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ABSTRACT
Cells constantly adapt to various environmental changes and
stresses. The way in which nutrient and stress levels in a cell feed
back to control metabolism and growth are, unsurprisingly, extremely
complex, as responding with great sensitivity and speed to the ‘feast
or famine, slack or stress’ status of its environment is a central goal for
any organism. The highly conserved target of rapamycin complex 1
(TORC1) controls eukaryotic cell growth and response to a variety of
signals, including nutrients, hormones and stresses, and plays the
key role in the regulation of autophagy. A lot of attention has been paid
recently to the factors in this pathway functioning upstreamof TORC1.
In this Commentary, we focus on a major, newly discovered upstream
regulator of TORC1 – the multiprotein SEA complex, also known as
GATOR. We describe the structural and functional features of the
yeast complex and its mammalian homolog, and their involvement in
the regulation of the TORC1 pathway and TORC1-independent
processes. We will also provide an overview of the consequences of
GATOR deregulation in cancer and other diseases.
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Introduction
Target of rapamycin (TOR) is a serine/threonine kinase, which
belongs to the phosphatidylinositol 3-kinase (PI3K)-related
family. TOR is highly conserved in eukaryotes and is also called
mTOR (mammalian or mechanistic TOR) in various organisms
(Hall, 2013). It phosphorylates a large number of targets, and its
kinase activity is modulated in response to various stresses (Fig. 1)
(Bar-Peled and Sabatini, 2014; Laplante and Sabatini, 2012;
Loewith and Hall, 2011). The budding yeast Saccharomyces
cerevisiae has two TOR-encoding genes (TOR1 and TOR2),
whereas almost all other eukaryotes have a single TOR-encoding
gene. TOR can form two distinct complexes, known as TOR
complex 1 and complex 2 (TORC1 and TORC2, respectively),
which respond to somewhat different (although overlapping)
stress signals, and together are among the most important hubs in
the cellular metabolic and signaling pathway. TORC1 is the target
of the SEA complex (Seh1-associated, see below) and controls
transcription, ribosome biogenesis, translation, autophagy,
glycolysis, lipogenesis and pyrimidine biosynthesis (Fig. 1)
(Bar-Peled and Sabatini, 2014; Betz and Hall, 2013; Dibble and
Manning, 2013).
TORC1 can be found in several subcellular locations, although it

appears that one of itsmain sites of action is around theyeast vacuole or
the mammalian lysosome (which in many ways is the functional

equivalent of the vacuole) (Betz and Hall, 2013). Vacuoles and
lysosomes are the storage and recyclingdepots of the cell. Among their
many roles, they mediate protein degradation, store amino acids, and
sequester small ions and polyphosphates (Li and Kane, 2009; Luzio
et al., 2007). These organelles are also key players in autophagy – a
process inwhich cytosol and organelles are sequesteredwithin double-
membraned vesicles, which deliver their contents to the vacuole or
lysosome fordegradationor recycling (Yang andKlionsky, 2009).The
lysosome also plays an active role in amino acid sensing through its
proton pump, the vacuolar type H+-ATPase (v-ATPase) (Zoncu et al.,
2011), and it is likely that the vacuole plays a similar role. Localization
of TORC1 to the vacuole is independent of nutrient availability (Binda
et al., 2009), whereas, in mammals, translocation of mTORC1 to the
lysosome is stimulated by nutrients (Sancak et al., 2008).

TORC1 integrates signals from many intracellular and
extracellular cues – amino acids, growth factors, energy, and
oxygen. The transmission of these signals to TORC1 requires the
coordinated interaction ofmany kinases and GTPases, as well as their
modulators and substrates. In particular, the pathways upstream of
TORC1 are governed by the action of GTPases and their effectors,
such as GTPase-activating proteins (GAPs), which stimulate GTP
hydrolysis, guanine-nucleotide-exchange factors (GEFs), which
promote GDP dissociation, and guanine nucleotide dissociation
inhibitors (GDIs), which inhibit GDP dissociation (Fig. 2; Box 1).
Recently a new upstream regulator of the TORC1 pathway, the yeast
SEA complex, has been identified and shown to be part of this web of
GTPase effectors (Algret and Dokudovskaya, 2012; Panchaud et al.,
2013b). Importantly, its homolog in mammals, the GATOR complex
(GAP towards Rags, see below), was subsequently identified and
also shown to play a similar key regulatory role (Bar-Peled et al.,
2013; Bar-Peled and Sabatini, 2014).

This Commentary is the first comprehensive review on the SEA/
GATOR complex and will focus on the structural and functional
features of the yeast complex and its mammalian homolog, and their
involvement in the regulation of the TORC1 pathway and TORC1-
independent processes. We will also provide an overview of the
consequences of GATOR deregulation in cancer and other diseases.

