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Summary
Secretion of vesicular contents by exocytosis is a fundamental cellular process. Increasing evidence suggests that post-fusion events play

an important role in determining the composition and quantity of the secretory output. In particular, regulation of fusion pore dilation
and closure is considered a key regulator of the post-fusion phase. However, depending on the nature of the cargo, additional
mechanisms might be essential to facilitate effective release. We have recently described that in alveolar type II (ATII) cells, lamellar
bodies (LBs), which are secretory vesicles that store lung surfactant, are coated with actin following fusion with the plasma membrane.

Surfactant, a lipoprotein complex, does not readily diffuse out of fused LBs following opening and dilation of the fusion pore. Using
fluorescence microscopy, atomic force microscopy and biochemical assays, we present evidence that actin coating and subsequent
contraction of the actin coat is essential to facilitate surfactant secretion. Latrunculin B prevents actin coating of fused LBs and inhibits

surfactant secretion almost completely. Simultaneous imaging of the vesicle membrane and the actin coat revealed that contraction of
the actin coat compresses the vesicle following fusion. This leads to active extrusion of vesicle contents. Initial actin coating of fused
vesicles is dependent on activation of Rho and formin-dependent actin nucleation. Actin coat contraction is facilitated by myosin II. In

summary, our data suggest that fusion pore opening and dilation itself is not sufficient for release of bulky vesicle cargos and that active
extrusion mechanisms are required.
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Introduction
Regulated secretion is a fundamental process in many different

types of eukaryotic cells. In general, vesicle contents are released

by exocytosis of secretory vesicles. During exocytosis, a

sequence of highly regulated steps leads to fusion of exocytic

vesicles with the plasma membrane (PM), opening of a fusion

pore and finally content release (Bean et al., 1994; Lindau and

Gomperts, 1991; Rettig and Neher, 2002; Südhof, 2004). In the

classical model, the initial fusion pore dilates until the membrane

is completely collapsed into the PM and the entire vesicle content

is passively released in an all-or-none manner (‘full fusion’)

(Heuser and Reese, 1973; Südhof, 2004). However, at least for

large secretory granules, the classical view of instantaneous cargo

release and vesicle collapse is increasingly being challenged.

Evidence suggests that in non-neuronal cell types, vesicle content

release is regulated during the post-fusion phase. In this ‘kiss-

and-run’ model, the vesicle does not readily collapse into the PM

and vesicle content release is regulated by opening and closure of

a dynamic fusion pore before intact vesicles are retrieved from

the PM (‘cavicapture’) (Rizzoli and Jahn, 2007; Soekmadji and

Thorn, 2010). The duration of the fusion pore open state and its

diameter depend on stimulation (Vardjan et al., 2007), with stable

fusion pore diameters also depending on the diameter of the fused

vesicles (Jorgačevski et al., 2010). A range of factors, such as

Ca2+ (Haller et al., 2001a), myosin II (Bhat and Thorn, 2009),

Munc-18 (Jorgačevski et al., 2011), dynamin (Anantharam et al.,

2011) and F-actin (Larina et al., 2007) amongst others (Jackson

and Chapman, 2008), have been suggested as molecular

mediators for fusion pore transitions. The actual release of

vesicle contents is generally thought to be a rather passive

process, with vesicle contents diffusing through open fusion

pores. This is easily conceivable for soluble vesicle contents such

as neurotransmitters, hormones and some proteins. However,

release of non-soluble, bulky vesicle contents or granule matrices

is unlikely to happen in such a passive manner.

ATII cells secrete pulmonary surfactant by exocytosis of

lamellar bodies (LBs). Surfactant, a bulky complex made up of

tightly packed lipids and proteins, has properties that justify it as

a solid state matter. The lipophilic nature of surfactant impedes

rapid dissolution and dispersal in aqueous solution and hence

surfactant does not readily diffuse out of fused LBs following

opening of the exocytic fusion pore. Rather, surfactant is so

insoluble, that it might remain entrapped within the fused vesicle

for many minutes after the onset of exocytosis and the fusion

pore apparently acts as a mechanical barrier for the release of the

large, macromolecular vesicle cargo entity, which is released as

one single complex as observed by live-cell microscopy (Dietl

and Haller, 2005; Dietl et al., 2001; Haller et al., 2001a; Singer
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et al., 2003). Upon fusion of the LB with the PM, fusion pore
expansion in these cells is slow (Haller et al., 2001a; Singer et al.,

2003). Hence, it is conceivable that secretion of surfactant is not
merely a passive process, but requires additional mechanisms to
be effective. Almost three decades ago, transmission electron
micrographs of fused LBs suggested that actin is involved

in expulsion (Tsilibary and Williams, 1983a; Tsilibary and
Williams, 1983b) and immunostaining experiments confirmed
that F-actin encloses individual LBs in proximity to the PM (van

Weeren et al., 2004). We have recently shown that LBs are
coated with actin following fusion with the PM (Miklavc et al.,
2009b).

Actin coating of secretory vesicles has been shown in a variety
of cell types and various functions for the actin coating were
proposed. In zebrafish oocytes, actin reorganization after fusion
was considered to facilitate retrieval of evacuated granules

(Becker and Hart, 1999). Similarly, in Xenopus oocytes, actin
coating of cortical granules was observed following fusion. In
these cells ‘specific’ actin coating of fused vesicles is achieved

by membrane-fusion-dependent compartment mixing (Yu and
Bement, 2007a). Upon fusion, key components of the PM can
diffuse into the fused secretory granule membrane and act as

trigger for local actin assembly (‘kiss-and-coat’) (Sokac and
Bement, 2006). Actin coating was postulated to stabilize fused
cortical granules for compensatory endocytosis, but possibly also
to facilitate content release (Sokac et al., 2003). In pancreatic

acinar cells, actin coating was proposed to stabilize fused
zymogen granules during exocytosis (Nemoto et al., 2004) and
maintain an open fusion pore (Larina et al., 2007), although it is

not quite clear whether actin coating of zymogen granules starts
during the pre-fusion phase or following fusion (Turvey and
Thorn, 2004; Valentijn et al., 2000). Therefore, actin coating

might also play a role for the pre-fusion phase of exocytosis
(Eitzen, 2003; Gasman et al., 2004). Recent data from in vivo
imaging experiments suggest that actin coating of fused vesicles

provides a scaffold to facilitate the collapse of vesicles into the
PM (Masedunskas et al., 2011).

