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Summary
Integrin-mediated focal adhesions (FAs) are large, multi-protein complexes that link the actin cytoskeleton to the extracellular matrix
and take part in adhesion-mediated signaling. These adhesions are highly complex and diverse at the molecular level; thus, assigning

particular structural or signaling functions to specific components is highly challenging. Here, we combined functional, structural and
biophysical approaches to assess the role of a major FA component, namely, integrin-linked kinase (ILK), in adhesion formation. We
show here that ILK plays a key role in the formation of focal complexes, early forms of integrin adhesions, and confirm its involvement

in the assembly of fibronectin-bound fibrillar adhesions. Examination of ILK-null fibroblasts by cryo-electron tomography pointed to
major structural changes in their FAs, manifested as disarray of the associated actin filaments and an increase in the packing density of
FA-related particles. Interestingly, adhesion of the mutant cells to the substrate required a higher ligand density than in control cells.
These data indicate that ILK has a key role in integrin adhesion assembly and sub-structure, and in the regulation of the FA-associated

cytoskeleton.

Key words: Integrin, Cell adhesion, Cryo-electron tomography, Correlated microscopy, Integrin-linked kinase, Focal adhesion

Introduction
Cells adhere to the extracellular matrix (ECM) through integrin-

mediated and cytoskeleton-associated structures known as focal

adhesions (FAs) (Burridge et al., 1988; Campbell, 2008; Geiger

et al., 2009). Beyond their scaffolding function, FAs also serve as

sensory structures, which probe the chemical and physical state of

the surrounding microenvironment and consequently activate

signaling processes that affect multiple cellular features,

including survival, proliferation, differentiation and migration

(Legate et al., 2009). The structural integrity of FAs, and their

scaffolding and sensory functions, depend on large multi-protein

complexes linking integrins to F-actin, and regulating both the

assembly of the adhesion structures and their signaling activities.

Over 180 adhesion-associated proteins have thus far been

identified in these adhesion sites (Byron et al., 2011; Schiller

et al., 2011; Zaidel-Bar et al., 2007b); yet their precise

organization, mode of action, and contributions to the adhesion

process are still poorly understood (see: http://www.adhesome.

org).

A prominent component of the adhesome is the protein

integrin-linked kinase (ILK), a multi-functional molecule that

binds directly to the cytoplasmic domains of b1 and b3 integrins,

and may associate indirectly with actin through its binding

partners, including parvin (Hannigan et al., 1996; Legate et al.,

2006; Vakaloglou and Zervas, 2012), paxillin (Nikolopoulos and

Turner, 2001) or PINCH (Stanchi et al., 2009). ILK is also

reported to play a role in regulating actin and microtubule

dynamics and mechanics (Legate et al., 2006; Sayedyahossein

et al., 2012; Wickström et al., 2010) by suppressing RhoA-

induced actomyosin contractility (Montanez et al., 2009;

Aspenström et al., 2004) and stabilizing microtubule tips at

nascent FAs (Wickström and Fässler, 2011; Efimov and

Kaverina, 2009). Consequently, ILK-deficient fibroblasts have

poorly organized actin bundles, associated with attenuated cell

spreading. Loss of ILK expression also impairs fibronectin

fibrillogenesis (Stanchi et al., 2009; Vouret-Craviari et al., 2004).

Knockout of Ilk in mice results in lethality at the preimplantation

stage, characterized by adhesion and polarity defects of the

epiblast, a failure to form the amniotic cavity (Sakai et al., 2003),

and involvement in muscle attachment sites (Zervas et al., 2011).

However, despite this information, the molecular mechanisms

underlying these structural manifestations of ILK depletion have

yet to be resolved.

Recently, the fine architecture of FAs in cultured fibroblasts

was visualized using super-resolution fluorescence microscopy

(Kanchanawong et al., 2010) and cryo-electron tomography

(cryo-ET) (Patla et al., 2010). These findings demonstrated that

FAs are laminated structures, composed of a dense bundle of

actin filaments, well-aligned with their major axis, which is

linked to the ventral cell membrane through a layer of large
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macro-molecular complexes (termed focal adhesion-related

particles; FARPs) (Patla et al., 2010).

