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Summary
Although distinct epigenetic marks correlate with different chromatin states, how they are integrated within single nucleosomes to
generate combinatorial signals remains largely unknown. We report the successful implementation of single molecule tools constituting
fluorescence correlation spectroscopy (FCS), pulse interleave excitation-based Förster resonance energy transfer (PIE-FRET) and

fluorescence lifetime imaging-based FRET (FLIM-FRET) to elucidate the composition of single nucleosomes containing histone variant
H2A.Z (Htz1p in yeast) in vitro and in vivo. We demonstrate that yeast nucleosomes containing Htz1p are primarily composed of H4
K12ac and H3 K4me3 but not H3 K36me3 and that these patterns are conserved in mammalian cells. Quantification of epigenetic

modifications in nucleosomes will provide a new dimension to epigenetics research and lead to a better understanding of how these
patterns contribute to the targeting of chromatin-binding proteins and chromatin structure during gene regulation.
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Introduction
The simplest structural unit of chromatin, the nucleosome, can exist

in a variety of configurations depending on the histone variants and

post-translational modifications present. The composition of

individual nucleosomes influences chromatin structure and

function and provides signals to the cellular machinery to

promote gene activation or repression. These signals tend to be

dynamic and can vary as a function of the cell cycle or growth

conditions and between different cells in a population. Yet, our

understanding of the patterns found within individual nucleosomes

and presented to the cellular machinery is poorly defined, largely

because limited, labor-intensive methodologies have been available

to reveal these patterns. Approaches commonly used to characterize

chromatin composition at population-based levels include mass

spectrometry and chromatin immunoprecipitation (ChIP). Mass

spectrometry has been employed to identify and map individual

modifications within peptides derived from histones, but, unless

coupled to affinity-based purification strategies, cannot describe

which of the identified modifications are found within the same

nucleosomes. ChIP can identify modifications enriched at

chromosomal loci, but provides information averaged from a

large starting population of cells. As a powerful complement to

these approaches, we provide a toolkit of single molecule strategies

to describe and quantify characteristics of nucleosomes containing

the histone variant H2A.Z (Htz1p in yeast) both in vitro and in

single fixed cells.

Htz1p/H2A.Z has been implicated in the regulation of gene

expression through its targeted deposition at the 59 end of genes

in multiple organisms (Raisner et al., 2005; Barski et al., 2007).

There, Htz1p/H2A.Z is preferentially assembled into one or two

nucleosomes flanking transcriptional start sites (Raisner et al.,

2005; Wong et al., 2007) by the ATP-dependent chromatin

remodeling complex SWR1-C in Saccharomyces cerevisiae or

SRCAP or p400/TIP60 in humans (Kobor et al., 2004; Mizuguchi

et al., 2004; Wu et al., 2005; Gévry et al., 2007; Wong et al.,

2007). This remodeling event is stimulated by NuA4-dependent

acetylation of histone H4 K12ac (Altaf et al., 2010). Htz1p is

often enriched at repressed promoters, but can dissociate upon

gene activation, leading to a model in which Htz1/H2A.Z

functions in creating a state in which genes are poised for

activation (Adam et al., 2001; Larochelle and Gaudreau, 2003;

Guillemette et al., 2005). Htz1p/H2A.Z promotes the localization

of recently repressed genes to the nuclear periphery and

facilitates their rapid activation (Brickner et al., 2007). Htz1p/

H2A.Z also functions in responses to DNA damage and in

maintaining the structural integrity of chromatin (Billon and

Côté, 2012).

Like Htz1p, the location of several histone modifications has

been mapped throughout the genome in S. cerevisiae (Liu et al.,

2005) and mammals (Barski et al., 2007). Similarly to Htz1p,

acetylation of several histone residues, including H4 K12ac, is

enriched at promoters (Liu et al., 2005). Trimethylation of H3 K4

by the Set1p methyltransferase localizes to the 59 end of genes

and correlates with actively transcribed regions (Santos-Rosa

et al., 2002; Ng et al., 2003). Other modifications, including

mono- and dimethylation of H3 K4 by Set1p and trimethylation

of H3 K36 by Set2p are enriched in the middle or 39 ends of

coding regions, and Set2p-dependent methylation has been linked
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to transcription elongation (Carrozza et al., 2005; Liu et al.,

2005). For most modifications, it is not known which are present
simultaneously in individual nucleosomes because both
replication-coupled and replication-independent chromatin

assembly contributes to continual nucleosome replacement
throughout the genome (Mito et al., 2005; Dion et al., 2007;
Kaplan et al., 2008).

Histone turnover rates vary as a function of the cell cycle,

genomic location and transcriptional activity (Mito et al., 2005;
Dion et al., 2007; Kaplan et al., 2008). This dynamic nature of
chromatin implies that studies mapping steady-state histone

modifications have only provided a partial picture of the
composition of nucleosomes. Consistent with this idea,
analyses of chromatin dynamics during multiple rounds of
transcription using synchronization strategies and ligand-

mediated activation of an estrogen receptor-dependent promoter
have revealed that chromatin composition varies in a cyclical
manner and includes the addition and removal of modifications

commonly associated with activation or repression (Métivier
et al., 2003).

Limited tools exist for defining the presence of multiple
components in a single nucleosome. Strategies for elucidating the

modification patterns, or combinatorial code, present at single
nucleosome level necessitate a marked departure from
conventional methods. We hypothesized that single molecule

tools including fluorescence correlation spectroscopy (FCS)
and fluorescence cross-correlation spectroscopy (FCCS) could
decipher the components in a single nucleosome. FCS tracks the

fluctuation in fluorescence intensity using a correlation function
to provide information on the diffusion time, molecular size, and
number of molecules in a limited focal volume (,1 fl) at single

molecule precision (Maiti et al., 1997; Cypionka et al., 2009).
Whereas fluctuations in fluorescence intensity of diffusing
molecules can be revealed by auto-correlation analysis,
interactions between molecules can be determined by FCCS

(Schwille et al., 1997; Chen and Irudayaraj, 2010; Chen et al.,
2011).

Interaction and distance between two components of a

complex can be assessed by Förster resonance energy transfer
(FRET), which capitalizes on the energy transfer between a donor
and an acceptor fluorophore. Fluorescence lifetime imaging-
based FRET (FLIM-FRET) provides a rigorous means of

measuring FRET efficiency and is ideal for studying
interactions between two targets in vivo because the decrease
in fluorescence lifetime of the donor fluorophore in the presence

of acceptor can be analyzed independently of the acceptor
emission (Wallrabe and Periasamy, 2005). FLIM-FRET is
especially attractive because it is independent of fluorophore

concentration, photobleaching and spherical aberrations and
therefore allows for the monitoring of multiple species in a
spatially defined manner in single cells (Vidi et al., 2008).