The SEA complex – a newly identified regulator of TORC1
The SEA complex was identified through an unusual route (Algret
and Dokudovskaya, 2012; Dokudovskaya and Rout, 2011;
Dokudovskaya et al., 2011). On mapping the interactome of yeast
nucleoporins (the proteins making up the nuclear pore complex), we
found that one nucleoporin, Seh1, appeared to be ‘moonlighting’
outside of the nuclear pore, in another complex entirely. This
complex contains four high-molecular-mass proteins: Yjr138p (also
known as Iml1), Yol138p (also known as Rtc1), Ydr128p (also
known as Mtc5) and Ybl104p. To reflect their association with
Seh1, these proteins were given a common name, Sea (for Seh1-
associated), and named Sea1 through Sea4, respectively. Three
other protein components complete the full SEA eight-protein
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complex: Sec13, Npr2 and Npr3 (Dokudovskaya et al., 2011).
Sec13 is also a component of the nuclear pore (Alber et al., 2007;
Siniossoglou et al., 2000) and, in addition, pairs up with Sec31 to
form the outer coat of coat protein complex II (COPII) vesicles
involved in ER trafficking (Fath et al., 2007; Stagg et al., 2006;
Stagg et al., 2008). Phylogenetic analyses have demonstrated that
these SEA complex subunits are present across various eukaryotic
kingdoms, suggesting an origin of these factors before the last
common eukaryotic ancestor (LCEA); importantly, homologs for
all eight proteins can be clearly found in the genomes of metazoans,
including humans (Dokudovskaya et al., 2011). Indeed, affinity
capture of Mios, the mammalian ortholog of the SEA complex
component Sea4, allowed the co-precipitation of all the mammalian
orthologs of the SEA complex subunits (Bar-Peled et al., 2013). The
homologs of Npr2 and Npr3 have been also investigated in
Schizosaccharomyces pombe (Ma et al., 2013), Caenorhabditis
elegans (Zhu et al., 2013) and Drosophila melanogaster (Wei and
Lilly, 2014) (Box 2).
The SEA complex consists of two subcomplexes (Table 1),

named SEA subcomplex inhibiting TORC1 (SEACIT, see below)
and SEA subcomplex activating TORC1 (SEACAT, see below); in
mammals these are termed GATOR1 and GATOR2 (Algret et al.,
2014; Bar-Peled et al., 2013; Panchaud et al., 2013a; Panchaud
et al., 2013b). SEACIT is composed of Sea1, Npr2 and Npr3
(Depdc5, Nprl2 and Nprl3, respectively in GATOR1), and
SEACAT contains Sea2, Sea3, Sea4, Seh1 and Sec13 (Wdr24,
Wdr59, Mios, Seh1L, Sec13 in GATOR2). In yeast, SEACAT and
SEACIT can interact to form the full SEA complex (Algret et al.,
2014). In humans, it has been suggested that GATOR1 and
GATOR2 exist separately, and perhaps do not normally form a full
stoichiometric GATOR complex (Bar-Peled et al., 2013); further
work is required to establish whether the two mammalian
subcomplexes indeed exist in a stable complex.

The SEA complex – structural features and components
Two characteristics of the SEA complex and its mammalian
ortholog immediately stand out. First, they have components that
moonlight between different, functionally unrelated complexes.
Second, these different complexes are nevertheless related
structurally in that they are variations on the theme of vesicle-
coating scaffolds. The nuclear pore complex shares its core
architecture with that of vesicle-coating complexes, such as COPII
(see above), COPI and clathrin (Alber et al., 2007; Devos et al.,
2004), and one of the most remarkable structural features of

SEACAT is just how closely it resembles membrane-coating
assemblies. SEACAT shares common subunits with both COPII
(Sec13) and the nuclear pore (Sec13 and Seh1). Another subunit,
Sea4, contains N-terminalWD40 repeats arranged into a β-propeller
structure followed by an α-solenoid stretch, which is a structure that
is characteristic for proteins that form the oligomeric coats in
vesicle-coating complexes (such as clathrin and Sec31) (Devos
et al., 2004; Dokudovskaya et al., 2011; Field et al., 2011).
Furthermore, every protein in SEACAT contains a β-propeller (and
Sea3 probably has two β-propellers), a domain common in coating
assemblies (Field et al., 2011). Finally, there are two dimers, Seh1–
Sea4 and Sec13–Sea3 (Algret et al., 2014; Dokudovskaya et al.,
2011), that could be analogs to the Sec13–Sec31 dimer, which
forms the structural unit of the COPII complex (Fath et al., 2007).