The results presented here show that the attenuated spreading

of ILK-null cells is associated with a loss of focal complexes and

fibrillar adhesions. Furthermore, labeling for multiple adhesome

components indicated that Ilk knockout leads to a reduction in

vinculin levels and an accumulation of the fibrillar adhesions

molecule tensin in FA sites. Cryo-ET of Ilk knockout cells

revealed major disarray of the FA-associated actin filaments, and

a 1.7-fold increase in the density of FARPs at the membrane–

actin interface. Interestingly, FA formation by ILK-null cells

required a similarly higher density of the adhesion-mediating c(-

RGDfK) peptide, compared with control cells. These results shed

light on the key roles of ILK in regulating FA formation and

remodeling, and cytoskeletal organization.

Results
ILK is involved in the formation of integrin-mediated

focal complexes

To determine the function of ILK in the development and

maturation of integrin-mediated adhesions, we compared the

spreading and polarization of cultured mouse kidney fibroblasts

carrying a floxed (loxP-flanked) ILK gene (Ilkf/f; expressing

normal levels of ILK) to their ILK-deficient counterparts

(adenoviral Cre deleted; Ilk2/2) (Azimifar et al., 2012). When

plated on a fibronectin (FN)-coated surface, the Ilkf/f cells

underwent progressive spreading (supplementary material Fig.

S1A) and then polarized (Fig. 1A,B), just like wild-type mouse

fibroblasts. The Ilk2/2 cells, however, showed marked delays in

spreading and remained generally round (Fig. 1C,D, and

supplementary material Fig. S1B). Double-fluorescence labeling

for vinculin (Fig. 1; red) and actin (Fig. 1; green) indicated that the

ILK-deficient cells initially form aberrant FAs, which are almost

exclusively located at the cell periphery, associated with poorly

organized F-actin bundles, and clearly distinct from the robust FAs

and stress fibers found in the Ilkf/f controls.

In cultured fibroblasts, FA assembly is initiated by the

formation of small (typically ,1 mm apparent diameter),

transient nascent adhesions and focal complexes (FXs)

underneath the peripheral lamellipodium (Choi et al., 2008;

Geiger et al., 2009; Geiger and Yamada, 2011; Vicente-

Manzanares and Horwitz, 2011). A subset of these FXs grows

and matures into FAs, which become the primary anchorage sites

of contractile stress fibers (Vicente-Manzanares et al., 2009).

Careful examination of vinculin immunolabeling in Ilkf/f cells

revealed multiple FXs along the leading edges of the cells

(Fig. 1A,B), whereas the Ilk2/2 cells lacked such peripheral

structures (Fig. 1C,D). In these cells, FAs were formed under

Fig. 1. Deletion of ILK prevents the formation of FXs. Ilkf/f cells

(A–B9; ILKf/f in this and subsequent figures) and Ilk2/2 cells

(C–D9; ILK2/2) were cultured on fibronectin-coated coverslips for

30 minutes (A,C) or 120 minutes (B,D), and then permeabilized/fixed

and immunolabeled for vinculin (red) and actin (green). Vinculin

labeling in the boxed areas in the double-labeled images is shown in A9,

B9, C9, D9. Note the multiple FXs along the leading edges of the Ilkf/f

cells at early stages of radial spreading (A, 30 minutes), as well as after

cell polarization (B, 120 minutes), whereas such peripheral FXs were

not formed by the Ilk2/2 cells.
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retracted lamellae rather than from FXs, as is commonly
observed in control cells. This deficiency in FX formation was

apparent both during initial radial spreading (Fig. 1C;
30 minutes) and at later stages, when the cells began to
polarize (Fig. 1D and supplementary material Fig. S4; Movies
1, 2, for Ilk2/2 and Ilkf/f, respectively). The lack of FXs in Ilk2/2

cells probably accounts for the poor alignment of F-actin within
the mutant cells. Indeed, whereas the Ilkf/f control cells developed
robust stress fibers (supplementary material Fig. S1A, and

Fig. 1A,B), actin bundles in the Ilk2/2 cells were less
prominent, and poorly organized (supplementary material Fig.
S1B; Fig. 1C,D).