Although histone modifications and variants in single cells can

be assessed by FLIM-FRET, we anticipated that single molecule
interactions of mononucleosomes in vitro diffusing in a confocal
volume could be better interrogated by pulse-interleave

excitation FRET (PIE-FRET), which corrects for artifacts
from incomplete FRET pairs with missing or non-fluorescing
acceptors, correcting for zero FRET efficiency pairs (Lee et al.,

2005; Koopmans et al., 2009). In PIE-FRET, by alternately
exciting both donor and acceptor molecules, interacting
molecules can be sorted into two-dimensional distributions

based on their donor–acceptor energy transfer. The
corresponding energy transfer efficiency, distance and donor–
acceptor stoichiometry can be estimated from this information

(Müller et al., 2005). Application of the above methods provides
powerful strategies for evaluating the presence of multiple
components within a single complex.

In this work, we report the successful implementation of

FCS, FCCS, PIE-FRET and FLIM-FRET to reveal that Htz1p/
H2A.Z-containing nucleosomes are primarily comprised of H4
acetylated on K12 (H4 K12ac) and H3 tri-methylated on K4 (H3
K4me3) but not H3 tri-methylated on K36 (H3 K36me3). The

approaches presented here set the stage for the development of a
quantitative perspective for understanding epigenetics.

Results
Defining post-translational modification patterns in single
nucleosomes containing Htz1p

Whether multiple histone modifications and variants identified in
population-based studies are present in the same nucleosome is
largely unknown. To assess modifications in Htz1p/H2A.Z-

containing nucleosomes, we monitored H4 K12ac, H3 K4me3
and H3 K36me3 by PIE-FRET. Acetylation of H4 K12 by NuA4
stimulates nucleosome remodeling by SWR1-C (Altaf et al.,
2010). H3 K4me3 and H3 K36me3 are associated with

transcriptionally active loci, but differ in their localization
within genes. The presence of these modifications within
Htz1p/H2A.Z nucleosomes in yeast has not been evaluated

previously.

In our analysis, the mean FRET efficiency between labeled
antibodies targeting HA–Htz1p and H4 K12ac was 24% for
mononucleosomes isolated from yeast expressing HA–Htz1p,

whereas no FRET was observed with control mononucleosomes
isolated from H4 mutants in which lysine 12 has been mutated to
arginine (H4 K12R mutants) expressing HA–Htz1p (Fig. 1C,

Fig. 2A). Similarly, the mean FRET efficiency was 21% for HA–
Htz1p and H3 K4me3, whereas no FRET was observed in control
mononucleosomes isolated from set1D mutants expressing HA–
Htz1p (Fig. 1D, Fig. 2B). The high FRET efficiency confirms the

presence of the above two modifications in nucleosomes
containing Htz1p. The distances between the fluorophores on
the respective antibodies bound to H4 K12ac or H3 K4me3 and

the N-terminal hemagglutinin (HA) tag on Htz1p estimated by
PIE-FRET were 6.4 and 6.7 nm, respectively, further confirming
their close proximity. Because we employed labeled antibodies to

detect targets in mononucleosomes, the antibody (2–3 nm) could
also contribute to the distance measurements (Ratcliff and Erie,
2001). Hence, the distances calculated from PIE-FRET data
reflect the distances between fluorophores on each antibody, not

necessarily between the targets themselves. Nevertheless, they
demonstrate the close proximity of the targets. To further validate
these findings using a complimentary approach, we employed

FCCS to assess the presence of H4 K12ac or H3 K4me3 within
HA–Htz1p nucleosomes. H4 K12ac or H3 K4me3 were observed
in 11% or 16%, respectively, of nucleosomes containing HA–

Htz1p (Fig. 2A,B, right panels).

Unlike the above modifications, H3 K36me3 was not observed
in HA–Htz1p-containing mononucleosomes isolated from either
wild-type yeast or set2D mutants expressing HA–Htz1p

(Fig. 1E), as demonstrated by an insignificant FRET efficiency
(Fig. 2D). By contrast, H3 K36me3 and H2A colocalized in wild-
type mononucleosomes, but not in control mononucleosomes
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isolated from set2D mutants (Fig. 2C; supplementary material

Fig. S1) by PIE-FRET. Together, these results indicate that H3

K36me3 and Htz1p were not likely to be present in the same

nucleosome, whereas H3 K36me3 was enriched in nucleosomes

containing H2A. This lack of interaction is consistent with

previous genome-wide ChIP analyses demonstrating that Htz1p

localizes to 59 ends and H3 K36me3 is enriched in the middle and

39 ends of genes (Liu et al., 2005; Raisner et al., 2005; Barski

et al., 2007) (see Discussion).

Defining the composition of Htz1p-containing

nucleosomes in single yeast cells

To confirm that the modification patterns of Htz1p-containing

nucleosomes observed in vitro reflected those in vivo, we next

examined the composition of Htz1p-containing nucleosomes in

single yeast cells. Here, we introduce FLIM-FRET as an elegant

technique to monitor interactions between modifications and

histone variants in the context of an intact nucleus because a

quantitative readout is possible by monitoring the change in the

lifetime of the donor fluorophore. Yeast cells expressing or

lacking HA–Htz1p were fixed and stained with anti-H4

K12ac–FAM-X, anti-H3 K4me3–Alexa-Fluor-488 or anti-H3

K36me3–Alexa-Fluor-488, along with anti-HA–Alexa-Fluor-647

antibodies and H4 K12ac, H3 K4me3 or H3 K36me3 plus HA–

Htz1p were monitored by FLIM-FRET (Fig. 2; Table 1). In our

analysis, the lifetime of donor fluorophores (FAM-X or Alexa

Fluor 488) targeted to H4 K12ac (Fig. 3A), H3 K4me3 (Fig. 3C),

but not H3 K36me3 (Fig. 3E), decreased in the presence of the
acceptor (Alexa Fluor 647) targeted to HA–Htz1p in cells

expressing HA–Htz1p, but not in cells lacking HA–Htz1p
(Fig. 3B,D,F; Table 1). The respective FRET efficiencies of H4
K12ac and H3 K4me3 with HA–Htz1p were ,16% and ,14%,
respectively, in cells expressing HA–Htz1p. The corresponding

distances between the fluorophore pairs were 5.9 and 7.0 nm,
respectively, which is less than the diameter of a nucleosome. By
contrast, the FRET efficiency of H3 K36me3 with HA–Htz1p

was 4% (similar to background) (Table 1), indicating a lack of
H3 K36me3 within HA–Htz1p nucleosomes in vivo, which is
consistent with our in vitro studies.