Sea4 also contains a C-terminal RING domain, which together
with its β-propeller and α-solenoid motifs, makes it closely
resemble several protein subunits of the homotypic fusion and
protein sorting (HOPS) and class C core vacuole and endosome
tethering (CORVET) complexes, which have been implicated in
tethering of membranes prior to their fusion (Nickerson et al.,
2009). As their names suggest, HOPS and CORVET are associated
with the vacuoles and endosomes, respectively, and play a role in
endosomal and vacuolar assembly and trafficking, and, notably,
also in nutrient transport and autophagy (Balderhaar and
Ungermann, 2013; Nickerson et al., 2009).

The presence of the same folds and fold arrangements in both the
SEA complex and in coating and tethering assemblies, as well as
the fact that they contain the same moonlighting components, are
the key indicators that these complexes share a common
evolutionary origin. The majority of intracellular membranes are
likely a result of evolutionary expansion of an ancestral membrane-
curving module – termed the ‘protocoatomer’ complex (Devos
et al., 2004; Field et al., 2011). The SEA complex is a member of the
coatomer group, and its existence thus provides further evidence
that an expansion of the protocoatomer family underpins much of
the functional diversity of the endomembrane system.

Just like Sea4 and several of the HOPS and CORVET
components, Sea2 and Sea3 also have a C-terminal RING domain
(Table 1). Clusters of RING domains are associated with E3
ubiquitin ligase activity, suggesting that SEACATmight have such a
role. The RING domains appear to be crucial for maintaining the
interactions between Sea2, Sea3 and Sea4, and the rest of the
complex. For example, a Sea4 protein that lacks the RING domain
can only interact with Seh1, whereas Sea2 or Sea3without the RING
domain are no longer able to interact with any of the SEACAT
complex components (Algret et al., 2014). In addition, Sea3
contains an RWD domain, which is enriched in β-sheets and
common in proteins that also contain a RINGmotif and a β-propeller
(Doerks et al., 2002). The RWD domain of Sea3 strongly resembles
that of ubiquitin-conjugating E2 enzymes (Nameki et al., 2004);
however, such an enzymatic activity has never been demonstrated.
Given that SEACAT contains three proteins with RING domains, as
well as numerous β-propeller domains, which can mediate the
recognition of phosphorylated substrate within E3 ligase complexes
(Patton et al., 1998), it will be very interesting to investigate whether
SEACAT can act as a E3 ubiquitin ligase, and if this is the case, what
its targets are (e.g. SEACAT itself or perhaps SEACIT). In this
context, it is noteworthy that treatment of yeast cells with the TORC1
inhibitor rapamycin specifically increases ubiquitylation of Npr2.
Moreover, all subunits of the SEA complex (except for Sec13)
appear to be phosphorylated (Albuquerque et al., 2008; Breitkreutz
et al., 2010; Spielewoy et al., 2010) and ubiquitylated (Hitchcock
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Fig. 1. TORC1 processes numerous signals and controls diverse sets of
pathways. TORC1 is activated by growth factors, nutrients, infectious agents
and oncogenes, and is inhibited by stress and rapamycin. The axis of amino acid
signaling that is controlled by the SEA/GATOR complex is highlighted in blue.
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et al., 2003; Iesmantavicius et al., 2014), suggesting that post-
translational modifications of modulators upstream of TORC1 are
involved in the regulation of the TORC1 signaling pathway.
The structural profile of the SEACIT subunits is completely

different and they contain motifs that are typically found in GAPs
and GEFs (Table 1). Npr2 is a possible paralog of Npr3 (Kowalczyk
et al., 2012a), and both proteins possess N-terminal longin domains,
which are found in GEFs, although a GEF activity has not yet been
demonstrated for these two proteins (Levine et al., 2013; Nookala
et al., 2012; Zhang et al., 2012). Sea1 is a multidomain protein that
carries, at its center, a domain that has been shown to be important
for its GAP activity (see below) (Panchaud et al., 2013a). GATOR1
in mammals also exhibits GAP activity (Bar-Peled et al., 2013).
SEACIT components also have PEST motifs, which are often found

in rapidly degraded proteins (Dokudovskaya et al., 2011). However,
the PESTmotifs are not well preserved in mammalian orthologs and
thus could be a specific feature of the yeast SEA complex.