ILK is essential for FN fibrillogenesis and for the formation
of fibrillar adhesions

A prominent subset of integrin-mediated adhesions formed by
cultured fibroblasts (including Ilkf/f cells) with extracellular FN
fibrils are known as fibrillar adhesions (FBs) (Vicente-
Manzanares et al., 2011; Zaidel-Bar et al., 2004; Zamir et al.,

1999). These elongated adhesions extend from the edges of FAs,

point toward the cell center, and are enriched with tensin, a5b1
integrin, and dephosphorylated paxillin (Pankov et al., 2000;

Zaidel-Bar et al., 2007b). However, the causal interplay between

FN fibrillogenesis and the formation of distinct FBs remained

unclear.

In line with previous reports (Stanchi et al., 2009; Torgler et al.,

2004), we show here that knockout of the ILK gene leads to the
apparent inhibition of FN fibrillogenesis, as well as to the loss of

tensin-rich FBs (Fig. 2A–H). Furthermore, the absence of ILK

(and of FBs) was accompanied by pronounced retention of tensin
in FAs, and by a marked reduction in vinculin levels. As shown

in Fig. 2I, tensin intensity in FAs was elevated by ,50%, while

vinculin intensity decreased by ,50%. Accumulation of tensin in

FAs (which are considerably larger than FBs) also resulted in a
60% increase in the apparent area of tensin-rich adhesions in the

ILK-null cells, compared with the Ilkf/f controls (Fig. 2J).

Interestingly, the expression of vinculin was not effected upon
Ilk knockout (supplementary material Fig. S3A), whereas the

Fig. 2. Effect of Ilk knockout on the expression and organization of FA proteins. Upper panel: Ilk2/2 (A–D) and Ilkf/f (E–H) cells were cultured on

FN-coated coverslips for 16 hours, then permeabilized, fixed and immunolabeled with antibodies against tensin (TNS; A,E), fibronectin (FN; B,F) and with

coumarin-tagged phalloidin (AC; C,G). In addition, cells were immunostained with antibodies against tensin, talin, kindlin-2, vinculin, paxillin and zyxin

(not shown). Lower panel: histogram showing the intensities (I) and the apparent areas of adhesion sites (H) in Ilk2/2 cells, relative to Ilkf/f cells (6 standard

deviation) of tensin (TNS), talin (TAL), kindlin-2 (KIND2), vinculin (VIN), paxillin (PAX) and zyxin (ZYX). Note the accumulation of labeled tensin in FAs at

the cell periphery, and the absence of fibronectin fibrils and FBs. P-values are shown at the bottom and point to significant differences in the intensity and area

of the different FA proteins in Ilk2/2 and Ilkf/f cells. Note the significant increase in tensin concentrations and increased adhesion area (due to its retention in FAs),

and the reduced vinculin levels, in the Ilk knockout cells.

Roles of ILK in focal adhesion structure 4101
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level of tensin expression increased in the ILK-null cells

(supplementary material Fig. S3B)

To further explore the functional hierarchical interplay

between ILK, tensin and FN in the formation of FBs, we

knocked down FN or tensin in a human fibroblast line, WI-38,

and determined the effect of this perturbation on the formation of

FBs. As shown in Fig. 3, knockdown of FN led to a complete loss

of FN fibrils (despite the fact that FN was present in the culture

medium), accompanied by the confinement of both ILK and

tensin to bona fide FAs (Fig. 3B,E,H). These cells also failed to

form FBs, which were present in control cells (transfected with

RNA-induced silencing complex-free siRNA; ‘RISC-free’;

Fig. 3A,D,G). In contrast, knockdown of tensin did not affect

FN fibrillogenesis (Fig. 3C9,F9) or the association of ILK with

FBs (Fig. 3C,I). As shown in Fig. 3H9,H, vinculin colocalized

with ILK at FAs when FN levels were reduced, but its

localization was not affected by tensin knockdown (Fig. 3I9,I).

We therefore conclude that ILK-induced assembly of FN fibrils

is essential for the formation of FBs, whereas tensin associates

with these adhesions, but is not essential for their formation.