Composition of H2A.Z-containing nucleosomes is
evolutionarily conserved in mammals

To evaluate the composition of nucleosomes containing the

H2A.Z variant in human cells, we stained fixed MDA-MB-468
cells with anti-H3 K4me3–Alexa-Fluor-488 or anti-H3 K36me3–
Alexa-Fluor-488 antibodies alone or in combination with anti-

H2A.Z–Alexa-Fluor-647 or negative control anti-HA–Alexa-
Fluor-647 antibodies and analyzed samples by FLIM-FRET
(Fig. 4; supplementary material Fig. S3). Similar to what we

observed in yeast, the fluorescence lifetime of the donor
representing H3 K4me3 decreased from 4.01 to 2.83
nanoseconds in the presence of an acceptor targeting H2A.Z

and the FRET efficiency was 27%, yielding a distance of 6.5 nm
between FRET pairs (Fig. 4A,B,E; Table 1). By contrast, the
presence of H3 K36me3 with H2A.Z was not observed from the

Fig. 1. Isolation of mononucleosomes from yeast.

(A) Chromatin fractions from wild-type, H3 K4R,

htz1D or htz1D strains expressing HA–Htz1p.

Histones in chromatin were analyzed by

immunoblots probed with anti-HA antibodies (top),

and then stripped and reprobed with anti-H3

antibodies (bottom). (B) Mononucleosome

preparation. DNA extracted from nuclear extracts

from 16108 cell equivalents of yeast expressing HA–

Htz1p were digested with 0 or 2.0 U MNase/mg of

solid and analyzed by agarose gel electrophoresis.

(C–E) Analyses of antibody specificity and genotype

of yeast used for single molecule studies.

Immunoblots of whole cell extracts from the

indicated yeast strains were probed with anti-HA

antibodies (top panels) to evaluate HA–Hzt1p

expression, then stripped and reprobed with anti-H4

K12ac (C), anti-H3 K4me3 (D) or anti-H3 K36me3

(E) antibodies (middle panels) to evaluate histone

modifications. Blots were then restripped and

reprobed with anti-H3 antibodies because H3 served

as a loading control (bottom panels).

Journal of Cell Science 125 (12)2956
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lifetime measurements and efficiency calculations (Fig. 4C,D,E;

Table 1). Together, these results support a model in which the

composition of modifications within nucleosomes containing

Htz1p/H2A.Z is conserved across phyla.

Defining multiple modifications present simultaneously

within single nucleosomes

In the above analyses, we observed that H3 K4me3 and H4

K12ac were present in nucleosomes containing Htz1p, implying

Fig. 2. See next page for legend.

Single-molecule tools in epigenetics 2957
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that both modifications might co-exist within the same

nucleosome. To determine whether these modifications were

present within a single nucleosome, PIE-FRET experiments were

conducted using mononucleosomes isolated from wild-type

yeast. The FRET efficiency between anti-H3 K4me3–Alexa-

Fluor-488 and anti-H4 K12ac–Alexa-Fluor-647 antibodies

targeting the modifications were 14.5% (distance was 7.5 nm)

in wild-type and ,5% in H4 K12R mutants (Fig. 2E). FCCS

analysis indicated that 10% of nucleosomes containing H4 K12ac

also contained H3 K4me3 (Fig. 2E, right panel). Together, these

experiments implied that both modifications could coexist within

Htz1p-containing nucleosomes. Further technology and analysis

module development are in progress to address simultaneously

whether three targets are in the same nucleosome in a generalized

manner at the single molecule level.

Discussion
Here we lay the groundwork for the application of single

molecule technologies to epigenetics research and showcase how

these methodologies can be tailored to elucidate epigenetic

patterns within extracted mononucleosomes and nucleosomes

in single cells. By applying fluorescence fluctuation data from

FCS and PIE-FRET/FLIM-FRET, we have established that

nucleosomes containing Htz1p/H2A.Z have H3 K4me3 and H4

K12ac but not H3 K36me3 (Figs. 2–4; supplementary material

Fig. S3). This latter modification was found within H2A-

containing nucleosomes (Fig. 2C,D). Moreover, we show that

H3 K4me3 and H4 K12ac are present simultaneously within

individual nucleosomes (Fig. 2E). The integration of correlation

spectroscopy with histogram analysis is invaluable because these

approaches could be applied in the future to study the assembly

and disassembly of a wide range of specialized nucleosomes or

other protein complexes in a variety of cell types.

