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Summary
Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening.

High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort.
Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that
can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be

considered for their successful application in cell biology. We outline how microscopy images can be converted into a data
representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting
recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine
learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the

data analysis pipeline.
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Introduction
Commercially available motorized microscopes can yield data at

a throughput of .105 images per day, raising a strong need for

automated data analysis (Conrad and Gerlich, 2010; Lock and

Strömblad, 2010). Computational data analysis not only reduces

the workload for the experimentalist, but also ensures objectivity

and consistency in the annotation of large data sets (Danuser,

2011). The complexity and diversity in microscopic image data,

however, poses challenges for developing suitable data analysis

workflows.

Bioimage informatics methods offer powerful solutions for

specific image analysis tasks, such as object detection, motion

analysis or measurements of morphometric features (Danuser,

2011; Murphy, 2011; Eliceiri et al., 2012; Myers, 2012). Most

image analysis algorithms, however, have been developed for

specific biological assays. The application of the respective

algorithms to other markers or cell types then often requires

parameter tuning or even re-programming of the software. Manual

software adaptations, however, are tedious and provide major

obstacles for most cell biological laboratories, owing to the limited

knowledge about the mathematics behind the image analysis

algorithms and a lack of expertise in software engineering.

Machine learning aims to provide a general solution to this

problem by learning processing rules from examples rather than

relying on manual adjustments of parameters or pre-defined

processing steps (Hastie et al., 2005; Bishop, 2006; Domingos,

2012). Machine learning is particularly superior to conventional

image processing programs when it comes to solving complex

multi-dimensional data analysis tasks such as discriminating

morphologies that are not easily described by a few parameters

(Boland and Murphy, 2001; Conrad et al., 2004; Neumann et al.,

2010).

Machine learning generally proceeds in two phases (Hastie

et al., 2005; Bishop, 2006). In the training phase, a collection of

data samples is used to build or improve a computer system by

learning from inherent structure and relationships within this

data. This computer system is then applied to new data samples

to predict certain properties of these data samples. Thus, the

overall goal of any machine-learning method is to generalize

from a few training examples to make accurate predictions on

large sets of data samples that were not observed during training

(Hastie et al., 2005; Bishop, 2006; Tarca et al., 2007; de Ridder

et al., 2013).

A common machine-learning discipline is classification. In this

approach, the user generates a training data set by annotating

some representative examples according to predefined classes.

The machine-learning algorithm automatically infers the rules to

discriminate the classes, which can then be applied to the full

data set. This type of learning is termed ‘supervised’ machine

learning, and its principal goal is to infer general properties of the

data distribution from a few annotated examples (Hastie et al.,

2005; Bishop, 2006; Tarca et al., 2007; de Ridder et al., 2013).

Supervised machine learning has been successfully applied in

diverse biological disciplines, such as high-content screening

(Kittler et al., 2004; Lansing Taylor et al., 2007; Doil et al., 2009;

Collinet et al., 2010; Fuchs et al., 2010; Neumann et al., 2010;

Schmitz et al., 2010; Mercer et al., 2012), drug development

(Perlman et al., 2004; Slack et al., 2008; Loo et al., 2009;

Castoreno et al., 2010; Murphy, 2011), DNA sequence analysis

(Castelo and Guigó, 2004; Ben-Hur et al., 2008) and proteomics

(Yang and Chou, 2004; Datta and Pihur, 2010; Reiter et al.,
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2011), as well as in many other fields outside of biology, such as

speech (Rabiner, 1989) and face recognition (Viola and Jones,

2004), and prediction of stock market trends (Kim, 2003).

A second type of machine learning extracts information from

the data completely independently of user annotations. The goal

of ‘unsupervised’ machine learning is to group data points into

clusters on the basis of a similarity measure or to facilitate data

mining by reducing the complexity of the data (Hastie et al.,

2005; Bishop, 2006; Tarca et al., 2007; de Ridder et al., 2013).

Unlike supervised approaches, unsupervised methods enable the

exploration of unknown phenotypes (Wang et al., 2008; Lin et al.,

2010) and have been successfully used for phenotypic profiling

of drug effects (Perlman et al., 2004).

A number of recent reviews and textbooks provide extensive

theoretical background on different machine-learning algorithms

(Hastie et al., 2005; Bishop, 2006; Larrañaga et al., 2006; Tarca

et al., 2007; Danuser, 2011; de Ridder et al., 2013). Successful

application of machine learning, however, also needs to take into

account many practical considerations and it requires knowledge

about the specific data type and analysis goals. This Commentary

aims to provide a guide for the cell biologist to establish

an efficient machine-learning pipeline for the analysis of

microscopic images. We first discuss how image data are

converted into units that serve as input for machine-learning

methods. We then provide background on state-of-the-art

supervised machine-learning methods and discuss what needs

to be taken into account to optimize their performance. We also

introduce the basic concepts of unsupervised machine learning

and highlight some recent applications in cell biology.

The machine-learning pipeline for cell
phenotyping
Machine learning is widely used in image-based screening to

classify cell morphologies that are traced by fluorescent markers.