Knockout of Ilk induces disarray in FA-associated actin

filaments

Using cryo-ET (Fridman et al., 2012), we previously

demonstrated that FA-associated actin is densely packed into

bundles, aligned along the major axis of FAs, and linked by short

(,50 nm) interconnecting filaments (Patla et al., 2010). To

determine the role of ILK in actin association with FAs, we

examined the Ilk2/2 fibroblasts by means of cryo-ET, and

compared them to both control Ilkf/f fibroblasts, and to untreated

cells. Correlative fluorescence microscopy and cryo-ET was used

to identify FA locations in Ilk2/2 cells expressing YFP–paxillin

growing on an FN-coated EM grid. As shown in Fig. 4A, we

identified FAs by means of fluorescence microscopy (Fig. 4A,

Fig. 3. The differential roles of ILK and tensin in

fibronectin fibrillogenesis and FB formation. WI-38

cells were treated with RISC-free (RF) siRNA (A,A9, D,D9,

G,G9), siRNA to fibronectin (siFN; B,B9, E,E9, H,H9), or

tensin (siTNS; C,C9, F,F9, I,I9), and incubated for 60 hours

post-transfection, then trypsinized and replated on FN-

coated glass coverslips for an additional 36 hours. Cells

were then permeabilized, fixed and double-immunolabeled

for ILK and fibronectin (A–C9), tensin and fibronectin

(D–F9) and ILK and vinculin (G–I9). Note that knockdown

of fibronectin resulted in a complete loss of fibronectin

fibrils, as well as ILK- and tensin-rich FBs (B,E).

However, knockdown of tensin did not affect fibronectin

fibrillogenesis, or the development of ILK-containing

FBs (C,C9,F9).

Journal of Cell Science 126 (18)4102
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inset), froze the samples, inserted them into the cryo-electron

microscope, and identified the same FAs at low magnification.

An angular set of images was then collected, and subjected to

three-dimensional (3D) image reconstruction. One tomographic

slice through the reconstructed volume of the FA, positioned a

few nanometers above the cell–matrix interface at the

cytoplasmic side of the membrane, is shown in Fig. 3A. A

surface-rendered view of the same area, in which all observed

actin filaments were tracked, is shown in Fig. 4C. A

corresponding tomographic slice and a surface-rendered view

of an FA from control Ilkf/f fibroblasts are shown in Fig. 3B,D,

respectively.

The FAs in Ilkf/f fibroblasts were normal: and similar to those

previously reported for REF52 cells (Patla et al., 2010), with an

F-actin bundle, consisting of largely parallel filaments, associated

with the central region of the adhesion site. The actin

cytoskeleton of Ilk2/2 fibroblasts, however, was extremely

disorganized, and the number of actin filaments per unit area

was considerably reduced (by ,70%), compared to wild-type or

Ilkf/f cells (Fig. 4A,C, compared to B and D). The reduction in the

number of filaments was accompanied by a major loss of

filament alignment (Fig. 4E) compared with control cells, where

the actin filaments were largely aligned along the FA major axis.

Quantification of filament alignment indicated a standard

deviation of 15˚ in the Ilkf/f cells, compared with ,25˚ in the

Ilk2/2 cells.

FA-related particles are more densely packed in Ilk2/2

fibroblasts

FARPs, indistinguishable from those previously reported for

REF52 cells (Patla et al., 2010), were observed at the membrane–

cytoskeleton interface of both Ilk2/2 and Ilkf/f fibroblasts

(Fig. 4C,D, green). Quantification of these particles, however,

indicated major differences in their distribution density in control

and mutant cells. In control cells, the inter-particle spacing (mean

distance between the centers of mass of neighboring particles)

was 47629 nm, similar to the inter-particle spacing measured in

REF52 cells (Patla et al., 2010), but in Ilk2/2 cells the mean

inter-particle spacing was 36617 nm (Fig. 4F).

Notably, despite the apparent 1.3-fold decrease in average

FARP spacing in Ilk2/2 cells, the morphological characteristics

of the particles in these mutated cells were highly similar to those

found in the WT and Ilkf/f cells. We analyzed the structure of the

adhesion-related particles in two dimensions by extracting the

relevant volumes, and projecting them onto a common plane

(Fig. 4G). These images were then aligned, and classified

according to principle component analysis. Class averages

revealed ring-shaped densities with radiating filaments, which

presumably connect the FARPs and the actin bundles (Fig. 4G).