In our analysis, we observed pairwise coexistence of H3 K4me3

and Htz1p/H2A.Z (Fig. 2B, Fig. 3C,D, Fig. 4A,B,E and Table 1),

H4 K12ac and Htz1p (Fig. 2A, Fig. 3A,B and Table 1) and H4

K12ac and H3 K4me3 in nucleosomes (Fig. 2E). H4 K12ac

probably facilitates the role of SWR1-C in targeting Htz1p to

transcriptional start sites. The bromodomain-containing Bdf1p

subunit of SWR1-C binds histone H4 tails with NuA4-dependent

acetylation patterns (Allard et al., 1999; Matangkasombut and

Buratowski, 2003). Selective binding of Bdf1p to transcription

initiation sites and incorporation of Htz1p into chromatin requires

NuA4 (Koerber et al., 2009). Consistent with SWR1-C-dependent

exchange of H2A for Htz1p being stimulated by NuA4-dependent

H4 K12ac (Raisner et al., 2005; Altaf et al., 2010) and this residue

remaining acetylated after incorporation of Htz1p, H4 K12ac is

Fig. 2. H4 K12ac and H3 K4me3 are present in Htz1p-containing

mononucleosomes, as shown by PIE-FRET and FCS. (A) PIE-FRET

efficiency histograms of interactions of Htz1–HA plus H4 K12ac of

mononucleosomes isolated from wild-type yeast (left panel) or H4 K12R

mutants (middle panel) expressing HA–Htz1p. Fluorescence cross-correlation

analysis of Htz1–HA plus H4 K12ac of HA–Htz1p mononucleosomes (right

panel). (B) PIE-FRET efficiency histograms of interactions of Htz1–HA plus

H3 K4me3 of mononucleosomes isolated from wild-type yeast (left panel) or

set1D mutants (middle panel) expressing HA–Htz1p. Fluorescence cross-

correlation of Htz1–HA plus H3 K4me3 of HA–Htz1p mononucleosomes

(right panel). Donor: anti-H4 K12ac–FAM-X (A) or anti-H3 K4me3–Alexa-

Fluor-488 (B). Acceptor: anti-HA–Alexa-Fluor-647. (C,D) H3 K36me3 is

present in H2A mononucleosomes but undetectable in Htz1p

mononucleosomes. PIE-FRET efficiency histograms of interactions of H2A

(C) or HA–Htz1p (D) with H3 K36me3 in mononucleosomes isolated from

wild-type yeast (left panels) or set2D mutants (middle panels) expressing

HA–Htz1p. Fluorescence cross-correlation analysis of H3 K36me3 plus H2A

of wild-type yeast mononucleosome (C, right panel). Donor: anti-H3

K36me3–Alexa-Fluor-488. Acceptor: anti-H2A–Alexa-Fluor-647 (C) or anti-

HA–Alexa-Fluor-647 (D). (E) H4 K12ac and H3 K4me3 are present in the

same nucleosome. PIE-FRET efficiency histogram of interactions between

H4 K12ac and H3 K4me3 in mononucleosomes isolated from wild-type yeast

(left panel) or set1D mutants (middle panel). Fluorescence cross-correlation of

H4 K12ac plus H3 K4me3 of wild-type yeast mononucleosomes (right panel).

Donor: anti-H3 K4me3–Alexa-Fluor-488. Acceptor: anti-H4 K12ac–Alexa-

Fluor-647.

Fig. 3. Htz1p is associated with H4 K12ac and H3 K4me3 but not H3

K36me3 in yeast. (A,B) Analysis of H4 K12ac in yeast expressing (A) or

lacking (B) HA–Htz1p. (C,D) H3 K4me3 in yeast expressing (C) or lacking

(D) HA–Htz1p. (E,F) H3 K36me3 in yeast expressing (E) or lacking (F) HA–

Htz1p. Yeast were fixed with methanol:acetic acid and incubated with the

indicated fluorescently labeled antibodies and analyzed by FLIM-FRET as

described in the Materials and Methods. Left column: Fluorescence lifetime

distribution of donor (anti-H4 K12ac–FAM-X, anti-H3 K4me3–Alexa-Fluor-

488 or anti-H3 K36me3–Alexa-Fluor-488) in the presence of acceptor (anti-

HA–Alexa-Fluor-647). Middle column: FLIM from donor channel. Right

column: FLIM from acceptor channel. Scale bars: 10 mm. FLIM scale:

1 nanosecond, blue; 4.5 nanoseconds, red. See also Table 1.

Journal of Cell Science 125 (12)2958
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present in nucleosomes containing Htz1p in vitro (Fig. 2A) and in

single cells (Fig. 3A,B; Table 1, yeast). These results support a

model in which the H3/H4 tetramer is not replaced at the time of

exchange of H2A for Htz1p by SWR1-C (Luk et al., 2010).

The lack of FRET between H3 K36me3 and Htz1p/H2A.Z

both in vitro and in vivo (Fig. 2D, Fig. 3E,F, Fig. 4C–E) might

be caused, in part, by a failure of Set2p to bind Htz1p/H2A.Z-

containing nucleosomes. Recently, a region on the nucleosomal

surface surrounding H3 K36, which is formed by H2A, H3 and

H4, was found to be crucial for trimethylation (Du and Briggs,

2010). Mutations in H2A within this proposed Set2p-recognition

surface lead to defects in Set2p-dependent trimethylation (Du and

Briggs, 2010). This region is diverged between H2A and Htz1p/

H2A.Z, especially in humans (Fig. 4F), and is part of the docking

domain that interacts with the (H3–H4)2 tetramer and contains a

metal ion binding site that is absent in H2A (Suto et al., 2000).

Previously, Set2p-dependent methylation events have largely

been attributed to interactions between Set2p and RNA

polymerase II during transcription elongation (Fuchs et al.,

2009). Future investigation of interactions between Set2p and

Htz1p/H2A.Z-containing nucleosomes should clarify the role of

Htz1p/H2A.Z in ensuring that the hypomethylated form of H3

K36 is maintained at the 59 end of genes (Liu et al., 2005; Raisner

et al., 2005; Barski et al., 2007). The approaches demonstrated

here can also be applied in the future to distinguish between

modifications present in Htz1p/H2A.Z-containing nucleosomes

from those that are in distinct nucleosomal subpopulation(s)

arising from cell-to-cell differences due to the cell cycle,

transcriptional status or dynamic changes to chromatin during

transcription.

Although single molecule FRET has previously been applied to

nucleosomes, most of these studies focused on nucleosome

remodeling and conformational dynamics using reconstituted

nucleosomes labeled in vitro (Li et al., 2005; Blosser et al.,

2009; Gansen et al., 2009; Andrews et al., 2010), neither PIE-

FRET or FLIM-FRET have been applied previously to resolve

histone modifications. In our single cell FRET studies, it is

theoretically possible that FRET might occur between

fluorophores on antibodies bound to targets on neighboring

nucleosomes in intact chromosomes, in addition to targets on the

same nucleosomes. However, no such interaction was observed in

vivo between H3 K36me3 and Htz1p/H2A.Z (Fig. 3E,F,

Fig. 4C,D). Our analyses also clearly confirmed that interactions

observed in fixed cells were also present in isolated

mononucleosomes in vitro where such interactions in trans are

unlikely to occur (Fig. 2, Fig. 4E). In the approach applied here,

either an increase or decrease in the measured distance relative to

the actual distance between two targets could have occurred due to

the size of the antibodies and the position of the fluorophores on

these antibodies, which could affect the FRET efficiency.

Although paraformaldehyde (PFA) has been widely used for cell

fixation in FRET measurement, it is worth noting that fixation

might influence FRET efficiency under certain circumstances.