The principal objective of the screening is to determine whether

an experimental perturbation (e.g. treatment with a chemical

compound, small interfering RNA or genetic manipulation) leads

to a cellular phenotype (e.g. change in cell morphology, protein

expression level or anything that can be probed by imaging

biosensors). The most commonly used machine-learning method,

classification, is based on the definition of phenotypes by

representative examples (Hastie et al., 2005; Bishop, 2006; Tarca

et al., 2007; de Ridder et al., 2013). Thus, before a screen can be

conducted, examples need to be recorded for unperturbed

negative controls as well as for expected classes of phenotypes.

If representative examples for phenotypes are not available and

cannot be obtained, supervised machine learning is not applicable

and unsupervised methods need to be used instead (see below).

The actual machine-learning algorithm is typically embedded

into a processing pipeline that converts original raw data into

units that are suitable as input for the respective machine-learning

algorithm (Tarca et al., 2007; de Ridder et al., 2013). The

principal input for any learning algorithm is a set of objects, each

of which are described by quantitative features. For cell

biological applications based on microscopy data, the typical

processing pipeline comprises image pre-processing, object

detection and feature extraction (Fig. 1).

Image pre-processing

The first step of the machine-learning pipeline, image pre-

processing, aims to remove artifacts produced by the microscope

or camera. For instance, uneven illumination of the microscope

field of view should be compensated for by image flat-field

correction (Buchser et al., 2004). This normalizes the cellular

signal intensity levels, as these should not change with the

position inside the imaging field. Pixel noise resulting from low

light exposure, particularly in live-cell imaging applications,

should also be removed by smoothing filters (Lindblad et al.,

2004). In time-lapse movies, subsequent images might not be in

the registry owing to a random or systematic drift of the

microscope stage position. Image registration techniques find

optimal image transformations to correct for such artifacts

(Thévenaz et al., 1998; Oliveira and Tavares, 2012).

Object detection

Next, the objects of interest, which form the basis for

classification, need to be defined. Most machine-learning

pipelines separate objects of interest (e.g. cells) from image

background, yet classification can also be performed at the level

of image pixels (Kaynig et al., 2010; Sommer et al., 2011) or

whole unsegmented images (Huang and Murphy, 2004; Shamir

et al., 2008; Weber et al., 2013) (Fig. 2). Object detection is

either based on region properties (e.g. bright regions can be

segmented from background by intensity thresholding), or based
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Fig. 1. The machine-learning pipeline for analysis of microscopy data. The canonical processing steps include image preprocessing, object

detection, feature extraction, classifier training and classification. Classifier training yields a classifier by learning from a representative set of annotated training

examples. Afterwards, new objects are automatically predicted in the classification phase. The image data used for illustration of the workflow shows live

human HeLa cells stably expressing a fluorescently labeled chromatin marker [core histone 2B fused to mCherry (Held et al., 2010)].

Journal of Cell Science 126 (24)5530



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

on contours (e.g. edges can be detected based on the local

image gradient). No single method, however, is suitable to

solve all possible segmentation problems in cell-based

screening, and it is therefore inherently difficult to generalize

the image segmentation method. The segmentation of the image

can also be facilitated by machine learning: pixel classifiers that

work on local pixel neighborhoods aim to learn to separate

foreground (e.g. cells) from background by classifying whether

pixels belongs to an object (Tu and Bai, 2010; Sommer et al.,

2011).

To ease the image segmentation task, many imaged-based

screening projects use reference markers such as fluorescent

chromatin or DNA labels (Kittler et al., 2007; Collinet et al.,

2010; Neumann et al., 2010; Schmitz et al., 2010; Mercer et al.,

2012). On the basis of the primary segmentation marker,

secondary object regions can be derived in order to probe

diverse secondary markers without the need to adapt the program

code for segmentation of the secondary image channel.

When analysis on a single-cell level is not required, it is

possible to apply machine learning on unsegmented images

Raw image Prediction of pixel classes

Segmented image

Rasterized images

Training by object labeling Prediction of object classes

Training by whole-image labeling

A

B

C Prediction of image class

Experimental condition 1
Experimental condition 2

Training by brush stroke

Interphase Metaphase
Background

Interphase Metaphase

Fig. 2. Image classification by supervised machine learning at the level of pixels, cell objects or whole images. Image data shows human HeLa cells

expressing a chromatin marker as in Fig. 1. (A) Pixel classification for image segmentation using ilastik (Sommer et al., 2011). Pixels of cells and background

regions are annotated interactively by brush strokes according to pre-defined classes. Features of the labeled pixels and their local neighborhood are then used to

learn a pixel classifier. Afterwards, this classifier is used to predict new images in a pixel-wise fashion to obtain a partitioning of the image into the

phenotype classes. (B) Object classification for analysis of cellular phenotypes with CellCognition (Held et al., 2010). Each segmented cell is user-labeled

according to its cell cycle state in order to learn a classifier, which is then applied to unseen data to predict cell morphology classes. Total accuracies of .95% can

be achieved by this approach, such as in the discrimination of eight different cell cycle stages based on a chromatin marker (Held et al., 2010). Similar approaches

have been used to screen for DNA damage response signaling (Doil et al., 2009) and to classify subcellular protein localization (Boland and Murphy, 2001).