In both mutant and control cells, three sources constitute the

apparent structural variability between sub-classes of FARPs: the

particle diameter, the number of ‘whiskers’ extending from the

particles, and the angular positions of the whiskers. Particles of

Fig. 4. The molecular architecture of FAs in Ilk2/2 and Ilkf/f fibroblasts. (A,B) 10 nm-thick x-y sections through representative tomograms of central areas

of FAs in Ilk2/2 cells (A) and Ilkf/f cells (B). FA sites were identified by correlating electron micrographs with fluorescence microscopy images of YFP–paxillin-

expressing cells (A, insert). The red arrowhead in the insert points to the site of the FA tomogram in A. (C,D) Surface rendering view of the FA sites shown

in A and B, respectively, as seen from the direction of the substrate toward the cell center. Actin is depicted in tan, membranes in blue, and focal-adhesion-related

particles (FARPS) in light green. (E) Histograms representing the orientation of actin filaments within the FA-associated bundle in Ilk2/2 cells (left) and Ilkf/f

cells (right). (F) Histograms representing the ‘nearest neighbor’ distance distribution between individual adhesion-related particles in Ilk2/2 (left) and Ilkf/f cells

(right). The average center-to-center distance calculated between particles is 36 nm in Ilk2/2 and 47 nm in Ilkf/f cells. (G) 2D class averages of adhesion-related

particles, which were extracted in silico from FA tomograms, and projected along the z-axis. Both the Ilk2/2 (upper panel) and Ilkf/f cells (lower panel) were clearly

divided into three main classes with distinct ring diameters (supplementary material Fig. S1A); n51037 and n51142 for Ilk2/2 and Ilkf/f cells, respectively.

Roles of ILK in focal adhesion structure 4103
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both mutated and control cells similarly vary with respect to these

three structural features (Fig. 4G and supplementary material Fig.

S2). The particles can be classified into three groups of distinct

ring diameter, with ratios of 55%, 24% and 21% in Ilk2/2 cells,

and 30%, 42% and 28% in Ilkf/f cells (Fig. 4G, left to right,

respectively; supplementary material Fig. S3A).

The properties of the whiskers in Ilk2/2 and Ilkf/f cells were

also similar: FARPs of both cell types normally contained 1–5

whiskers per particle, with mean values of 2.8961.04 and

2.6360.98 in Ilk2/2 and Ilkf/f cells, respectively (supplementary

material Fig. S2B). Moreover, the orientations of these whiskers

were largely isotropic, although in the Ilkf/f cells, occasional

alignment of whiskers along the FA major axis was seen

(supplementary material Fig. S2C). Taken together, these data

indicate that the altered actin network in Ilk2/2 cells is

accompanied by higher FARP packing densities; however, the

FARPs in both types of cells were indistinguishable, suggesting

that ILK is not a crucial component of these structures.

Ilk2/2 fibroblasts require a higher density of ECM

molecules for effective surface adhesion

To explore the functional significance of the molecular and

structural changes induced in FAs by ILK depletion, we tested the

adhesion ligand density required for FA formation by Ilk2/2 and

control cells. It has previously been shown that cells cultured on

nano-patterned surfaces, in which the adhesion ligand (cyclic RGD

peptide) is positioned at precise inter-spacings (within the range of

20–200 nm), require a particular threshold density to effectively

adhere to the surfaces (Arnold et al., 2008; Cavalcanti-Adam et al.,

2007). To compare the ligand density requirements of Ilk2/2 cells

and control Ilkf/f cells, we plated both cell types on nanostructured

glass surfaces on which the adhesive peptide ligand [c(-RGDfK);

see Materials and Methods] was linked to nanogold particles

positioned at fixed inter-spacings. As shown in Fig. 5A,D, Ilkf/f

cells plated on surfaces with 32 nm and 52 nm inter-ligand

spacings and incubated for 4 hours, spread well on both surfaces

(Fig. 5B,E), whereas Ilk2/2 cells spread exclusively on surfaces

with a 32 nm inter-ligand spacing (Fig. 5C), and failed to adhere

and spread on the 52 nm pattern (Fig. 5F). These results indicate

that Ilk2/2 cells require closer ligand spacing than control cells in

order to form functional FAs. Interestingly, these ligand densities

are highly similar to the differences in inter-particle spacing found

in the mutant and control cells plated on uniform ECMs, and

visualized by cryo-ET.