Reports suggest that formaldehyde fixation could decease the

FRET efficiency of CFP–YFP fusions or of CFP/YFP when fused

to endogenous proteins (Anikovsky et al., 2008). However, it is

unlikely that fixation could result in a distance change between the

donor and acceptor because the donor and acceptor are covalently

linked in most cases. It is possible that fixation could reduce the

values of the orientation factor (k2) because immobilization might

anchor fluorophores in positions that disfavor energy transfer

(Anikovsky et al., 2008). In the case of FLIM-FRET measurement,

reports have suggested that PFA fixation is unlikely to alter the

fluorescence lifetime of donor and acceptor (Peter et al., 2005;

Latz et al., 2007).

Future development of Fab fragments or small molecules such

as aptamers to detect modifications will improve the accuracy of

distance measurements and decrease the possibility of steric

hindrance while evaluating multiple targets.

In summary, the single molecule approaches outlined here

represent a powerful set of tools for establishing and quantifying

epigenetic modification patterns as well as for tracking chromatin

dynamics. We envision that single cell studies will enhance our

understanding of how nucleosome composition is affected by the

cell cycle and by responses to DNA damage or transcription.

Such studies will also aid in defining the order in which

modifications are added onto nucleosomes to create patterns and

the interdependency between different modifications as well as

trans-tail requirements for modifications within individual

nucleosomes.

Table 1. FLIM-FRET analysis of histone modifications in yeast and MDA-MB-468 cells

Cells Genotype Antibody targeta Lifetime (nanoseconds)
FLIM-FRET

efficiency Distance (nm)

Yeast Donor only H4 K12ac 4.0160.0609 – –
Donor only H3 K4me3 4.0760.0533 – –
Donor only H3 K36me3 4.1060.0730 – –
HTZ1-HA H4 K12ac + HA 3.3760.0812 0.16 5.93
HTZ1-HA H3 K4me3 + HA 3.5160.0465 0.14 7.58
HTZ1-HA H3 K36me3 + HA 3.9260.0354 0.044 –
HTZ1 H4 K12ac + HA 3.9160.0329 0.025 –
HTZ1 H3 K4me3 + HA 3.9660.0337 0.027 –
HTZ1 H3 K36me3 + HA 3.9160.0372 0.046 –

MDA-MB-468 H2A.Z H3 K4me3 (donor only) 4.0160.0312 – –
H2A.Z H3 K36me3 (donor only) 4.0560.0566 – –
H2A.Z H3 K4me3 + H2A.Z 2.8360.106 0.29 6.50
H2A.Z H3 K4me3 + HA 3.9760.0793 0.0099 –
H2A.Z H3 K36me3 + H2A.Z 3.9660.0129 0.022 –
H2A.Z H3 K36me3 + HA 3.9860.0258 0.017 –

aFAM-X for anti-H4 K12ac antibody; Alexa Fluor 488 for anti-H3 K4me3 and anti-H3 K36me3 antibodies; Alexa Fluor 647 for anti-HA and anti-H2A.Z
antibodies. R055.6 nm for Alexa Fluor 488 and Alexa Fluor 647, and 4.5 nm for FAM-X and Alexa Fluor 647.
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Materials and Methods
Plasmids and yeast strains

Yeast strains used in this study are described in supplementary material Table S1.
Strains expressing histone mutants were generated by plasmid shuffling (Adams
et al., 1997). Plasmids used in this study are described in supplementary material
Table S2. Plasmids expressing histone mutants were generated by site directed
mutagenesis as outlined in the Quick Change Site-Directed Mutagenesis Kit
protocol (Stratagene) and confirmed by sequencing. Sequences of oligonucleotides
used during site-directed mutagenesis are available upon request. Plasmid pAK991
was generated by introducing a HindIII-SalI fragment containing HA–HTZ1 from
pTK23 (Santisteban et al., 2000) into HindIII-SalI of pRS316 (Sikorski and Hieter,
1989).

Whole cell extracts of histones

For analysis of histone modifications and HA–Htz1p expression, 5 ml cultures of
yeast were grown in complete synthetic media or complete synthetic media lacking
uracil to an OD600 of 1. Cells were harvested by centrifugation at 400 g for
5 minutes, resuspended in 250 ml 2 M NaOH, 8% b-mercaptoethanol and
incubated on ice for 5 minutes. Samples were pelleted by centrifugation at
16,100 g for 1 minute, washed once with high salt extraction buffer (40 mM
HEPES pH 7.5, 350 mM, 0.1% Tween 20 and 10% glycerol), collected by

centrifugation at 16,100 g for 1 minute and resuspended in 50 ml 26SDS-PAGE
sample buffer.

Yeast nuclear extractions

Yeast nuclei were isolated from 300 ml cultures grown to an OD600 of 0.8–1.5 in
synthetic complete media, synthetic complete media lacking uracil, or YPD as
outlined previously (Miller et al., 2008). Nuclei were resuspended in 0.3 ml NP
buffer (0.34 M sucrose, 20 mM Tris-HCl pH 7.5, 50 mM KCl, 5.0 mM MgCl2,
1.0 mM PMSF, 1 mg/ml leupeptin and 1 mg/ml pepstatin).

Isolation of chromatin

Approximately 56108 cell equivalents of yeast nuclei were isolated by
centrifugation at 16,100 g at 4 C̊ for 10 minutes. Pellets were resuspended and
lysed with RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% NP-40,
0.5% sodium deoxycholate and 0.1% SDS) on ice for 5 minutes with intermittent
vortexing. The chromatin fraction was isolated by centrifugation at 16,100 g for
10 minutes and enriched for chromatin-associated histones by washing twice each
with buffer A (10 mM Tris pH 8.0, 0.5% NP-40 and 75 mM NaCl) and buffer B
(10 mM Tris pH 8.0 and 300 mM NaCl). Final pellets were resuspended in 20 ml
26 SDS-PAGE sample buffer (25 mM Tris-HCl pH 6.8, 2.5% SDS, 2.5%
glycerol, 0.01% Bromophenol Blue and 1.25% b-mercaptoethanol, final
concentration) for protein blot analyses.