(C) Segmentation-free image classification by Wndchrm software (Shamir et al., 2008). Image features characterize the image as a whole and classification

outputs a class membership per image. Segmentation-free approaches are applied in cases in which segmentation of objects is difficult or impossible owing to high

cell densities (cells are touching) or when dealing with complex cellular structures, such as dendrites of neuronal cells (Weber et al., 2013).
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(Fig. 2C) by classifying image features that do not require object

segmentation (Huang and Murphy, 2004) or by learning

phenotypic distances based on rectangular image patches

(Hamilton et al., 2009; Rajaram et al., 2012a).

Feature extraction

Following segmentation, each object needs to be described by

quantitative features that form the basis to distinguish them by a

classifier algorithm. The performance of a machine-learning

pipeline relies substantially on an appropriate collection of

relevant features (Hastie et al., 2005; Bishop, 2006; Tarca et al.,

2007; de Ridder et al., 2013). The raw image pixel intensities are

not well suited as features, because they withhold information on

spatial and spectral patterns and can contain undesirable

information such as the absolute orientation of cell objects

(Huh et al., 2009). Thus, descriptive features need to be derived

from the pixel intensities that enrich information relevant for

classification.

Two types of features are widely used to describe cell objects in

microscopic images. Texture features quantify the distribution of

pixel intensities within each object. Simple examples are mean

intensity and standard deviation. More advanced texture features

measure the granularity at different scales (Chen et al., 1995; Chebira

et al., 2007) or pixel–pixel co-occurrence patterns (Haralick, 1979). A

second class of feature describes the contour on the basis of the

segmentation mask, for example, the contour roughness or circularity

(Liu et al., 2011). Many powerful morphometric features are abstract

representations of images and therefore difficult to intuitively relate to

visual inspection of the cell image. Relevant features that relate to a

phenotype can be automatically determined by the learning algorithm,

and will vary with the specific biological marker and assay (Fig. 3).

To avoid tedious manual adaptations of feature sets for each specific

application, multi-purpose feature libraries have been developed, and

these cover the needs for most cell biological assays (Jones et al.,

2008; Held et al., 2010; Shariff et al., 2010).

Even though a versatile applicability of a machine-learning

pipeline requires comprehensive feature sets, gathering more

features does not always improve performance. This is because

the increase in dimensionality with each feature renders the

classification task exponentially more complex. This is referred

to as the ‘curse of dimensionality’ (Hastie et al., 2005) and can be

addressed by algorithms that reduce dimensionality, for example,

by selecting the most informative features (Loo et al., 2007;

Saeys et al., 2007). Engineering the right set of features is often

key to the success of a machine-learning project, and at least as

important as using the right learning algorithm (Fig. 4).

In summary, the processing pipeline yields a set of objects

(typically representing cells), each of which is associated with an

ordered list of feature values called the feature vector. Objects are

thus represented in a multi-dimensional feature space, where the

number of features defines the dimensionality. The challenging

task of supervised machine learning is then to infer rules for how to

Feature 1

Fe
at

ur
e 

2

Feature 1

Fe
at

ur
e 

2

Feature 1

Fe
at

ur
e 

2

Feature 1

Fe
at

ur
e 

2

Principal component 1

P
rin

ci
pa

l c
om

po
ne

nt
 2

Principal component 1

P
rin

ci
pa

l c
om

po
ne

nt
 2

C Support vector machine 
with Gaussian kernel

B
Linear support vector machine

A
User-labeled objects in feature space

FED
Objects in original feature space Principal component analysis Gausian mixture modelling

Fig. 3. Object representation in feature space. Data points are extracted from image data as shown in Figs 1 and 2 (Held et al., 2010). (A–C) Supervised

machine learning. (A) Each dot represents one cell object of representative metaphase (red) or interphase cells (green), as shown in Fig. 1. The two feature

dimensions have been arbitrarily chosen from a full set of 239 features (Held et al., 2010). (B) A decision boundary between interphase (green area) and metaphase

(red area) cells was derived by a linear support vector machine based on the labeled training objects. (C) As in B, but using a non-linear support

vector machine with a Gaussian kernel. (D–F) Unsupervised machine learning. (D) Each dot represents one cell object of the same data shown in A, but metaphase

or interphase was not annotated by the user. (E) The original set of 239 features was transformed by principal component analysis. The same objects

shown in A–D are plotted on the axes of principal components 1 and 2. (F) The cell objects shown in D and E were clustered by Gaussian mixture models (Bishop,

2006) on the first two principal components. Red and green indicate the two different cluster labels.
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discriminate different classes of objects in this multi-dimensional

feature space.

How does a machine learn?
As discussed above, there are two different types of machine

learning, supervised and unsupervised learning. Supervised

learning is guided by user training with the goal of subsequently

applying a learned program to a similar task on independent large

data sets (Hastie et al., 2005; Bishop, 2006; Tarca et al., 2007;

Domingos, 2012; de Ridder et al., 2013). Unsupervised learning,

by contrast, is fully independent of user interaction and aims to

recognize patterns in the data to facilitate the interpretation of

complex multi-dimensional data (Hastie et al., 2005; Bishop, 2006;

Tarca et al., 2007; de Ridder et al., 2013). As supervised machine

learning has been used much more widely in cell biology, we focus

our Commentary on this approach and only outline general aspects

of unsupervised methods at the end of this section.