Discussion
ILK is a canonical component of the integrin cell adhesion

machinery. Based on this and previous studies, it appears that

ILK participates in three distinct stages of integrin adhesion

organization: (1) nucleation of FX under the lamellipodium; (2)

organization of mature FAs and their associated stress fibers; and

(3) induction of FN fibrillogenesis and, consequently, formation

of FBs. Specifically, in the absence of ILK, all forms of integrin

adhesions will assemble inefficiently, leading not only to slow

cell spreading, but also to limited polarization and poor actin

alignment.

FN fibrillogenesis is driven by mechanical forces applied to

extracellular FN through integrin adhesions (Klotzsch et al.,

2009; Ulmer et al., 2008). It was further demonstrated (Zamir

et al., 2000) that this process is accompanied by the formation of

a special type of integrin adhesion, namely FBs, which extend

centripetally from FAs and are transported towards the cell

center. The relationship between FBs and FN fibrils has been

well established; yet the functional hierarchy between them

remained unclear. Here, we show that in the absence of ILK, FN

fibrils do not form. As a consequence, tensin, the hallmark of

FBs, is confined to and enriched in FAs, although its knockdown

has no apparent effect on FN fibrillogenesis, or on the formation

of ILK-rich FBs. These results indicate that ILK is an ‘upstream

regulator’, inducing FN fibrillogenesis that, in turn, drives FB

formation and the recruitment of molecules such as tensin to

these adhesion sites.

The geometry of the ECM has a major effect on the

capabilities of cells to adhere.

Fig. 5. ILK-deficient cells are highly dependent

on the close proximity of surface-bound RGD

molecules. (A,D) Scanning electron micrographs

showing hexagonally ordered gold nanodots on a

glass substrate (dot spacings: 32 and 52 nm,

respectively). Similar surfaces were used to study

the maximum integrin distances necessary for cell

viability. Nano-patterned surfaces were used as a

platform for varying RGD inter-ligand patch

distances of 3260.25 nm (A–C), and 5260.3 nm

(D–F). EGFP–paxillin Ilkf/f and EGFP–paxillin

Ilk2/2 cells were imaged 4 hours after plating on

surfaces with 32 nm (B,C) and 52 nm (E,F) inter-

ligand spacings, respectively. In B and E, the

edges of the functionalized surfaces are marked, to

demonstrate the specificity of the assay.

Journal of Cell Science 126 (18)4104
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In previous studies on cell adhesion using nano-patterned

surfaces it was shown that the formation of genuine FAs is highly

sensitive to adhesion ligand density, and occurs when the ligand-

to-ligand spacing is on the order of ,50 nm or less (Cavalcanti-

Adam et al., 2007). Interestingly, the characteristic spacing

between adhesion-related particles within FAs, formed on a

uniform matrix is, essentially, the same (Patla et al., 2010).

Whether this correlation between the apparent densities of the

extracellular molecular tethers to the ECM, and the FARPs

interconnecting the membrane and the actin cytoskeleton, has

some functional significance, was not clear. Nevertheless, our

present findings, showing that in the absence of ILK, both the

adhesive ligand [c(-RGDfK)] density needed to induce cell

adhesion, spreading and FA formation, and the density of

FARPs, increase by ,1.7-fold (from ,450 to 770 FARPs/mm2),

lend further support to the hypothesis that the particles actually

bridge between the ECM-bound integrin and the actin network,

and that their density is functionally related to the ligand density

outside the cell.

The mechanism underlying this ILK-dependent density

sensing is still unclear; yet it may be related to the proposed

role of ILK in regulating the assembly of adhesome components

(Vouret-Craviari et al., 2004; Wang et al., 2008). This is in line

with our current results, showing that ILK regulates FARP

density, probably without being an essential, intrinsic component

of these particles. This conclusion is based on data showing that

the FARPs of Ilk2/2 and control cells are essentially

indistinguishable when examined by cryo-ET. The regulation of

FARP density by ILK may be related to a variety of factors,

including an overall alteration in FA molecular composition, such

as the increase in tensin levels, or the reduction in vinculin levels

shown here (possibly due to the arrest of tensin exit during FB

formation), as well as to the direct and specific effect of ILK on

cytoskeletal organization at the adhesion site.