The ‘kiss-and-coat’ mechanism, involving actin coating of
fused vesicles, is uniquely suited to promote discharge of

secretory material under conditions where it cannot be released
rapidly (Sokac and Bement, 2006). However, only recently,
evidence emerged that actin coating of fused vesicles plays an

active role in the release of vesicle content (Nightingale et al.,
2011). We also postulated that in ATII cells, actin coating of
fused LBs facilitates surfactant release (Miklavc et al., 2009b).

However, it remained open as to whether actin coating is
essential for surfactant release, how the force for expulsion
is generated and also, how actin coating of LBs upon fusion is
triggered and regulated. In this study, we present evidence that

actin coating of fused vesicles and subsequent contraction of the
actin coat are essential for the release of surfactant. Contraction
of the actin coat compresses fused LBs and promotes expulsion

of surfactant. Contraction is assisted by myosin II. Inhibiting
formation of the actin coat prevents compression of fused LBs
and hence almost entirely restrains surfactant secretion.

Furthermore, we demonstrate that initial recruitment of actin to
LBs upon fusion with the PM depends on active Rho GTPases
and that formins probably play a role in actin nucleation. In

summary, our data suggest that simply opening a door (fusion
pore) is not sufficient for efficient release of bulky vesicle cargos
and that active extrusion mechanisms are required.

Results
Actin coating of fused LBs is essential for surfactant

expulsion and efficient release

We have recently reported actin coating of LBs upon fusion with

the PM and postulated a role for this in surfactant release

(Miklavc et al., 2009b) (supplementary material Movie 1). Actin

coat formation probably depends on de novo nucleation of actin

on LBs following fusion (Miklavc et al., 2009b) and can be

inhibited by latrunculin B (LatB, 10 mM) or jasplakinolide

(1 mM) treatment (Fig. 1). Here, we investigated whether

surfactant expulsion and hence secretion depends on actin coat

formation.

We incubated ATII cells with fluorescent phosphatidylcholine

(BODIPY-PC) overnight to metabolically label surfactant.

BODIPY-PC incorporates into surfactant (Ravasio et al., 2011).

At the beginning of the experiment, cells were stimulated with

100 mM ATP, a potent agonist for LB fusion and surfactant

secretion (Frick et al., 2001). LB fusions with the PM were

indicated by rapid decay of Lysotracker Red (LTR) fluorescence

in fused vesicles (Haller et al., 2001a; Miklavc et al., 2011) (see

also Fig. 1). Analysis of the onset of fluorescence decay of LTR,

Fig. 1. Actin coating of fused vesicles is inhibited by LatB and

jasplakinolide. (A) Simultaneous imaging of actin-–GFP (green) and LTR

(red) reveals actin coating of vesicles upon fusion under control conditions

(top panels). The presence of 10 mM LatB completely inhibits actin coat

formation following LB fusion with the PM (bottom panels). Arrowheads

indicate individual fused vesicles, revealed by a decrease in vesicular LTR

fluorescence due to diffusion of LTR from the vesicle lumen. Cells were

stimulated with 100 mM ATP at t510 seconds. Scale bars: 10 mm.

(B) Treatment of ATII cells with either 10 mM LatB or 1 mM jasplakinolide

completely inhibits actin coating of fused vesicles. n represents number of

experiments for each condition, up to 26 fusions were analyzed in each

experiment. ***P,0.005.
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indicating fusion pore opening, and BODIPY-PC, indicating

surfactant expulsion, in individual vesicles, clearly revealed a

substantial delay between fusion pore opening and BODIPY-PC

release (78.92611.52 seconds, n525) (Fig. 2A,B). This

indicated that BODIPY-PC did not readily diffuse from fused

vesicles. Moreover, with most fusions (91.5365.42%, n529, six

experiments), we observed protrusions of BODIPY-PC from

fused LBs once fluorescence of BODIPY-PC decreased within

the fused LB (Fig. 2A,D; supplementary material Movie 2). This

probably represents expulsion of surfactant from fused LBs.

When actin coat formation was inhibited by pre-treatment of

ATII cells with 10 mM LatB, see (Fig. 1), BODIPY-PC

fluorescence did not decrease during the time of the experiment

(up to 10 minutes after fusion, Fig. 2C). Also, significantly fewer

protrusions could be observed (1.9261.92%, n530 fusions, four

experiments, P,0.0001, Fig. 2D). This indicates that most of

surfactant remains inside fused vesicles and supports our

hypothesis that actin coat compression is essential for efficient

surfactant secretion.

To rule out a potential impact of excess BODIPY-PC

incorporation on surfactant properties and release, we also used

a modified FRAP assay to determine whether surfactant is

expelled from fused LBs. The assay is based on the fluorescent

properties of FM1-43, a fluorescent dye that is essentially non-

fluorescent in aqueous solutions but yields a bright signal when

incorporated into surfactant (Haller et al., 2001a; Haller et al.,

1998). FM1-43 cannot pass the PM, but when LBs fuse with the

PM, FM1-43 can incorporate into surfactant, resulting in an

intense localized fluorescence signal. FM1-43 fluorescence of

fused vesicles was bleached 3–5 minutes after fusion, a time

when, according to the results from the BODIPY-PC

experiments, most LBs have expelled their content under

control conditions. Subsequently, recovery of FM1-43

fluorescence due to incorporation of non-bleached FM1-43

molecules was monitored (Fig. 3A,B). Recovery of FM1-43

fluorescence was significantly slower for LBs fused in the

presence of LatB (t1/25131.7069.55 seconds, n562) than under

control conditions (t1/2590.62613.27 seconds, n557, P50.01).