Supervised machine learning: learning from user-defined
examples

In supervised machine learning, a human expert first defines the

processing task by annotating a small subset of objects from the

original data set, for example, by phenotype labels according

to cell morphology (Fig. 1). This training data serves to

automatically infer internal parameters of a learning model (the

learner), which is then applied to discriminate between the

different classes of objects in the full data set. Thus, the overall

task of supervised machine learning is to generalize from a few

selected examples.

The supervised learning process is guided by an objective

function, which evaluates how well the learner adapted to the

training data (Hastie et al., 2005; Bishop, 2006; Domingos,

2012). On the basis of the objective function, an optimization

procedure seeks parameters that yield the best learner.

Importantly, the overall goal is to obtain a learner that

generalizes: the learner needs to perform well on data that was

not used for training. It is therefore essential to withhold a

fraction of the training data to test this. If the learning

performance were only evaluated based on the data used for

learning, a simple memorization of the examples might perform

best, which is likely to yield poor results on independent data.

Various strategies have been developed for optimal splitting of

training data into fractions that serve learning and testing,

respectively (see below).

Supervised machine learning has been an important backbone

for analysis pipelines in many high-content screening projects

Image pre-processing, segmentation (optional), feature extraction

Automated microscopy

Manual object labeling 
for classifier training

Apply learning method to large-scale data-set

Accurate predictions 
on test data?

Object labeling with 
active learning

       Optimize feature set
or reduce feature dimensions

Phenotype examples
available?

Object annotation for 
classifier training?

Extend training set and/or
optimize feature set

Yes No

Straightforward Difficult

Yes YesNo No

Supervised learning Unsupervised learning

Consistent clustering?

Ye o

Fig. 4. Implementing and optimizing a machine-

learning pipeline in image-based screening.
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(Kittler et al., 2007; Fuchs et al., 2010; Neumann et al., 2010;

Schmitz et al., 2010; Mercer et al., 2012). The strengths of

supervised machine learning are intuitive assay development

based on examples, the versatility and applicability to diverse

assays, and efficient and robust computation of large datasets.

This approach, however, depends on phenotype examples, which

precludes searching for novel and unexpected phenotypes in

screens.

The models underlying machine-learning algorithms

How is the learning process implemented in a computer

algorithm? There are two principally different types of learning

models: generative approaches, which model the distribution of

data points, or discriminant approaches, which model decision

boundaries between different classes (Hastie et al., 2005; Bishop,

2006; for details on specific algorithms, see Box 1).

Generative methods model statistical distributions underlying

the data objects. This can be based on certain probability

distributions (e.g. Gaussian distributions), whose parameters are

estimated from the training data (parametric models). Decision

boundaries that separate data points according to their class

membership are formed implicitly. Generative models can be

used to synthesize new data points, which might be useful in

some specialized applications [e.g. simulation of cell morphology

(Buck et al., 2012; Rajaram et al., 2012b)]. Generative models

have also been successfully applied to correct misclassifications

of cell cycle stages, aided by temporal information in time-lapse

movies (Held et al., 2010) or the discovery of new biologically

active peptide hormones by searching for sequence features in

protein sequences (Mirabeau et al., 2007) using hidden Markov

models (Rabiner, 1989).

Discriminant approaches, by contrast, directly model the

decision boundary between different classes rather than the

distribution of data points. The simplest implementation is a

linear decision boundary (or a hyperplane in high-dimensional

feature space). Linear discriminant methods are very robust

towards noise in the data, yet their decision boundaries cannot

accurately discriminate objects of different classes if they are

distributed in complex patterns, such as typically observed for

cell morphologies (Meyer et al., 2003; Loo et al., 2007; Fuchs

et al., 2010; Held et al., 2010; Neumann et al., 2010). Most

discriminant methods used in cell biological applications,

therefore, use non-linear classifiers, which can express more

complex decision boundaries.

The complexity of non-linear decision boundaries can range

from smoothly bent functions to arbitrary rugged and

unconnected boundaries (Fig. 3A–C). The more complex a

decision boundary, the better it can separate complex

distributions of data points. By contrast, complex decision

boundaries are more likely to represent details that are specific

to the sampled training data or noise and therefore might not

apply to the general distribution of other data points.

These characteristics of classifiers are referred to as bias and

variance (Hastie et al., 2005; Bishop, 2006; Domingos, 2012). A

high bias means a strong preference of the learner to follow its

internal model assumptions, even if this does not match well to

the training data. A linear classifier will therefore always yield a

linear classification boundary even if this leads to severe

misclassifications on non-linear data distributions. A low bias,

by contrast, indicates that a classifier has no strong internal

model assumptions and is able to adapt to arbitrary cluttered

training data. A learner with the lowest bias, however, is not

necessarily the optimal solution, because the ability to generalize

from training data are also assessed by a second parameter

termed variance.

