concentration increase is very low (supplementary material Fig. S1C,D, Cell
3).

Because the boundaries of the protein associated with the array are not robust, it
is difficult for an expert user or an automated algorithm to accurately identify the
area in the nucleus where the XFP-fusion proteins specifically associate with the
MMTV array. To overcome this challenge, the algorithm uses the FISH ROI as a
guide to find the maximal concentration of the XFP-fusion proteins at the array
(supplementary material Fig. S1C). The single maximal pixel intensity value in the
XFP image area that is identified using the FISH ROI is divided by mean nuclear
XFP-fusion protein intensity to calculate the loading ratio, which approximates the
relative degree of binding (supplementary material Fig. S1C).

The 3D fluorescence-intensity projections demonstrate that the GFP-GR forms
‘peaks’ of intensity with a central maximal point (supplementary material Fig. S1E).
We observe similar behavior for the other XFP-fusion proteins (data not shown).
This suggests that the maximal single pixel intensity represents the intensity values
of the immediately surrounding pixels. We tested this by calculating the loading ratio
based on the mean of a 3�3 pixel area (9 pixels total) centered on the maximal
intensity pixel. The 3�3 pixel loading ratios calculated for the example images show
the same trend as the single maximal pixel loading ratios (supplementary material
Fig. S1C). To systematically quantify this trend, the single pixel loading ratio and
the 3�3 pixel loading ratio were calculated for many individual cells, and this analysis
was performed for XFP-fusion proteins in all cell lines. Linear regression revealed
that results from the two measurement methods were correlated with an R2 value of
approximately 0.9 (supplementary material Fig. S2). Therefore, the loading ratio based
on the maximal single pixel value is not dominated by methodological pixel-to-pixel
variation and represents the relative local concentration of the immediately surrounding
protein. Since the minimum size of the region where XFP-fusion proteins interact
with the array is unknown, the single maximal pixel is used by the algorithm to
calculate the loading ratio in the remaining analysis presented in this report.

Statistical analysis
Data were acquired from a minimum of three independent cultures with assays
performed on multiple days. The combined morphometric data were imported from
the spreadsheet into Matlab for statistical analysis and generation of all graphs. The
functions in the Matlab statistics toolbox were used to calculate the mean value and
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s.e. for each experimental group. Noise strength was calculated as the s.d. squared

divided by the mean value for each group (Kaern et al., 2005).

Multiple statistical comparisons are made between the mean parameter data in Fig.

2. When making comparisons between multiple conditions in a given data set using

parametric statistical methods, ANOVA was used to first used to determine whether

any significant differences existed between all conditions. If significant differences

were identified by ANOVA, then a post-hoc test (also known as multiple comparison

test) was used to detect differences between specific pairs of values. These parametric

statistical methods assume that the measurements in each condition follow a normal

distribution. Because the number of measurements for each condition in Fig. 2 is

very large, it is possible to determine whether they are normally distributed using a

Lilliefors statistical test. Documentation for Lillifors test and other statistical methods

used is available at http://www.mathworks.com/access/helpdesk/help/toolbox/stats/.

The results of Lilliefors test (data not shown) indicate that these data do not meet

the criteria for a normal distribution (P>0.05). Because of this, we used the Kruskal-

Wallis and Dunn’s test, which are non-parametric equivalents of ANOVA and post-

hoc test, to confirm the statistical differences. These non-parametric tests produce

only slight changes in the statistical differences identified by the ANOVA and Tukey’s

HSD post hoc comparisons (Tukey’s HSD is based on Student’s t-test,

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/). We highlight the

slight differences between the non-parametric and parametric statistical methods in

supplementary material Table S1. Importantly, the two methods yield very similar

biological conclusions, which are discussed in the Results section.

We also calculated the noise strength values in replicate cultures, allowing the

statistical comparison of the resulting mean noise strength values (Fig. 4). Because

there are relatively few calculated values from the individual cultures, parametric

tests are more appropriate than non-parametric tests for identifying differences between

the means. Therefore, we use ANOVA and Tukey’s HSD post-hoc test to detect

significant differences in mean noise-strength values between conditions. As detailed

in the Results section, this analysis clearly demonstrates that specific biological

conditions cause significant reproducible changes in mean noise strength values

(supplementary material Table S2).

The best-fit lines for the two-factor analysis were calculated by locally weighted

scatter-plot smoothing (Loess) technique implemented in the Matlab statistical toolbox

software. A Loess curve from a locally weighted regression is a type of moving average

representing the (linear or non-linear) relationship between two parameters (for

example, FISH signal versus XFP-array loading ratio). We wished to determine

whether two Loess curves are statistically different and also understand where along

the x range the two Loess curves are different. We tested these differences between

pairs of Loess curves by implementing a permutation test. This is a robust non-

parametric statistical test that is valid even when data distributions are unknown.

The permutation test was implemented using the Matlab statistics toolbox software.

For each pair of Loess curves, the distance between the curves was defined by the

sum of absolute differences between y, using a (dx=0.1) grid over a fixed interval on

the x axis. Randomized data sets were generated by combining all data from both

groups and randomly reassigning the group labels. Each of the two randomized data

sets was used to compute a new Loess curve and the distance between the two

randomized Loess curves was calculated the same way as for the original data set.

The randomization was repeated 1000 times and we obtained the number of cases

where the distance between the two Loess curves was greater than that of the two

original Loess curves. This number divided by 1000 is our permutation P value,

which approximates the probability of obtaining the observed difference by random

chance. We plotted these P values in parallel with the Loess lines for each pairwise

comparison, setting the significance difference cut off at P<0.05 (supplementary

material Figs S4-7).

The best-fit surfaces for the three-factor analysis (Figs 7 and 8) were calculated

using locally weighted regression and local-likelihood techniques implemented in

the Locfit function package, which was written for Matlab by Catherine Loader

(University of Aukland, Aukland, New Zealand). Full documentation for Locfit

functions, including source code, is publicly available (http://locfit.herine.net/), and

Locfit functions and documentation are also included in the widely used R statistical

software package (http://www.r-project.org/).

Western blot analysis
Cell lysates were compared before and after 18 hours of induction of XFP-fusion

protein expression, which was initiated by removal of tetracycline from the growth

medium. Cells were lysed in RIPA buffer and protein concentration was measured

using Bradford assay (Bio-Rad, Hercules CA). Lysates were loaded at 40 μg per well

on 3-8% gradient acrylamide Tris-acetate gel (Invitrogen, Carlsbad, CA). Commercial

antibodies were used in western blots as follows: anti-GR (PA1-511A, Affinity

BioReagents, Golden, CO); anti-Brg1 (07-478 Millipore, Billerica, MA); anti-GRIP

(610984, BD Biosciences, San Jose, CA).
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