In our model, the accelerated recovery of FM1-43 fluorescence

under control conditions is due to enhanced access of FM1-43 to

at least partially expelled surfactant. In LatB-treated cells, most

surfactant will be retained inside fused vesicles and access of

FM1-43 is restricted by a narrow fusion pore (Fig. 3D) (Haller

et al., 2001a). To test this hypothesis, we also analyzed FRAP

recovery of fully released or expelled surfactant particles (with

no restriction for FM1-43 diffusion). FM1-43 recovery of fully

released surfactant particles was slightly, but not significantly,

faster than the recovery observed in LBs fused under control

conditions (t1/2551.6466.65 seconds, n524, P50.07). The even

faster recovery is probably due to the absence of any restriction

(i.e. fusion pore, LB limiting membrane) for FM1-43

incorporation into surfactant in these particles. Analysis of the

frequency distribution of half-times of recovery confirmed that

FM1-43 recovery in fused LBs is slower when actin coat

formation and compression are inhibited. Half-times for FM1-43

recovery are ,75 seconds for the majority of control and released

LBs (73.7% and 87.5%, respectively). By contrast, only 27.4% of

fused LBs had half-times of recovery ,75 seconds after LatB

treatment (Fig. 3C).

Both the BODIPY-PC expulsion assay and the FM1-43 FRAP

assay on fused vesicles, provide strong evidence that actin

coating of fused LBs is essential for effective release of

surfactant. Full or partial expulsion of surfactant was also

observed in a complementary experiment, when fused vesicles

were investigated by AFM. AFM images of non-stimulated ATII

cells showed regularly shaped, micrometer-sized protrusions

Fig. 2. LatB inhibits squeezing of surfactant from LBs following

fusion. (A) Simultaneous imaging of BODIPY-PC (top row) and

LTR (bottom row). Onset of LTR fluorescence decrease denotes

time of fusion (0 s). Expulsion of surfactant is clearly delayed as

seen by onset of BODIPY-PC extrusion (arrow) from fused vesicle.

Changes of mean fluorescent intensities were analyzed in circular

region of interest (circle). Time stamps indicate time related to LB

fusion. Scale bar: 10 mm. (B) Left: time course of LTR (red) and

BODIPY-PC (green) fluorescence following LB fusion within the

area of a fused LB as illustrated in A. Right: means of 21 fused LBs,

the average delay between LB fusion and BODIPY-PC extrusion is

78.92611.52 seconds. (C) Time course of LTR (red) and BODIPY-

PC (green) fluorescence following LB fusion in LatB-treated cells.

BODIPY-PC remains within the LB for extended periods following

fusion. Data are from 31 individual LB fusions. (D) Percentage of

LB fusions followed by extrusion of BODIPY-PC as detected in A.

LatB abolishes BODIPY-PC extrusion following LB fusion. n

represents number of experiments for each condition, up to 13

fusions were analyzed in each experiment. ***P,0.005.
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(Fig. 4A, visible as small bumps), which are indicative of LBs

residing beneath the PM around the nucleus (Hecht et al., 2011).

The overlay of the bright field with the FM1-43 fluorescence

image confirmed that these LBs have not yet fused (Fig. 4A).

However, when probing the cells 5–15 minutes after stimulation,

we regularly found that FM1-43-positive structures, indicating

fused LBs, were significantly more pronounced. One explanation

therefore might be that LBs are in even closer proximity to the

PM following fusion. Alternatively, this could be indicative of

full or partially expelled surfactant sticking to the cell surface at

sites of fused LBs. This is supported by our observation that

under control conditions, .60% of these FM1-43-positive

structures (n58) were pushed away by the AFM tip in low

force contact as well as dynamic (AAC) mode (Fig. 4B;

supplementary material Movie 3). Surfactant is a very ‘sticky’

substance that can easily adhere to the AFM tip when scanning

across fused, surfactant-releasing LBs (Hecht et al., 2011). Once

FM1-43-labelled surfactant has been pushed away, we observed

planar areas at the sites of the fused vesicles (Fig. 4C) suggesting

that the fused LBs have been completely compressed or collapsed

into the PM during surfactant release. Congruently, when

scanning LatB-treated ATII cells, FM1-43-labelled surfactant

was never pushed away by the AFM tip as observed under control

conditions (n54, Fig. 4D; supplementary material Movie 4).

This again supports our hypothesis that surfactant remains

trapped inside LBs following fusion if actin coating is

inhibited. If this is the case then rates of surfactant secretion

will also be reduced when actin coat formation is inhibited.

We next analyzed the amount of secreted phosphatidylcholine

(PC, the main component of surfactant) following stimulation

using a recently described enzymatic protocol (Garcia-Verdugo

et al., 2008). 15 minutes after stimulation with 100 mM ATP,

the PC content of supernatants (1.4560.32 mM, n54) was

Fig. 3. FRAP confirms surfactant extrusion from LBs upon fusion.

(A) Overlay of transmission and FM1-43 fluorescence image of ATII cells.

Upon fusion with the PM LBs exhibit bright FM1-43 fluorescence (red). The

green circle denotes the area of a single LB that was bleached 5 minutes after

fusion. Scale bar: 10 mm. (B) Time course of the FM1-43 fluorescence within

the area of the green circle in A. Bleaching occurred at t515 seconds.

Analysis of the FM1-43 fluorescence recovery was performed by calculating

the ratio between mean fluorescence intensity of the bleached LB and the

mean fluorescence intensity of an unbleached LB to correct for background

bleaching during pre- and post-bleach acquisition. Ratio values were then

expressed as a percentage of the pre-bleach ratio value. These normalized data

were fitted to a single exponential curve (black line) for calculation of t1/2.

(C) Frequency distribution for half times of FM1-43 fluorescence recovery

after bleaching. Recovery of FM1-43 fluorescence in surfactant of fused LBs

is slightly slower than in fully released particles, however recovery in LBs is

significantly slower in the presence of LatB. Data are from 24–62 vesicles per

condition. (D) Model for recovery of FM1-43 fluorescence after bleaching

based on data from C. Diffusion of FM1-43 into fully released surfactant

particles (1) is almost unrestricted. (2) LBs fused under control condition,

where surfactant is (at least) partially expelled and (3) LBs fused in LatB-

treated cells, surfactant is trapped inside fused LBs when actin coating and

compression are inhibited.