Taken together, the recent structural mapping of integrin

adhesions at nano-scale resolution (Kanchanawong et al., 2010;

Patla et al., 2010), the characterization of adhesome complexity

and interactivity (Byron et al., 2012; Geiger and Yamada, 2011;

Kuo et al., 2011; Schiller et al., 2011; Zaidel-Bar et al., 2007a),

and the identification of distinct ‘molecular signatures’ of

subdomains within FAs at micro-scale resolution (Zamir et al.,

2008), suggest that integrin adhesions are modular structures,

with various molecular complexes displaying distinct

distributions and functional roles. Our previous siRNA screen

(Winograd-Katz et al., 2009), as well as the findings reported

here, demonstrate that specific adhesome components have

distinct structural and regulatory roles in the assembly of

integrin adhesion structure, and in control of their function. It

is conceivable that systematic perturbation of integrin adhesions

by gene modulation or different environmental cues, combined

with structural analyses such as the one presented here, will

become a mainstream approach for characterizing the functional

molecular architecture of these sites.

Materials and Methods
Generation of paxillin–EGFP expressing fibroblasts

Ilkf/f and Ilk2/2 fibroblasts, stably expressing similar levels of paxillin–EGFP,
were prepared by infecting the mutant cells with a retroviral expression vector
encoding paxillin–YFP (kindly provided by E. Danen, Leiden University). The
VSV-pseudotyped retroviral vectors used for that purpose were produced as
previously described (Sakai et al., 2003; Azimifar et al., 2012), and the
concentrated viral supernatant, thus produced, was used to infect Ilkf/f

fibroblasts. Single clones of Ilkf/f fibroblasts stably expressing paxillin–EGFP
were isolated, and subsequently treated with an adenovirus expressing Cre
recombinase, in order to delete the ILK gene and to obtain Ilk2/2 paxillin–EGFP-
expressing fibroblasts.

Cell culture and immunolabeling

Mouse fibroblasts (Ilkf/f) expressing EGFP–paxillin, cells deficient in the ILK
protein (Ilk2/2), and WI-38 cells from human embryonic lung tissue were plated on
glass coverslips coated with FN (as indicated). The cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Biological Industries) supplemented with 10%
(v/v) fetal calf serum (FCS; Biological Industries), L-glutamine (0.2 M; Biological
Industries), and penicillin–streptomycin–nystatin (Biological Industries), at 37 C̊
and in a 5% CO2 humidified atmosphere.

Cultured cells were permeabilized, fixed and double-immunolabeled, as
previously described (Volberg et al., 2001). Antibodies used included monoclonal
antibodies anti-vinculin, rabbit anti-FN and rabbit anti-tensin (produced in the
Antibody Production Laboratories, Department of Biological Services, Weizmann
Institute of Science), anti-ILK (Santa Cruz Biotechnology, Inc.) and anti-zyxin
(kindly provided by Daniel Louvard, Institut Curie, Paris, France). Secondary
antibodies used included anti-mouse Cy3 (Jackson ImunoResearch; cat. no. 115-
166-072), and anti-rabbit Alexa Fluor 488 (Molecular Probes; cat. no. A11034). To
visualize the F-actin cytoskeleton, cells were treated with phalloidin Alexa Fluor 488
(Sigma; cat. no. P1951).

Gene knockdown protocol

WI-38 cells, 36105 cells/well, were cultured in six-well plates coated with 5 mg/ml
bovine plasma FN, in DMEM supplemented with 10% FCS (Biological Industries)
containing sodium pyruvate, non-essential amino acids, and antibiotics (Sigma) for
24 hours at 37 C̊.

Cells were transfected with siRNA specific for FN (siFN) or tensin (siTNS;
SMARTpools; Dharmacon RNAi Technologies).