The variance of a classifier indicates its stability when

repeatedly applied to subsets of training data points drawn

independently from the same underlying data source (e.g. the

same biological experiment). Classifiers with a low variance

produce similar decision boundaries when applied to different

training sets, whereas high variance classifiers are prone to adapt

to noise and particularities of that very instance of training data.

A major design goal for machine-learning algorithms is to

optimize the trade-off between bias and variance. In many

implementations, this can be controlled by parameters whose

optimal values depend on the specific experimental data.

Box 1. Supervised classification algorithms

State-of-the-art supervised classification methods have been

optimized towards classification accuracy, computational

performance, learning from as few training objects as possible

and versatility in their application. Widely used algorithms are

described below.

Support vector machines

Support vector machines (SVMs) aim to find a decision hyperplane

that separates data points of different classes with a maximal

margin (i.e. maximal distance to the nearest training data points).

Because data points of different classes might not always be

completely separable by a hyperplane, most SVM implementations

are based on a soft margin, which allows misclassifications at a

certain cost value. SVMs themselves are linear classifiers, but they

can generate non-linear decision boundaries if the data points are

transformed beforehand to higher dimensions (such as a Gaussian

kernel) using a mapping function (Vapnik, 2000). SVMs are

relatively robust towards noisy features and are computationally

efficient, and implementations are available in diverse bioimaging

software packages (Held et al., 2010; Conrad et al., 2011; Horvath

et al., 2011).

Adaptive boosting

Adaptive boosting (AdaBoost) combines several ‘weak’ learners to

form a ‘strong’ classifier by iteratively adding and reweighting

simple classifiers such as thresholds (Freund and Schapire, 1995).

Owing to its iterative nature, boosting is particularly suitable for

interactive online learning (Jones et al., 2008). However,

AdaBoost is relatively sensitive towards noisy data and outliers

(Kanamori et al., 2007). A widely used implementation,

GentleBoost (Friedman et al., 2000), is available in the

bioimaging software package CellProfiler Analyst (Jones et al.,

2008).

Random forest

Random forests (RFs) (Breiman, 2001) train an ensemble of

decision trees (Breiman et al., 1983) under random influence to

average their outcome. Averaging the prediction of an ensemble

reduces the overall variance while maintaining the low bias typical

for decision trees. RFs are robust in high dimensions, because of

an implicit feature selection, and are computationally efficient and

easily parallelizable. An RF implementation widely used in cell

biological applications is available (Kaynig et al., 2010; Sommer

et al., 2011).
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In light of the diversity of supervised machine-learning
methods, how can we identify the best algorithm? Important

requirements are maximal accuracy and versatile application to
diverse cell biology assays without the need to adapt software.
Whether generative or discriminative classification approaches

are better suited to solve a machine-learning task depends on
how well internal model assumptions are met in the data (Ng
and Jordan, 2002). For instance, support vector machines
(discriminative approach) are widely used in cell biology

(Meyer et al., 2003; Loo et al., 2007; Fuchs et al., 2010; Held
et al., 2010; Neumann et al., 2010) owing to their good average
performance among benchmark data sets (Meyer et al., 2003) and

applicability to different data structures (Hastie et al., 2005).
However, generative approaches, such as linear discriminant
analysis, might be favorable in other cases, such as classifying

the phenotypes of the actin cytoskeleton in Drosophila

melanogaster cells (Wang et al., 2008).

Other considerations can be taken into account depending on

the specific application. For example, methods are preferred if
they require only small numbers of training objects for good
performance. Some applications might require a human to

interpret the decision rules of the classifier. Other applications
might need a particularly fast computing performance. Some
methods that have been found to be particularly versatile and
powerful for cell biological applications are specified in Box 1

and software implementations are listed in Box 2.

How to measure and optimize the performance of
machine learning?

The most widely used performance metric for a learner is total

error, that is, the ratio of incorrect classifications divided by the
total number of objects. Depending on the learning task, it can be
useful to decompose the total error into false-positive and false-

negative errors, which enables specific optimization strategies.
For instance, if an RNA interference screen yields a long
candidate gene list that cannot be completely validated by
secondary assays, it could be useful to minimize false-positive

prediction of phenotypes, taking into account that some potential
phenotypes might be missed. If the most important goal of a
screen is comprehensiveness and it is feasible to validate all

candidates by secondary analysis, then it might be preferred to
minimize false-negative classifications (e.g. misclassification of
a phenotype as a negative control morphology) by taking into

account an increased false-positive error rate.

Accurate evaluation of the performance of a machine-learning
method needs a comprehensive and representative data set for the

specific goal. In light of the diversity of data types and analysis
tasks in cell biology, it is often difficult to estimate the
performance of published learning methods based on the

specific proof-of-concept data used in the respective study. For
objective benchmarking of learning methods in high-content
screening, several annotated reference data sets have been

published (Ljosa et al., 2012; Rajaram et al., 2012b).

How many data objects are required to train a good learner?
Unfortunately, there is no general rule, because this depends on

the method and the variability within the specific data set. In
practice, some applications can yield satisfying results by training
with ten objects per class, although most applications will require

substantially more. Discriminative methods typically need more
training objects to achieve a satisfactory performance than do
generative models (Ng and Jordan, 2002). Irrespective of the

learning algorithm, an increase in the number of features

generally requires more training examples (Hastie et al., 2005).