Fig. 4. H2A.Z is associated with H3 K4me3 in mammalian cells. (A–D) MDA-MB-468 cells were fixed with methanol:acetic acid and incubated with anti-H3

K4me3–Alexa-Fluor-488 antibodies only (donor) (A), with anti-H3 K4me3–Alexa-Fluor-488 plus anti-H2A.Z–Alexa-Fluor-647 antibodies (donor and acceptor in

left and right panels, respectively) (B), with anti-H3 K36me3–Alexa-Fluor-488 antibodies only (donor) (C) or with anti-H3 K36me3–Alexa-Fluor-488 plus anti-

H2A.Z–Alexa-Fluor-647 antibodies (donor and acceptor in left and right panels, respectively) (D), and then analyzed by FLIM-FRET. (E) Fluorescence lifetime

distribution of samples shown in A–D. (F) Sequence alignments between yeast and human H2A and Hta1p/H2A.Z are shown. Ten amino acid intervals on H2A and

Htz1p/H2A.Z are noted by filled and open circles, respectively. Mutation of residues highlighted in red in yeast H2A result in defects in H3 K36me3 by Set2p. The

docking domain is shown with a solid line. (G,H) Composition of nucleosomes containing the histone variants. Scale bars: 10 mm. FLIM scale: 0 nanoseconds, blue;

3.9 nanoseconds, red. See also Table 1.
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Mononucleosome preparation

Approximately 16109 cells equivalent of yeast nuclei were harvested by
centrifugation at 16,100 g for 10 minutes at 4 C̊. Pellets were resuspended in
0.5 ml RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% NP-40, 0.5%
sodium deoxycholate, 0.1% SDS) at a final concentration of 0.26107 cell
equivalents/ml. CaCl2 was added to a final concentration of 1 mM to aliquots of
16108 cell equivalents in RIPA buffer and chromatin was digested with 0, 1.0, 1.75
or 2.0 U micrococcal nuclease (MNase; Sigma, N3755)/mg of solid for 7 minutes
at 37 C̊. Digestions were stopped by adding EGTA to a final concentration of
10 mM. Aliquots were stored at 280 C̊ prior to analysis by PIE-FRET and FCS/
FCCS.

DNA extraction from mononucleosomes

To monitor MNase digestions, 50 ml aliquots of approximately 16108 cell
equivalents of MNase-treated mononucleosomes were incubated with 20 mg
proteinase K (Sigma, P-2308) at 45 C̊ for 1 hour. Samples were diluted into
0.15 ml TE buffer (10 mM Tris, pH 7.5, 1 mM EDTA), then extracted with
phenol/chloroform and precipitated with ethanol. The final pellet was resuspended
in 25 ml TE, digested with 20 mg ribonuclease A (Sigma, R-6513) at room
temperature for 1 hour prior to analysis by agarose gel electrophoresis.

Immunofluorescence

Yeast cells were prepared for immunofluorescence by growing 5 ml cultures
logarithmically to an OD600 of 0.8 in complete synthetic media or complete
synthetic media lacking uracil (Q-BIO gene, BIO 101 Systems) with 2% glucose,
and fixed with formaldehyde (3.7% final concentration) for 1 hour at room
temperature. Cells were collected by centrifugation, washed with 0.1 M potassium
phosphate pH 7.5, resuspended in 1 ml 0.1 M potassium phosphate pH 7.5, 50 mg/
ml Zymolyase 100T (Seikagaku) and 2 ml/ml b-mercaptoethanol and incubated for
40 minutes at 30 C̊. No. 1 coverslips (VWR International) were coated with poly
L-lysine (Sigma) and cells were deposited onto the coverslips, aspirated and
washed 36 with 16 PBS (0.137 M NaCl, 2.7 mM KCl, 5.4 mM Na2HPO4 and
1.8 mM KH2PO4, pH 7.4). The coverslips were immersed in cold (220 C̊)
methanol for 6 minutes and then in cold (220 C̊) acetone for 30 seconds,
incubated with 15 ml blocking buffer (16 PBS, 3% BSA) for 1 hour at room
temperature in a humid chamber. Coverslips were then incubated with 20 nM
fluorescently labeled antibodies in blocking buffer for 1 hour at room temperature
and washed 36with PBS prior to analysis by FLIM-FRET.

Human MDA-MB-468 cells were seeded onto sterilized No. l coverslips and
placed in six-well plates in RPMI 1640 containing 10% fetal bovine serum, at 37 C̊
with 5% CO2. After reaching 90% confluency, the cells were fixed with a cold
(220 C̊) mixture of acetone and methanol (1:1) for 10 minutes. The slides were
washed with 36 PBS and blocked with 16 PBS containing 0.25% Triton X-100
and 1% BSA for 30 minutes. The slides washed with 16PBS, incubated with the
fluorescence labeled antibody overnight at 4 C̊, and then washed with 36 PBS
prior to analysis by FLIM-FRET.

Protein blot analyses

For protein blot analyses (Fig. 1; supplementary material Fig. S1), 26106 or 56106

cell equivalents of whole cell extracts or 16108 cell equivalents of chromatin-
associated histones from logarithmically growing cells were separated on 15%
polyacrylamide gels, transferred to PVDF membranes (Bio-Rad) and processed as
outlined previously (Miller et al., 2008). Membranes were probed with anti-HA
(12CA5) (Roche, 11583816001; 1:2000); anti-histone H3 (tri-methyl K36)
(Abcam, ab9050; 1:10,000), anti-histone H3 (tri-methyl K4) (Abcam, ab1012;
1:5000); anti-histone H4 (acetyl K12) (Abcam, ab61238; 1:10,000); anti-H2A
(Abcam, ab13923; 1:5000), anti-histone Htz1 (Active Motif, #39648; 1:1000) or
anti-histone H3, (Abcam, ab1791; 1:10,000). Secondary antibodies used were
Alexa-Fluor-680-conjugated goat anti-rabbit IgG (Molecular Probes, A21109;
1:5000 or 1:10,000) or Alexa-Fluor-680-conjugated goat anti-mouse IgG
(Molecular Probes, A21058; 1:20,000). Membranes were stripped as outlined
previously before reprobing (Miller et al., 2008). Images were obtained using an
Odyssey Infared Imager (Li-Cor Biosciences) by scanning membranes at 169 mm
resolution, medium-quality setting using the 700 and 800 nm channels. The
intensity was set to 5 for all images obtained. Images were analyzed using Odyssey
Software v1.2 (Li-Cor Biosciences).