Correlative fluorescence and electron microscopy

Carbon-coated 200-mesh gold grids (Quantifoil) were rinsed in PBS (Biological
Industries) and overlaid on a drop of 50 mg/ml bovine plasma fibronectin (Biological
Industries) for 45 minutes. Cells were typically applied to grids in concentrations of
100 cells per grid, and cultured for 24 hours. Next, specimens were examined by
fluorescence microscopy, washed with PBS, and freeze-plunged instantly into
liquid-nitrogen-cooled ethane (see below). FAs identified by fluorescence
microscopy were indexed according to their precise positions on the grid.

The coordinates of each FA site were recorded and identified under the electron
beam. Fluorescence images were acquired with a DeltaVision system (Applied
Precision, USA) equipped with a CoolSnap HQ camera (Photometric, USA)
operated by SoftWorx and Resolve3D software (Applied Precision), using an
Olympus PlanApoN 606/1.42 NA objective on an Olympus IX70 inverted
microscope (Olympus, Japan).

Cryo-electron tomography

A 5 ml drop of BSA-coated 15 nm gold colloids in PBS was added to the grids
before plunging them into liquid-nitrogen-cooled ethane, as previously described
(Dubochet et al., 1988). Specimens were then transferred into a 300 FEG Polara
microscope (FEI, Eindhoven) equipped with a Gatan post-column GIF 2002
energy filter. Tilt series were then collected, typically covering an angular range of
260˚ to +66 ,̊ sampled in 2˚ tilt increments, and at a 14 mm underfocus. Pixel size
was 0.82 nm at the specimen level.

Image processing of cryo-ET images

Projection images (204862048 pixels) were aligned to a common origin, using
15 nm-sized fiducial gold particles, and reconstructed by means of weighted back-
projection, as implemented by a TOM toolbox software package (Nickell et al.,
2005). All tomograms were reconstructed with a binning factor, to yield a 1.64 nm
voxel size. For visualization purposes, the reconstructed volumes were processed
according to an anisotropic de-noising algorithm (Frangakis and Hegerl, 2001).
Individual adhesion complexes were identified and extracted in silico (952 and 946
from mutant and wild-type cells, respectively), from the five best tomograms from
each cell line. Two-dimensional images of these elements were calculated by
projecting the volumes, 32632611 voxels, along the z-axis, using the EM software
package. The stack of particles was then masked and normalized prior to PCA, and
followed by K-means classification (SPIDER). The most detailed class averages
were chosen to be the first references for a multi-reference alignment of the data
set. This strategy was iterated for five rounds, until no major changes occurred in
the classes, and in the alignment of single images. Surface-rendered visualizations
were constructed using AMIRA 5.3 software (Mercury).

Patterned gold surfaces

Gold surfaces were prepared as previously described (Cavalcanti-Adam et al.,
2007).

Roles of ILK in focal adhesion structure 4105
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Characterization of nano-structured glass interfaces
Glass samples were sputter-coated with a carbon layer, in preparation for imaging
with a field-emission scanning electron microscope (LEO-1530, LEO). To
visualize the gold nanoparticles on the surface, an acceleration voltage of 3 kV
was applied under a pressure of 561026 mbar.

Biofunctionalization
To passivate the substrate area between the gold nanoparticles, polyethylene glycol
(PEG; molecular weight 2000) was used (Blümmel et al., 2007). The gold
nanoparticles were then functionalized with the cyclic RGD-based peptide
c(-RGDfK-), using the spacer aminohexanoic acid, to mercaptopropionic acid.
Next, the PEG-functionalized substrates were immersed for 24 hours in a 25-mM
c(- RGDfK-)-thiol/water solution. The substrates were then thoroughly rinsed with
MilliQH water for 24 hours.

Cell seeding conditions for nanostructured and biofunctionalized substrates
Cell samples were sterilized in 70% ethanol for 20 minutes, and washed three
times with phosphate-buffered saline at room temperature. Cells were then plated
at a density of 40 cells/mm2 in DMEM containing 1% FBS and 1% L-glutamine.
Experiments were performed three times. Images were obtained after 4 hours and
after 24 hours with an Olympus IX inverted microscope.
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parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20-31.
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Wickström, S. A. and Fässler, R. (2011). Regulation of membrane traffic by integrin
signaling. Trends Cell Biol. 21, 266-273.

Wickström, S. A., Lange, A., Hess, M. W., Polleux, J., Spatz, J. P., Krüger, M.,
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