Fig. 4. AFM data reveal extracellular localization of surfactant following

LB fusion. (A) Left panel is an overlay of transmission and FM1-43

fluorescence image of ATII cells. Black arrows indicate intracellular LBs that

have not yet fused. LBs exhibit bright FM1-43 fluorescence (green) following

fusion. Right panel shows AFM deflection image of the red boxed area in the

left image. Non-fused LBs, residing beneath the PM, are clearly seen as

micrometer-sized protrusions (white arrows) around the nucleus (asterisk).

(B) Overlay of transmission and FM1-43 fluorescence images of ATII cells

following stimulation. Left: surfactant of fused vesicles is brightly stained by

FM1-43 (white structures) before imaging the area in the white box by AFM.

Right: image taken immediately after scanning the area in the white box by

AFM. FM1-43-labelled structures have been pushed away by the AFM tip,

see also supplementary material Movie 3. (C) AFM deflection image of the

red boxed area in B. The area where FM1-43 labelled surfactant has been

pushed away during AFM scanning (white box) appears planar, typical

protrusions from LBs are absent. (D) As for B, but cells are treated with

10 mM LatB. In LatB-treated cells FM1-43-stained-surfactant is not pushed

away by the AFM tip during scanning. (E) AFM deflection image of the red

boxed area in D recorded after AFM imaging. Micrometer-sized protrusions

(white arrows) can be seen where FM1-43 stained surfactant is visible in D,

indicating that FM1-43-stained surfactant is still entrapped within fused LBs

and could not be pushed away by the AFM tip during scanning. Scale bars:

5 mm.
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significantly enhanced compared with non-stimulated cells

(0.4760.06 mM, n54, P50.04), LatB treatment almost

completely impeded PC secretion following stimulation

(0.7960.13 mM, n54) (Fig. 5). In summary, all of these results

confirm an essential role for actin in secretion of surfactant.

Fused LBs are compressed by actin coat contraction

Actin coating of fused vesicles has been observed in several cell

types and various biological functions have been proposed

(Becker and Hart, 1999; Eitzen, 2003; Gasman et al., 2004;

Nemoto et al., 2004; Sokac et al., 2003; Valentijn et al., 2000)

including an ‘active’ role in vesicle content release (Nightingale

et al., 2011). However, the mechanisms by which this occurs are

largely unclear. In particular, it is not known whether the

observed contraction of the actin coat directly compresses the

fused vesicle. Direct and simultaneous observations of the actin

coat and the vesicle membrane are not available (Schafer, 2003).

To investigate whether the vesicle itself is compressed upon

actin coat contraction, we co-transfected cells with a marker for

the LB membrane (lamp3–GFP) (Albrecht et al., 2010) and

actin–DsRed and analyzed changes in vesicle and actin coat

perimeter following LB fusion with the PM. These experiments

revealed a clear correlation between contraction of the actin coat

and LB size. LBs were shrinking with increasing actin coat

contraction (Fig. 6A,C). Lamp3–GFP slowly diffused from the

LB membrane into the PM following fusion, making analysis

difficult at times .60 seconds following fusion. Therefore, in a

complementary approach, we used a marker for the PM (lyn–

DsRed) (Frick et al., 2007) that rapidly diffuses into the LB

membrane following fusion, resulting in a strong signal for

extended periods (Fig. 6B,D; supplementary material Movie 5).

These experiments confirmed the correlation between actin coat

contraction and LB compression as observed with lamp3–GFP.

When actin coat formation was inhibited with LatB, vesicles did

not change in size following fusion (Fig. 6E). These results

clearly indicate that the actin coat contraction leads to

compression of fused LBs.

Myosin II facilitates actin coat contraction

We next tested whether myosins play a role in the observed

contraction of the actin coat, generating force for ‘active’ vesicle

squeezing. In particular, myosin II is well known to associate

with actin, which drives coat contraction (Nightingale et al.,

2011; Yu and Bement, 2007b). Immunofluorescent staining of

ATII cells fixed 2–3 minutes after stimulation revealed that

myosin II is recruited to actin-coated LBs. All LBs that were

coated with actin, as detected by phalloidin staining, were also

positive for myosin II (Fig. 7A). Furthermore, treating ATII cells

with myosin II inhibitor (2)-blebbistatin (50 mM) significantly

decreased the overall number of actin coats that contracted within

2 minutes after fusion, when .96% of actin coats had contracted

under control conditions (Fig. 7B). In (2)-blebbistatin-treated

cells actin ring contraction was slowed down significantly

(Fig. 7C). Treatment with (+)-blebbistatin, the inactive

enantiomer of blebbistatin, had no significant effect on coat

Fig. 5. Inhibition of actin coat formation inhibits surfactant secretion.

DPPC concentration in supernatant as a measure of surfactant secretion was

significantly increased 15 min after stimulation of LB exocytosis with

100 mM ATP compared with non-stimulated cells (control). Treatment with

10 mM LatB almost completely inhibits stimulation dependent DPPC

secretion. n represents number of experiments for each condition. *P,0.05.

Fig. 6. LBs are compressed by actin coats. (A) Simultaneous imaging of

actin–DsRed (top row) and LB membrane marker lamp3–GFP (bottom row).

A LB (arrow) is compressed at the same time as the actin coat (arrowhead)

contracts, as indicated by decrease in LB membrane perimeter. Time stamps

indicate time after fusion. Scale bar: 10 mm. (B) Simultaneous imaging of

actin–GFP (top row) and membrane marker lyn–DsRed (lower row). Lyn–

DsRed rapidly diffuses into a LB after fusion (arrow). The lyn–DsRed-

labelled LB is compressed at the same time as the actin coat contracts

(arrowheads), as indicated by decrease in LB membrane perimeter. Time

stamps indicate time after fusion. Scale bar: 10 mm. (C,D) The decrease of the

LB perimeter, indicated by LB membrane marker lamp3–GFP (C) or

membrane marker lyn–DsRed (D), correlates with the contraction of the actin

coat. Means are from 13 and 16 LBs, respectively. (E) Compression of LBs

following fusion is inhibited when actin polymerization is perturbed by LatB

treatment. 8–12 LBs were analyzed for each condition.
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compression. Although inhibition of myosin II had a significant

effect on coat compression, ultimately most coats contracted even

in the presence of (2)-blebbistatin, indicating that myosin II

facilitates, but is not essential for, effective coat contraction.