Antibody labeling

Anti-HA antibodies were pre-labeled with Alexa Fluor 647 (Cell Signaling
Technology, 3444). Anti-H4 K12ac (Abcam, ab61238) antibodies were labeled
with 6-(fluorescein-5-carboxamido) hexanoic acid, succinimidyl ester (FAM-X) or
Alexa Fluor 647 using the SureLINK FAM-X Labeling Kit (KPL) or Alexa
Fluor 647 Monoclonal Antibody Labeling Kit (Invitrogen) according to the
manufacturer’s instructions. Free fluorophores were removed using a spin filter
(MWCO 10 KDa, KPL). Anti-histone H3 (tri-methyl K4) (Abcam, ab1012) and
anti-histone H3 (tri-methyl K36) (Abcam, ab9050) antibodies were labeled using
the APEX Alexa Fluor 488 Antibody Labeling Kit (Invitrogen) according to

manufacturer’s instructions. Anti-histone H2A (Abcam, ab13923) and anti-histone
H2A.Z (Abcam, ab4174) antibodies were labeled with Alexa Fluor 647 using the
APEX Alexa Fluor 647 Antibody Labeling Kit (Invitrogen) according to
manufacturer’s instructions. Labeled antibodies were dialyzed into 16 PBS and
stored at 220 C̊.

Evaluation of antibody labeling by FCS

Antibodies were labeled either with FAM-X or Alexa Fluor 488 for the 465 nm
laser excitation or with Alexa Fluor 647 for the 636 nm laser excitation. Labeling
was accomplished by following the manufacturer’s specification and confirmed
through UV-Vis spectroscopy (supplementary material Fig. S2A and data not
shown). Two absorbance maxima peaks were noted: the 280 nm peak
corresponding to the protein absorbance and the 495/650 nm peak corresponding
to FAM-X/Alexa Fluor 488 or Alexa Fluor 647 label, indicating successful
labeling. The molar substitution ratio of fluorophore to protein (F/P ratio) was
determined by measuring the absorbance at 280 nm and 495/488 nm using the IgG
extinction coefficient of 210,000 M21cm21 (Bhattacharyya et al., 2008). FCS was
applied to confirm the labeling according to changes in diffusion time between free
fluorophores and labeled antibody (supplementary material Fig. S2B). The
diffusion time was obtained from fitting the autocorrelation curves with the
appropriate equation. As expected, the diffusion time of antibodies labeled with
fluorophores (,0.4 milliseconds) increased significantly compared with free
fluorescent dyes (,0.035 milliseconds) and was proportional to the cubic root of
the molecular weight. Furthermore, the autocorrelation of antibodies was fitted
well with a single component 3D diffusion model, indicating a high degree of
purity of the labeled antibodies.

Instrumentation

The Microtime 200 (Picoquant, Berlin, Germany) used for single molecule
experiments was fitted with two picosecond pulsing diode lasers with excitation
wavelengths of 465 and 636 nm (LDH470, LDH635, PicoQuant) controlled by a
laser driver (Sepia PDL 808 Driver) at repetition rate of 40 MHz. The laser beams
were focused in the sample volume using apochromatic 606 water immersion
objective with 1.2 NA. The emitted fluorescence was collected using the same
objective and separated from the excitation beam by a dichroic mirror (see scheme
in supplementary material Fig. S4). Fluorescence was detected by two single
photon avalanche photodiodes (SPAD, SPCM-AQR-14, Perkin-Elmer) using the
time-correlated single photon counting module in the time-tagged time-resolved
(TTTR) single photon mode, whereby each photon is tagged with a time stamp that
identifies the arrival time after the laser pulse. All of the FCS/FCCS, PIE-FRET,
FLIM-FRET and FLIM experiments were conducted using Microtime 200. Details
of the instrumentation are provided in the literature (Varghese et al., 2008) and
information on the theoretical and experimental basis are provided below.

Fluorescence correlation and cross-correlation spectroscopy

FCS is based on the correlation between fluctuations in fluorescence intensity as
molecules diffuse through a small observation volume (less than 1 fl) (Sako and
Yanagida, 2003). This highly sensitive technique provides information on the
number of interacting molecules in a confocal-limited spot and the binding kinetics
of two or more interacting species tagged with appropriate fluorophores (Maiti
et al., 1997; Schwille et al., 1999; Bacia and Schwille, 2003; Hwang et al., 2006;
Hwang and Wohland, 2007; Varghese et al., 2008).

In FCS, fluorescence fluctuations dI(t) around the average fluorescence ,I.
was measured in real time and the normalized autocorrelation was calculated as
follows (Magde et al., 1974; Maiti et al., 1997; Rigler and Elson, 2001; Müller
et al., 2003):

G(t)~
vdI(t)|dI(tzt)w

vI(t)w2
ð1Þ

where dI(t)5I(t)2,I(t).. The autocorrelation curve of fluorophore diffusing in
solution was fitted to a 3D diffusion model using one or two components with the
SymphoTime software (PicoQuant) and Origin Lab using the equation:

G(t)~
X 1

Ni

1z
t

tDi

� �{1

1z
t

tDik2

� �{1
2

ð2Þ

where Ni and tDi are the number of fluorescent molecules in the detection volume
and diffusion time of component i, respectively. The parameter k and the lateral
diffusion coefficient D are defined by:

k~
z0

w0

, D~
w2

0

4tD

ð3Þ

In Eqn 3, k denotes the ratio of the axial beam size z and radius v of the laser and
tD is the diffusion time of the fluorophore. The effective confocal volumes for 465
and 636 nm excitation were calculated according to Eqn 1 and fitted according to

Single-molecule tools in epigenetics 2961



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

the autocorrelation function (Eqn 2) using aqueous solutions of rhodamine 123
(300 mm2/second) or Atto 655 (390 mm2/second) dyes (Invitrogen Molecular
Probes, Eugene, OR) with known diffusion coefficients. Assuming a 3D Gaussian
observation volume as approximated by Veff5p3/2v2z, the confocal volume for the
465 and 636 nm laser was 0.36 and ,1 fl, respectively.

For monitoring the interaction between two species tagged by two different
fluorophores simultaneously excited by the 465 and 636 nm lasers, dual color or
FCCS was used. The cross-correlation function for an FCCS experiment is given
by (Schwille et al., 1997; Bacia and Schwille, 2007):

Gij(t)~
SCijT

Veff SCiTzSCijT
� �

SCjTzSCijT
� � 1z

t

tD

� �{1

| 1z
t

tDk2

� �{1=2

ð4Þ

In Eqn 4, ,Ci., ,Cj. and ,Cij. are the concentrations of species i, j, and ij

(denoting bound species), respectively, diffusing in the confocal volume, and Veff

is the effective detection volume for the dual color experiment. With these
considerations, the diffusion time and the effective detection volume for cross-
correlation analysis are given by:

tD~
v2

i zv2
j

8Dij

ð5Þ

Veff ~
p3=2 v2

i zv2
j

� �
z2

i zz2
j

� �
23=2

ð6Þ

Here, Dij is the diffusion coefficient of the bound fraction and its concentration Cij

is obtained from the cross-correlation analysis using:

SCijT~
Gij 0ð Þ

GGVijeff 0ð Þ 0ð Þ ð7Þ

In Eqn 7, Gij(0) is the cross-correlation amplitude at time t50, and Gi(0) and Gj(0)
are the respective autocorrelation amplitudes of species i and j at time t50. The
inverse of the amplitude of the auto-correlation curve (shown in Fig. 2A,C,D,E)
gives the apparent number of diffusing molecules in the confocal volume.