The most important evaluation criterion for a learner is its ability

to generalize (Hastie et al., 2005; Bishop, 2006; Tarca et al.,

2007; Domingos, 2012; de Ridder et al., 2013). To measure this,

the available annotated reference data needs to be split into three

subsets. The first fraction of objects is used for the initial

learning. A second fraction of objects serves to improve the

parameter settings of the learner. Finally, the performance of the

learner is evaluated against the third fraction, the independent test

Box 2. Machine-learning software for cell biologists

Machine learning methods have been implemented in a number

of open-source software projects dedicated to high-content

screening data (Shamir et al., 2010; Eliceiri et al., 2012).

CellProfiler and CellProfiler Analyst (Carpenter et al., 2006;

Jones et al., 2008; Kamentsky et al., 2011) (http://www.cellprofiler.

org). A particular strength of these software packages is a modular

workflow design, which enables rapid development of analysis

assays. CellProfiler Analyst provides a multi-class active learning

interface based on boosting. CellProfiler runs on all major

operating systems and supports computing on clusters for large-

scale screening.

CellCognition (Held et al., 2010) (http://www.cellcognition.org/)

has been optimized for time-resolved imaging applications. It

comprises a complete machine-learning pipeline from cell

segmentation and feature extraction to supervised and unsupervised

learning. CellCognition runs on all major operating systems and

supports computing on clusters for large-scale screening.

ilastik (Sommer et al., 2011) (http://www.ilastik.org/) is an

interactive segmentation tool based on pixel classification, which

facilitates more complex image-segmentation tasks and provides

real-time feedback.

Bioconductor imageHTS and EBImage (Gentleman et al.,

2004; Pau et al., 2010; Pau et al., 2013) (http://www.bioconductor.

org/; http://bioconductor.org/packages/devel/bioc/html/imageHTS.

html) provide a versatile toolbox for statistical data analysis and

image processing in the programming language R.

PhenoRipper (Rajaram et al., 2012a) (http://www4.

utsouthwestern.edu/altschulerwulab/phenoripper/) learns the

phenotypic distance of cell populations without the need to

segment individual cells.

Wndchrm (Shamir et al., 2008) (https://code.google.com/p/wnd-

charm/) provides a command-line program for the segmentation-

free classification of entire images.

Fiji (Schindelin et al., 2012) (http://fiji.sc/Fiji) is an ImageJ (Java)

distribution that contains many image-analysis and machine-

learning plug-ins.

CellExplorer (Long et al., 2009) provides 3D image analysis

and machine-learning methods in MATLABH.

Data format standards for high-content screening such as

CellH5 (Sommer et al., 2013) and SDCubes (Millard et al., 2011)

aim at facilitating inter-operability between different software

packages by storing multi-dimensional original image data

together with processing parameters and intermediate

processing results. CellH5 has interfaces to R Bioconductor

(Gentleman et al., 2004) and CellCognition (Held et al., 2010),

and can be natively accessed from all major programming

languages; SDCubes has been implemented for ImageRails

(Millard et al., 2011).
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data. This procedure prevents overfitting and allows for a good

generalization (Hastie et al., 2005; Bishop, 2006; Tarca et al.,
2007; Domingos, 2012; de Ridder et al., 2013).

To make most efficient use of a limited number of training

objects, a procedure termed k-fold cross-validation has been
developed (Kohavi, 1995; Ambroise and McLachlan, 2002). The
training data set is partitioned into a user-defined number of

k subsets, of which all but one are used for initial training of
the learner. The remaining fraction serves to measure the
performance of the learner and optimize its parameters. This is

repeated for all fractions of data, typically five or ten times.

When a specific class is highly overrepresented in the data, an
optimization towards total accuracy might yield a learner that

performs poorly on predicting the less-abundant classes. This
problem can be tackled either by sub-sampling only a fraction of
training objects from the abundant classes while preserving all
training objects from the less-abundant classes, or by specialized

learning algorithms (Kotsiantis et al., 2006).

What overall accuracy can we expect from machine learning in
a typical cell biological experiment? This is difficult to express

in absolute numbers because it depends on many different
parameters and the quality of the data. Many cell biological
applications have achieved total accuracies of .90%, often

within the range of object labeling inconsistencies between
different human annotators.

Unsupervised machine learning – learning from intrinsic
data structure
In some biological applications it is difficult or impossible to

define a training data set, which precludes the use of supervised
machine-learning methods. For example, an image-based screen
might be aimed at the discovery of a hypothetical morphological
deviation that has not been observed before. In such cases,

unsupervised machine-learning methods can be used to detect
individual outlier objects or clusters of objects that differ from
the control group in a dataset (Fig. 3D–F). The overall goal of

unsupervised machine learning is the identification of structures
in the input data without prior user definition of the output.