These results are similar to those observed for cortical granules in

oocytes (Yu and Bement, 2007b) and Weibel-Palade bodies in

endothelial cells (Nightingale et al., 2011).

Inhibition of Rho and formins prevents actin coating of

fused LBs

It is still unclear what factors are necessary for actin coating of

fused LBs. It has been shown that small GTPases of the Rho

family regulate coating of secretory vesicles following exocytosis

in oocytes and in pancreatic acinar cells (Nemoto et al., 2004;

Sokac et al., 2003). To assess whether small GTPases are also

required for coating of fused LBs, ATII cells were treated

overnight with Clostridium difficile toxin B. Following

incubation with toxin B, the number of fused LBs coated with

actin (see Fig. 8A) decreased significantly. In the presence of

100 nM toxin B, ,14.0% of fusions were coated; when the

concentration of toxin was increased to 300 nM, the fraction of

coated LBs decreased to ,4% (n5131 and 58 fusions,

respectively, P,0.0001 compared with untreated cells). To

differentiate between the different classes of Rho GTPases, we

next used inhibitors to selectively inhibit cdc42, Rho and Rac

activity. Pharmacological inhibition of cdc42 (20 mM secramine)

(Pelish et al., 2006) or Rac (100 mM NSC23766) showed no

significant effect on actin coating of fused vesicles (Fig. 8A).

However, when Rho GTPase activity was perturbed following

incubation with 2 mg/ml of cell-permeable C3 transferase (Rho

Inhibitor), the fraction of fused LBs that were coated with actin

was significantly reduced to ,2% (n557 fusions, P,0.0001)

(Fig. 8A). Similar results were observed in cells overexpressing

dominant-negative (DN) mutants of cdc42, RhoA and Rac1.

Genetic perturbation of cdc42 or Rac showed no significant

effect on actin coating of fused vesicles. In cells overexpressing

DN RhoA (T19N-RhoA) the fraction of fused LBs that were

coated with actin was significantly reduced to 70.1269.09%

(n5128 fusions) compared with 96.5062.59% (n576 fusions)

fused LBs that were coated under control conditions (P50.04,

Fig. 8B).

Fig. 7. Myosin II is recruited to actin coated LBs and facilitates coat

compression. (A) Myosin II (green) colocalizes with actin coats (phalloidin,

red) on LB membranes following fusion as detected by indirect

immunofluorescence and confirmed by colocalization with P180 lamellar

body protein (blue, ABCa3). Scale bar: 10 mm (B) The number of actin

coats starting to contract within 2 minutes following fusion is significantly

reduced in cells treated with myosin II inhibitor (2)-blebbistatin but not

(+)-blebbstatin, the negative enantiomer. n represents number of experiments

for each condition, up to 10 fusions were analyzed in each experiment.

(C) (2)-blebbistatin slows down actin coat compression significantly.

(+)-blebbstatin has no effect on actin coat compression. .20 actin coats were

analyzed for each condition. *P,0.05; **P,0.01.

Fig. 8. Actin coat formation depends on Rho and formin. (A) Actin

coating of fused LBs is almost completely inhibited following treatment with

Clostridium difficile toxin B, an inhibitor for small GTPases. Specific

inhibition was also observed with an inhibitor of Rho GTPases, but not

inhibitors for cdc42 (secramine) or Rac1 (NSC23766). Data represent means

6 s.e.m. from $ 6 experiments for each condition, up to 39 fusions were

analyzed in each experiment. (B) Actin coating of fused LBs is significantly

reduced in cells expressing DN-RhoA, but not in cells expressing DN-Rac1 or

DN-cdc42. n represents number of experiments for each condition, up to 28

fusions were analyzed in each experiment. (C) Actin coat formation on fused

LBs was significantly reduced following treatment with formin inhibitor

SMIFH2 (unpaired t-tests, P,0.0004), but not by inhibitor for Arp2/3

complex (CK666) or the negative control thereof (CK689). n represents

number of experiments for each condition, up to 26 fusions were analyzed in

each experiment. *P,0.05; ***P,0.005.
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Actin coating of fused LBs probably depends on nucleation of
actin on fused vesicles. Treatment with LatB or jasplakinolide

(Fig. 1B) prevents actin coating of LBs following fusion. It has
been shown that Rho GTPases promote actin nucleation through
activation of formins (Campellone and Welch, 2010). Treatment
of ATII cells with formin inhibitor SMIFH2 (25 mM) (Rizvi et al.,

2009) significantly reduced the fraction of LBs that were coated
with actin following fusion from 96.5062.59% (n576 fusions)
under control conditions to 31.25616.19% (n513 fusions)

(P,0.0004, Fig. 8C). We never observed obvious effects on
cell viability (e.g. blebbing) by SMIFH2 (Rizvi et al., 2009).
However, treatment with Arp2/3 inhibitor CK666 (100 mM) had

no effect on the formation of actin coats (Fig. 8C). Together,
these results suggest that actin coating of fused vesicles depends
on active Rho and that actin nucleation on fused vesicles is
mediated by formins.

Discussion
We have recently shown that LB fusion with the PM is followed by

selective actin coating of the fused LB. We have also observed that
actin coating of fused vesicles precedes surfactant release
(Miklavc et al., 2009b). Given the bulky, highly hydrophobic

nature of the LB contents (surfactant), we hypothesized that active
compression of vesicles by actin might be necessary for efficient
secretion of surfactant by forced expulsion. However, direct proof
for the requirement of actin coating of fused vesicles for surfactant

secretion was still missing. Here, we demonstrate that actin coating
of fused LBs is essential for active surfactant expulsion, and hence
secretion. This is in accordance with a recent study reporting a

similar actin-dependent function in release of the granule core
protein von Willebrand factor from Weibel–Palade bodies in
human endothelial cells (Nightingale et al., 2011). Similar to

surfactant, von Willebrand factor constitutes a relatively large and
bulky cargo that is not readily released from exocytic vesicles upon
fusion pore opening (Babich et al., 2008). It is not surprising that

additional mechanisms during the post-fusion phase are required
for efficient secretion of such cargos. This can involve regulating
the size of the initial fusion pore or fusion pore dilation (Albillos
et al., 1997; Babich et al., 2008; Obermüller et al., 2005; Perrais