The fraction of bound complex was calculated as a percentage of the species (Ci

or Cj) according to the following equation:

SCijT
SCiT or SCjT

ð8Þ

Under triplet state conditions, the autocorrelation function should compensate for
these fractions of fluorescent molecules and can be evaluated using the equation:

G(t)~ 1{TzT|e
t

tT

� �" #
1

N (1{T )
1z

t

tD

� �
1z

t

tDk2

� �
ð9Þ

Here T is the dark or triplet fraction of molecules and tT is the triplet relaxation time.

PIE-FRET

PIE-FRET was established using the combination of time-correlated single-photon
counting (TCSPC) techniques and two pulsed picosecond lasers operating at a
laser power in the range 50–100 mW to alternately excite both donor and acceptor
molecules in a complex (Lee et al., 2005; Rüttinger et al., 2006; Fore et al., 2007).
Alternate excitation leads to the generation of two fluorescence lifetime decay
curves corresponding to blue and red excitation in the TCSPC histogram window.
Time-gating in Symphotime software based on these two decay curves enabled the
separation of fluorescence based on the excitation laser source. According to
Poisson distribution, most of the photon bursts were composed of fluorescence
from single molecules in a sufficiently diluted solution. The FRET efficiency, E,
was then determined from the equation:

E~
IDA

IDAzcID

ð10Þ

where IDA denotes the intensity of acceptor fluorescence with donor excitation, ID

is the donor fluorescence and c is a factor correcting for differences in the
detection efficiencies. PIE-FRET analysis is presented in Fig. 2. In our application,
we have assumed c to be 1 because the excitation and emission spectra of the
FRET dye pair used are well separated and crosstalk and bleed-through can be
neglected. In addition to that, two identical single-photon avalanche diodes
(SPADs) were employed to detect the emission photons in our instrumentation.
The quantum efficiency for different emission wavelengths (Alexa Fluor 488 and
Alexa Fluor 647) is similar to that specified by the manufacturer. Similar

assumptions with the same detector and FRET dye pair could be found elsewhere

(Fore et al., 2007).

PIE-FRET evaluation of mononucleosomes

Antibodies were used at a final concentration of 100 pM to detect single FRET

pairs diffusing through the confocal volume. FCS was utilized to monitor the
concentration of antibodies from the amplitude [i.e. correlation, G(0)] at time zero,

noting that G(0) is inversely proportional to the number of fluorescence molecules

(N). A 300-microsecond time bin size was chosen as optimum in our experiments

because it was the best compromise between time resolution and the ability to
detect a sufficiently large number of photons maintaining a high threshold. A

signal-to-background threshold was employed to exclude time bins in which no

fluorescence signal was present and only signals that exceeded the threshold were

included in the FRET efficiency calculation. PIE-FRET efficiency below 5% was
considered to be non-significant (Ruttinger et al., 2006; Fore et al., 2007). First, the

465 nm laser was used, followed by the 636 nm laser, to excite the donor and

acceptor molecules alternately. To differentiate and separate the acceptor
emissions from the donor energy transfer or direct excitation, time-gating based

on these two TCSPC decay curves was used. Subsequently, bins with counts that

constituted the sum of mean value of donor emission and acceptor emission in the

donor time gate, plus five times the standard deviation of the sum of donor and
acceptor channels, were incorporated in the FRET calculations. The FRET

efficiency was then calculated to create the respective histograms (Fig. 2).

FLIM-FRET

Fluorescence lifetime is defined as the time in which the intensity decays to 1/e of

the initial intensity. FLIM can be used to study FRET interactions because energy

transfer from the donor to acceptor (targeting variants and modifications) will
result in a decrease in the donor’s fluorescence lifetime. FLIM-FRET is an

excellent technique to monitor co-presence distances (1–10 nm) between

fluorophore pairs because the change in lifetime of the donor can be analyzed

independently of acceptor emission (Bastiaens and Squire, 1999; Peter et al., 2005;
Suhling et al., 2005; Grant et al., 2008; Vidi et al., 2008). In FLIM-FRET

measurements, fluorescence lifetimes were obtained from TCSPC decay curves

fitted by an exponential equation using the SymphoTime software (PicoQuant). By

characterizing donor lifetimes in the absence and presence of an acceptor, FRET
efficiency (E) and distance (R) can be calculated from Eqs 11 and 12:

E~1{
tDA

tD

ð11Þ

R~
1{E

E

� �1=6

R0 ð12Þ

where tDA and tD are the donor excited state lifetime in the presence and absence

of acceptor. R0 is the Förster distance, or distance of 50% energy transfer between

donor and acceptor. R0 is given by Eqn 13:

R0ð Þ6~
9000 In10ð Þk2Qd

128p5Nn4

ð?
0

Fd lð Þea lð Þl4dl ð13Þ

where Qd is the quantum efficiency of the donor, N is Avogadro’s number, n is the
index of refraction of the medium between the fluorophores, Fd is the normalized

emission spectrum of the donor, ea(l) is the extinction coefficient of the acceptor at

wavelength l and k2 is the orientation factor for the interaction between the donor

and acceptor.

The Förster distance of FITC–Alexa-Fluor-647 is 4.5 nm (Liu et al., 2009) and

that of Alexa-Fluor-488–Alexa-Fluor-647 is 5.6 nm (Huang et al., 2009). The
FLIM-FRET analysis of yeast and mammalian cells is presented in Fig. 3, Fig. 4,

Table 1 and supplementary material Fig. S3. None of the past efforts have used

PIE-FRET or FLIM FRET to resolve histone modifications (Cairns, 2007;

Kelbauskas et al., 2009; Llères et al., 2009; Poirier et al., 2009; Rowe and Narlikar,
2010).
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