In the absence of annotated training data, the definition of an

objective function becomes more difficult, as it cannot make use
of classification error rates. Instead, objective functions in
unsupervised learning are typically based on distances in the

feature space. For instance, clustering methods aim to group
objects into clusters by minimizing the distance between objects
within each cluster and maximizing the distance between
different cluster centers (Bishop, 2006; Box 3).

Another widely used unsupervised method is dimensionality
reduction (Van der Maaten et al., 2009), which aims to find a less
redundant and lower-dimensional representation of the data

points, keeping as much information as possible from the original
high-dimensional feature space (Fig. 3D,E). Dimensionality
reduction enables better visualization of the data points and

thereby facilitates data mining by visual inspection.

Despite the advantage of fully automated data analysis without
user training, unsupervised learning has not yet been widely used

in cell biological applications. The biggest problem is the
relatively poor performance on noisy data and the unpredictable
output, which limits the interpretation, particularly when the

cluster differences relate to complex combinations of multiple
features. To overcome these limitations, some applications of
unsupervised learning have incorporated additional knowledge

about the data, such as, for example, temporal constraints on
morphological transitions (Zhong et al., 2012) or non-negativity
constraints on gene expression data (Devarajan, 2008).

Box 3. Unsupervised machine-learning algorithms

The main disciplines of unsupervised learning are clustering and

dimensionality reduction. Clustering aims at assigning categorical

class labels to data points without prior training. Widely used

clustering methods are described below.

k-means clustering

k-means clustering finds a user-defined number (k) of clusters by an

iterative procedure. The cluster centers are initialized randomly and

each data point is first assigned to the closest cluster center. Then,

each cluster center is recalculated based on the mean of all assigned

data points. This is repeated until convergence (i.e. the cluster centers)

does not change beyond a significance threshold in the update step.

Gaussian mixture model

Gaussian mixture model (GMM) extends k-means clustering

by accounting for more complex data distributions. In addition

to estimating cluster centers (means), each cluster center

is associated with parameters that describe a Gaussian

distribution. The estimation of a variance per cluster enables the

modeling of data clusters with elliptical data spread.

Hierarchical clustering

In contrast to k-means and GMM clustering, hierarchical clustering

is directly based on distances between the data points. In the first

step, all data points are defined as single clusters. Then clusters

are merged according to a linkage criterion based on small

distances. This process is recursively applied, yielding a

hierarchical cluster tree termed a dendrogram. Hierarchical

clustering has been widely used to visualize similarities between

complex phenotypes and is implemented in, for example,

Bioconductor (Gentleman et al., 2004).

Dimensionality reduction

Dimensionality reduction is used to facilitate visual inspection of

high-dimensional data. This is necessary because data points are

very scarcely distributed in the high-dimensional feature space,

which grows exponentially with the number of dimensions (Hastie

et al., 2005; Bishop, 2006; Domingos, 2012). Dimensionality

reduction also enables a more compact and less redundant

visualization of the data owing to the smaller number of features.

Widely used methods for dimensionality reduction are:

N Principal component analysis (PCA), which maps original

data points by a linear transformation (rotation) to a new

feature space, where all transformed features are mutually

uncorrelated. The resulting dimensions (principal components,

PCs) are ranked by the amount of variance they cover in the

data. The highest-ranked PCs thus enrich relevant information,

and low-ranked PCs can be removed for further data analysis

(Fig. 3). Owing to its wide applicability and effectiveness, PCA

is often used for visualization and as a preprocessing step in

classification and clustering.

N Independent component analysis (ICA) is related to PCA, but

searches for a non-linear transformation that yields maximally

independent dimensions.

N Multidimensional scaling (MDS) aims to construct a lower-

dimensional mapping such that the original distances are

preserved as much as possible.

N Feature selection, by contrast, does not transform the original

data, but instead selects a subset of most relevant dimensions

from the original space, which is easier to interpret.
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Active learning – computer assists the user in data
annotation

A major bottleneck in supervised learning is the generation of
user-annotated labels. Human experts might introduce bias and

subjective variability into the training data set if information
about the true object state is unattainable (Zhong et al., 2012). In
addition, it is difficult, and in many cases impossible, to

anticipate the gain in learning achieved by selecting and
annotating a particular data point. The annotation of rare and
extreme phenotypic responses might be more informative than
repeated adding of samples to an already well-annotated class,

yet the user might not have the expertise in identifying the best
training sample sets.

This limitation is addressed by active learning methods. The
learning algorithm selects data points autonomously and presents

them to the human expert for labeling. Data points are selected by
the learning algorithm in order to maximize the learning
progress, and hence, minimize the overall annotation effort

(Jones et al., 2009). The criteria for selecting and proposing
objects for annotation is typically based on uncertainty measures,
whereby the most uncertain objects (from the perspective of the

learner) are selected first. Similarly, interactive learning aims to
shorten the feedback loop in the annotation process. Directly
applying the learning result to other yet-unlabeled data samples
allows the expert to inspect the current power of the learner

visually and thus helps to identify cases with wrong predictions.

The prioritization of computer-selected data points can indeed
improve the learning rate (Tomanek and Olsson, 2009) by
guiding the human expert in establishing a comprehensive

training data set (Fig. 4). Interactive learning requires fast
algorithms and efficient software implementations and thus
might not always be applicable.