et al., 2004; Tsuboi et al., 2004) or active extrusion of vesicle
cargos. In ATII cells, fusion pores do expand in a Ca2+-dependent
manner (Haller et al., 2001a; Miklavc et al., 2011), with most LBs

exhibiting relatively large fusion pores that are stable for long
periods (Haller et al., 2001a). This is in line with recent findings
that fusion pores are the subjects of stabilization and that stable

fusion pore diameters depend on vesicle sizes (Jorgačevski et al.,
2010). However, despite their large size, fusion pore diameters of
fused LBs were always significantly smaller than the vesicle

diameters, and hence smaller than the bulky vesicle cargo complex
(i.e. lamellar surfactant) (Haller et al., 2001a). Given the apparent
stability of LB fusion pores, full widening into the PM is probably
constrained. Hence, it is conceivable that fusion pores act as

mechanical barriers for vesicle content release (Haller et al.,
2001b; Singer et al., 2003) and additional mechanisms are required
to promote efficient vesicle cargo discharge.

In the case of Weibel–Palade bodies, an actin filament ring
acts as a minicytokinetic ring to exert force on the bottom of an
open granule, pushing von Willebrand factor out on the other end

into the extracellular environment (Babich et al., 2008). However
the fate of the fused granule membrane in endothelial cells is not
clear. The actin ring might travel along the fused vesicle,

squeezing contents out of fused Weibel-–Palade bodies, leaving
empty granules ready for re-endocytosis, or the granule might

collapse into the PM. In several non-mammalian systems, actin
coat formation has been postulated as a mechanism for retrieval
of empty cortical granules after they have released their contents
(Becker and Hart, 1999; Sokac et al., 2003). However, we never

observed compensatory endocytosis in ATII cells (Mair et al.,
1999). A reason for this could be the low endocytic activity of
these cells in our culture conditions. By directly and

simultaneously imaging peri-vesicular actin and vesicle
membrane dynamics, we found that actin forms a coat around
fused vesicles, enclosing the entire vesicle, possibly also

interacting or anchoring to the cortical actin near the site of
fusion. Similar conclusions have been drawn from an elegant
study looking at the secretory granules in the salivary glands of
live animals (Masedunskas et al., 2011).

In ATII cells, extrusion is driven by compression of the whole
vesicle, resulting in collapse of the vesicle into the PM. This
finding suggests that the major function of peri-vesicular actin

accumulation around LBs, as in endothelial cells, is the active
expulsion of poorly soluble vesicle contents and not
compensatory endocytosis. It still remains to be resolved how

ATII cells retrieve the exocytosed vesicle membrane.

F-actin has also been shown to be involved in maintaining
fusion pore open states of fused zymogen granules (Larina et al.,
2007), probably in conjunction with myosin II (Bhat and Thorn,

2009). Similarly, regulation of fusion pore dilation by actin and
myosin II in mouse adrenal chromaffin cells was found to
control catecholamine and neuropeptide release (Doreian et al.,

2008). We cannot fully exclude the possibility that actin coating
of fused LBs also plays a role in maintaining an open fusion
pore state, thereby facilitating surfactant secretion. In such a

scenario, disruption of actin coats by LatB treatment would
result in a narrowing or even closure of the fusion pore and
result in the reduced surfactant expulsion or secretion observed

in our experiments. However, we do not believe that regulation
of fusion pore open state is the main regulatory function of actin
coats in surfactant release. First, in contrast to zymogen granules
where most fusion pores do eventually close under control

conditions as a prelude to endocytosis (Larina et al., 2007),
fusion pores of fused LBs very rarely close once opened (Haller
et al., 2001a; Miklavc et al., 2009b), which suggests a slightly

different mode of fusion pore regulation. Second, inhibition of
actin polymerization (LatB) or myosin II [(–)-blebbistatin] does
not have an impact on diffusion of fluorescent dyes across the

fusion pore within several minutes of fusion pore opening. Quite
the opposite, LatB treatment even facilitates diffusion of LTR
from LBs upon fusion and fusion pore opening, indicating that

at least at early times following fusion (up to 2 minutes), fusion
pores are rather expanded when actin coat formation is inhibited
(M.F., unpublished data). This is within the time frame when
BODIPY-PC-labelled surfactant is expelled from most fused

LBs (Fig. 2).

Regardless of the presumed function of the actin coat, its
compression is probably modulated by myosin II (Masedunskas

et al., 2011; Nightingale et al., 2011; Yu and Bement, 2007b).
Myosin II is recruited to fused LBs following actin coating and
inhibition of myosin II delays actin coat contraction. However,

inhibition of myosin II does not completely block actin ring
contraction, but rather delays it. This implies that myosin II is not
essential for actin coat contraction, but seems to have a
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facilitating function. Whether myosin II is mainly and directly
acting on the actin coat itself or whether it has additional

functions is still unclear. As already outlined above, in pancreatic
acinar cells, myosin II activity during the post-fusion phase is
necessary to keep fusion pores open (Bhat and Thorn, 2009). We
cannot rule out that myosin II recruited to fused LBs is also

involved in regulation of the fusion pore dilation. Whether other
myosins also play a role in regulating or modulating actin coat
assembly and symmetry (Yu and Bement, 2007b) is the subject of

ongoing studies. Alternatively, actin polymerization alone might
be sufficient to compress the exocytic vesicle (Giardini et al.,
2003; Sokac et al., 2003).

It is tempting to speculate what the benefit of such elaborate
secretion machinery might be. Squeezing of surfactant through a
narrow fusion pore (Haller et al., 2001a) might be essential for
proper transformation of surfactant from a lamellar into a more

tubular structure to facilitate insertion into the surfactant layer
lining the hypophase (Goerke, 1998). Alternatively, prevention of
the rapid release of surfactant might aid in sequential or selective

release of various LB cargos (Tsuboi et al., 2004). Understanding
the precise mechanisms that shape the secretory output might
well aid the development of strategies to facilitate surfactant

release under diseased conditions.

We have recently shown that actin coat formation on fused
LBs is inhibited by chelation of cytoplasmic Ca2+ or
phospholipase D inhibitor C2 ceramide (Miklavc et al., 2009b).

Despite the dependence on Ca2+, actin coating was unaffected by
FACE, ‘fusion-activated’ calcium entry (Miklavc et al., 2011)
(supplementary material Fig. S1). We also speculated that actin

coating might involve membrane mixing of PM and LB
following fusion and follow a recently described mechanism
involving protein kinase C, cdc42 and neuronal Wiskott–Aldrich

syndrome protein (N-WASP) (Yu and Bement, 2007a). Although
we have evidence for membrane mixing [loss of lamp3–GFP
from the LB and rapid diffusion of lyn–DsRed into the LB

membrane upon fusion (Miklavc et al., 2009a)], we could not
observe an effect of perturbing cdc42 activity on actin coating.
Moreover, we could not observe recruitment of N-WASP or an
effect of the N-WASP inhibitor wiskostatin on actin coating.

Although our data do not exclude the possibility that actin
filaments are translocated to the fused vesicles or that cortical actin
engulfs them, none of these possibilities is likely. First, we did not

observe any apparent translocation; second, actin coats appeared to
form all around fused vesicles simultaneously, rather than
sprouting from the site of fusion. We rather suggest de novo

nucleation of actin filaments around fused LBs, similar to
observations in PC12 cells (Gasman et al., 2004) or Xenopus

oocytes (Yu and Bement, 2007a). However, in ATII cells, this is
unlikely to be mediated by the Arp2/3 complex. We could not

detect subunit Arp2 on fused LBs nor did treatment with Arp2/3
inhibitor impact actin coat formation. This is in line with recent
observations in human endothelial cells (Nightingale et al., 2011).

Our data rather suggest a dependence on active Rho and formins
for actin coating. The exact mechanisms, therefore, remain
unclear. We speculate that it involves activation of formins

through Rho and subsequent actin nucleation. RhoA is suggested
to activate formins (Campellone and Welch, 2010); however, our
data do not exclude the idea that Rho proteins other than RhoA

might be involved. Also, we have not yet identified the formin
involved in this process. Regulation of actin coating of fused LBs
could be analogous to a mechanism described in Salmonella

invasion, where activation of a RhoA- and myosin-II-dependent

but Arp2/3-independent pathway induces phagocytic cup

formation (Hänisch et al., 2011).

In summary, our data demonstrate that LBs are coated with

actin following fusion with the PM. This is probably dependent

on activation of Rho and formin-dependent actin nucleation on

fused vesicles. Subsequently, actin coats compress fused LBs, a

process facilitated by myosin II. This compression is essential for

active expulsion of surfactant and results in granule membrane

flattening into the PM. Inhibition of actin coat formation resulted

in strong reduction of surfactant secretion. Adding to the

increasing evidence for regulatory mechanisms of secretion

during the post-fusion phase, we postulate that regulation of

fusion pore opening and dilation itself is not sufficient for release

of bulky vesicle cargos and that active extrusion mechanisms are

required.

Materials and Methods
Materials

All materials were purchased from Invitrogen (Karlsruhe, Germany) unless stated
otherwise. Antibodies against myosin II and P180 lamellar body protein (ABCa3)
were from Abcam (Cambridge, UK). Fluorescently labelled secondary antibodies
were obtained from Molecular Probes (Invitrogen).

Cell isolation

ATII cells were isolated from Sprague–Dawley rats according to a published

procedure (Dobbs et al., 1986) with minor modifications as recently described
(Miklavc et al., 2010). After isolation, cells were seeded on glass coverslips,
cultured in MucilAir (Epithelix, Switzerland), and used for experiments for up to
48 hours after isolation.

Experimental conditions

Experiments were performed as recently described (Miklavc et al., 2010). For all
experiments, cells were kept in bath solution (140 mM NaCl, 5 mM KCl, 1 mM
MgCl2, 2 mM CaCl2, 5 mM glucose, 10 mM HEPES, pH 7.4). 0.5–1 mM of FM 1-
43 was added to the bath solution in experiments where LB fusion and surfactant
secretion was detected by FM1-43 labelling (Haller et al., 1998). ATII cells were
stimulated with 100 mM ATP (Sigma, Schnelldorf, Germany). Inhibitors for actin
polymerization (LatB, 10 mM) and myosin II (blebbistatin, 50 mM) were added
20 minutes and 2 hours before stimulation with ATP, respectively (all from Sigma,
Schnelldorf, Germany). Inhibitors for small GTPases (B toxin), formins (SMIFH2)
and Arp2/3 (CK666) were from Calbiochem (Darmstadt, Germany). Inhibitors for
Rho (Rho Inhibitor) and Rac1 (NSC23766) were from Cytoskeleton (Denver, CO)
and Tocris (Bristol, UK), respectively. For BODIPY-PC expulsion assays, cells
were incubated overnight with b-BODIPY 500/510 C12-HPC (1 mM) and
preloaded for 15 minutes with LTR (10–100 nM) before being washed twice in
bath solution and kept in bath solution for the duration of the experiment. All

fluorescent dyes were purchased from Molecular Probes (Invitrogen, Karlsruhe,
Germany).

Plasmids and adenoviruses

Plasmids for lyn–GFP (Frick et al., 2007), GFP–actin and lamp–GFP (Miklavc
et al., 2009b) were recently described, DsRed–actin was purchased from Clontech
(TakaraBio, France) and GFP–cdc42(DN) (cdc42-T17N) was purchased from
Addgene (clone 11400). Viruses were produced using the ViraPower Adenoviral
Expression System (Invitrogen, Karlsruhe, Germany) according to the
manufacturer’s instructions. In brief, PCR products with attached attB sites were
cloned into the entry vector pDONR221, using the BP Clonase II enzyme mix, and
transferred from the entry vector into the adenoviral vector pAd/CMV/V5-DEST
by in vitro recombination using LR Clonase. Expression plasmids were confirmed
by sequencing and linearized using PacI before transfecting 293A cells. Cells were
cultivated at 10% CO2 and 95% humidity in DMEM medium containing 4.5 g/l
glucose, 10% FBS, 1% penicillin-streptomycin, and MEM nonessential amino
acids for 5 to 8 days. For virus isolation, 293A cells were lysed by three freeze–
thaw cycles (liquid nitrogen and 37 C̊) and adenoviral particles were isolated using
the Vivapure adenopack 10 virus isolation kit (Vivascience, Hannover, Germany),
according to the manufacturer’s protocol. Virus particles were aliquoted and stored
at 280 C̊ in elution buffer containing 10% glycerol.