Some experimental design guidelines
Reproducibility of the image-recording procedure is of utmost
importance for the successful application of machine learning.
Machine learning is designed to generalize from examples, but it
will only generalize from variability that was present in the

training data. For example, slight changes in the image focal plane,
which might not even be noticed by a human observer, can
introduce variability into the data that leads to systematic

misclassifications. It is therefore strongly advisable to use
autofocus devices to maximize reproducibility of image recording.

Similarly, the illumination intensity should be kept absolutely
constant. Variable illumination intensities result in different noise

levels, which can bias the classification. Conventional mercury or
xenon light sources have variable illumination intensities
depending on their lifetime and the heat-up time, for which
compensation is required. New light sources, such as LEDs or

solid-state lasers, yield a more stable output and are therefore
preferable for machine-learning applications. Variable cell
densities or differences in low-level image features owing to

the experimental setup (such as microscope settings or different
imaging media or incubation temperatures) that are not related to
a biological phenotype can severely compromise the reliability of

machine-learning methods (Shamir, 2011). An experimentalist
should therefore keep environmental conditions as constant
as possible. Data quality and reproducibility can be assessed

by automated quality control (Zeder et al., 2010) and by
incorporating control treatments in the assay. Differences in
image features resulting from experimental variations are

unlikely to be become obvious in the evaluation of the

machine-learning method itself and thus have to be avoided
early on in data acquisition and sample preparation.

Feature design has a great impact on the overall performance,
as the learner can only learn what it has ‘seen’ in terms of

features. The design and selection of optimal features can be

difficult; however, general-purpose feature sets work well

for most morphology-based assays (Hu and Murphy, 2004;
Carpenter et al., 2006; Jones et al., 2008; Held et al., 2010).

Engineering of specialized features might be necessary for

specific biological assays, but should be envisioned only after
unsuccessful application of general-purpose feature sets (Fig. 4).

Machine learning in cell biology – conclusions
and outlook
Machine learning has tremendous power in the analysis of large-

scale microscopic image data. Some representative examples for

typical machine-learning applications are screens for mitotic
regulators (Kittler et al., 2004; Neumann et al., 2010; Schmitz

et al., 2010; Wurzenberger et al., 2012), control of cellular stress

responses (Wippich et al., 2013), factors involved in ribosome
biogenesis (Wild et al., 2010) and cellular host factors involved

in virus infection (Mercer et al., 2012). Unsupervised machine

learning has been used, for example, to study the heterogeneity of

cell responses to diverse drugs (Loo et al., 2009; Singh et al.,
2010), to construct genetic interaction profiles (Horn et al., 2011)

and for automatic staging of mitotic progression (Zhong et al.,

2012).

Current implementations of machine-learning software for cell

biology have been optimized for the needs of large-scale screens.

However, most cell biological studies are hypothesis driven and
require frequent adaptations of the assay for testing small sets of

candidate experimental perturbations. In such an experimental

framework, many biologists still visually inspect data and
develop quantification methods based on specific rule sets that

are implemented manually as macros or software plug-ins. This

approach is tedious and the data analysis often still requires some

level of user interaction. By further improving the usability of
software interfaces, machine learning could eventually replace

most manually programmed analysis pipelines to facilitate assay

development and increase processing throughput, accuracy and
objectivity.

The power of machine learning can be further leveraged by a

seamless integration into the image-acquisition process (Conrad
et al., 2011). As state-of-the-art microscopes support full

motorization and specimen interaction (e.g. by photobleaching

at defined image areas or compound dispensing), automatic
online recognition of phenotypes enables intelligent imaging

workflows with highly sophisticated biological assays.
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Support vector machines and kernels for computational biology. PLOS Comput. Biol.

4, e1000173.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:

Springer.

Boland, M. V. and Murphy, R. F. (2001). A neural network classifier capable of

recognizing the patterns of all major subcellular structures in fluorescence microscope

images of HeLa cells. Bioinformatics 17, 1213-1223.

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32.

Breiman, L., Friedman, J., Olshen, R., Stone, C., Steinberg, D. and Colla, P. (1983).

CART: Classification and Regression Trees. Belmont, CA: Wadsworth.

Buchser, W., Collins, M., Garyantes, T., Guha, R., Haney, S., Lemmon, V., Li,

Z. and Trask, O. J. (2004). Assay development guidelines for image-based high

content screening, high content analysis and high content imaging. In Assay Guidance

Manual (ed. G. S. Sittampalam, N. Gal-Edd, M. Arkin, D. Auld, C. Austin, B. Bejcek,

M. Glicksman, J. Inglese, V. Lemmon, Z. Li et al.). Bethesda, MD: Eli Lilly &

Company; National Center for Advancing Translational Sciences.

Buck, T. E., Li, J., Rohde, G. K. and Murphy, R. F. (2012). Toward the virtual cell:

automated approaches to building models of subcellular organization ‘‘learned’’ from

microscopy images. Bioessays 34, 791-799.

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman,

O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J. et al. (2006).

CellProfiler: image analysis software for identifying and quantifying cell phenotypes.

Genome Biol. 7, R100.
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