Adenoviruses expressing DN-RhoA (T19N-RhoA) and DN-Rac1 (T17N-Rac1)
were a gift from Christopher M. Waters (University of Tennessee, Memphis, TN)
(Desai et al., 2004).
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Quantification of PC release

PC release was quantified as recently described (Garcia-Verdugo et al., 2008). In
short, an equal number of cells (,3.56106) were seeded into six-well plates. At
day 2 after isolation, cells were washed three times in bath solution and pre-
incubated in bath solution (610 mM LatB) for 5 minutes before stimulation. The
total volume in each well following stimulation was 1 ml. Cells were incubated for
15 minutes on a horizontal shaker (,120 r.p.m., 37 C̊) before supernatants were
collected and analyzed for PC content in triplicate for each sample using coupled
enzymatic reactions based on a previous method to measure phospholipid in serum
(Nanjee et al., 1991).

AFM

For combined AFM and FM1-43 measurements, an AFM system (model 5500,
Agilent Technologies, Chandler, AZ) was mounted on an inverted optical
microscope (IX81, Olympus) using an adapting sample stage. To reduce the
effect of environmental vibration the AFM FM1-43 set-up was located on a
vibration-damped table. For simultaneous recording of fluorescence images while
imaging with AFM, a 610 nm long-pass glass filter (Thorlabs) was added to
prevent interference of the fluorescence excitation radiation with the laser
reflection onto the AFM photodiode. FM1-43 fluorescence was excited at 488 nm
using Visichrome High Speed polychromator system (Visichrome, Germany).
Fluorescence images were obtained using a cool snap EZ CCD camera (Visitron)
and Metamorph software. We used a 406 LCPlanFI objective (Olympus) for
fluorescence and bright-field images. Sequences of fluorescence images were
taken while AFM imaging was performed to correlate the obtained optical images
with AFM data. Cells were kept in bath solution for the duration of the
experiments and investigated with AFM in either low force contact mode or
dynamic (AAC) mode. AFM images were obtained using a large scanner (100 mm
scan range) with scan rates of 0.3–0.5 lines/second and a resolution of 5126512
pixels. V-shaped silicone nitride cantilevers with nominal spring constants ranging
from 0.06–0.12 N/m (manufacturer specifications, Veeco, Woodbury, NY) and a
nominal tip radius of 30 nm were used. In both imaging modes, low force contact
as well as AAC mode, the force set point was adjusted as low as possible to
minimize the force exerted on the cell surface (typical forces were around 0.5 and
5 nN).

Immunofluorescence

For immunofluorescence staining, cells were washed twice in DPBS (pH 7.4,
Biochrom, Berlin, Germany) fixed for 20 minutes in 4% paraformaldehyde
(Sigma) in DPBS and permeabilized for 10 minutes with 0.2% saponin and 10%
FBS (Thermo Scientific, Bonn, Germany) in DPBS. Cells were subsequently
stained with primary (1:300) and secondary (1:400) antibodies in PBS, 0.2%
saponin and 10% FBS. Images were taken on an inverted confocal microscope
(Leica TCS SP5, Leica, Germany) using a 636 lens (Leica HCX PL APO lambda
blue 63.06 1.40 NA Oil UV). Images for the blue (DAPI), green (Alexa Fluor
488), red (Alexa Fluor 568) and far-red (Alexa Fluor 633) channels were taken in
sequential mode using appropriate excitation and emission settings.

Fluorescence imaging and photobleaching experiments

Fluorescence imaging experiments were performed on a 2D imaging system
(Visitron, Puchheim, Germany) and images were acquired using MetaFluor
(Molecular Devices, Ismaning, Germany). Additionally, experiments were
performed on a confocal imaging setup (Leica TCS SP5, Leica, Germany). To
minimize channel crosstalk, appropriate filters were used for the 2D-imaging
system and sequential mode acquisition for confocal imaging, respectively.

FM1-43 photobleaching experiments were performed on a Leica TCS SP5
confocal microscope with a 636 1.4 NA objective using the Leica FRAP Wizard
software. All measurements were performed under the same conditions, with the
pinhole set to 1.0 Airy unit and the confocal zoom set to 2. A circle of interest was
photobleached with ten scans with the 488 nm laser line at full power. Pre- and
post-bleach images were monitored at low laser intensity for the times indicated.

Image analysis and data presentation

Images were analyzed using MetaFluor Analyst (Molecular Devices, Ismaning,
Germany) and ImageJ (NIH, Bethesda, MD). MS Excel and GraphPad Prism 5
were used for statistics, curve fitting and graph design. Unless otherwise stated all
data are presented as mean 6 s.e.m.

Actin coat contraction was analyzed by measuring the perimeter of individual
actin rings at indicated time points after fusion. Similarly, changes in LB size
following fusion were analyzed by measuring the perimeter of LBs, visible by
expression of lamp3-GFP in the LB membrane or diffusion of lyn–DsRed into the
LB membrane following fusion with the PM. To determine the onset of LB fusion,
FM1-43 and LTR fluorescence was analyzed in a region encircling the fusing LB.
Similarly, expulsion of surfactant was analyzed by measuring the decrease of
BODIPY-PC fluorescence in a region encircling the fused LB. Only when
BODIPY-PC fluorescence decreased .10% following fusion, fusions were
qualified as fusions with PC extrusion.

Analysis of the FM1-43 fluorescence recovery was performed by calculating the
ratio between mean fluorescence intensity of the bleached LB and the mean
fluorescence of an unbleached LB to correct for background bleaching during pre-
and post-bleach acquisition. Ratio values were then expressed as a percentage of
the prebleach ratio value. These normalized data were fitted to a single exponential
curve by using the PRISM software (GraphPad Software, San Diego, CA) to derive
t1/2, the time at which half of the fluorescence has recovered.
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