Sea1 in SEACIT (andDepdc5 in GATOR1) also contains domains
that are found in membrane-associated proteins, specifically, its
N-terminal Cdc48-like domain, which is immediately followed by a
vWA-like domain and a C-terminal DEP domain (Table 1). The
Cdc48-like domain is found in the SNARE chaperone Sec18/NSF,
the vWA domain of Sce23 in COPII vesicles (again returning to the
theme of coating complexes), and the DEP domain is involved in the
interactions between regulator of G protein signaling (RGS) proteins
and their membrane-bound receptors, the G-protein-coupled
receptors (GPCRs) (Ballon et al., 2006). Interestingly, the DEP
domain is also found in a Deptor subunit of mTORC1.
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Fig. 2. Schematic representation of amino acid sensing in yeast and mammals at the vacuole or lysosome. Yeast and mammalian orthologs are
designated with the same color. Functions of different TORC1 regulators, which are currently controversial in the field, are indicated with ‘?’ and dashed arrows
(see also Box 1). (A) TORC1 regulation during amino acid starvation. In yeast, SEACIT is involved in the maintenance of TORC1 at the vacuole membrane (blue
arrow and brackets). Mammalian TORC1 is diffused throughout the cytoplasm. Mammalian-specific sestrins inhibit GATOR2. SEACAT (GATOR2) inhibits
SEACIT (GATOR1). SEACIT (GATOR1) act as GAP for Gtr1 (RagA or RagB in mammals), preserving it in inactive form. Both yeast and mammalian TORC1 are
inactive during amino acid starvation. Schematic representations of the composition of the SEA and GATOR complexes are also shown. (B) Activation of TORC1
upon amino acid stimulation. In yeast, SEA acts in the form of a stoichiometric SEACIT–SEACAT complex (shown on the left), whereas theGATOR subcomplexes
GATOR1 and GATOR2 appear to act separately from each other. In mammals, Ragulator and v-ATPase undergo conformational changes that result in GEF
activity by Ragulator towards RagA or RagB. Active Ragulator–Rag then promotes the recruitment of mTORC1 to the lysosomal membrane, where mTORC1
becomes fully activated by Rheb-GTP. LeuRS and FLCN–FNIP are also involved in the interaction with Gtrs/Rags (see Box 1), but their exact molecular functions
(GEF or GAP, and for which Gtr or Rag) is currently a subject of controversy in the field. In yeast, TORC1 is activated by the EGO complex which is comprised of
Gtr1-GTP and Gtr2-GDP.
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Recently, a combination of biochemical and computational
approaches has revealed the first 3D map of the yeast SEA complex
(Fig. 3) (Algret et al., 2014), showing that SEACAT and SEACIT
form discrete modules that are connected by interactions between
the N-termini of Sea3 and both Npr3 and Sea1. Npr2 is proximal to
Sea1, whereas Seh1, Sec13 and the N-termini of Sea4 and Sea2
form a large cluster of β-propeller domains (Fig. 3). Similar
arrangements of β-propeller domains have been described at the
vertex of the evolutionarily related complexes COPI and COPII
(Lee and Goldberg, 2010).

Where in the cells are SEAs and GATORs?
The expression levels of SEA and GATOR subunits are very low,
both in yeast and in mammalian cells, making the task of determining
their localization challenging. Nevertheless, a combination of

subcellular fractionation and fluorescent microscopy of yeast SEA
components that have been genomically tagged with GFP allowed
us to show that endogenous yeast SEA complex dynamically
associates with the vacuole membrane (Dokudovskaya et al., 2011).
Although attempts by several groups to localize endogenous Npr3
have been unsuccessful (Dokudovskaya et al., 2011; Neklesa and
Davis, 2009), Npr3, Npr2 and Sea1 can be seen to localize to the
vacuole membrane upon moderate overexpression (Panchaud et al.,
2013a). In these experiments, Sea1 did not require other SEA
components to localize to the vacuole membrane; however, in
contrast, Npr2 and Npr3 mutually depended on each other and on
Sea1 for vacuolar localization (Panchaud et al., 2013a).

Consistent with these findings in yeast, proteomic studies of
isolated human lysosomes have found that Depdc5, Wdr24, Mios,
Seh1L and Sec13 are associated with the lysosomal membrane
(Schröder et al., 2007). Immunofluorescence experiments in
Drosophila using a GFP-tagged version of its Sea4 homolog
Missing Oocyte (Mio), expressed from its native promoter, and
overexpressed GFP–Seh1 (also known as Nup44A in Drosophila)
have shown that these proteins localize to lysosomes and
autolysosomes (Wei et al., 2014). Although there are currently no
immunofluorescence-microscopy-based data for the localization of
the endogenous human proteins, in cell lines that express introduced
Depdc5–EGFP, it has been shown to localize to the lysosomal surface
(Bar-Peled et al., 2013). Interestingly, overexpressed Nprl3 is found
in both the cytoplasm and nucleus, where it colocalizes with

Box 1. Amino acid signaling in yeast and mammals
Amino acid levels are signaled to yeast TORC1 through the EGOC,
which consists of a Ego3 dimer, transmembrane Ego1, Gtr1 and Gtr2
(Binda et al., 2009). The mammalian analog of the trimeric yeast Ego3–
Ego1 complex is pentameric Ragulator, which is anchored to the
lysosome where it interacts with v-ATPase (Bar-Peled et al., 2012;
Sancak et al., 2010; Zoncu et al., 2011). Currently there is no data for an
interaction between Ego3–Ego1 and v-ATPase in yeast. The small
GTPases Gtr1 and Gtr2 and their mammalian analogs RagA and RagB,
and RagC and RagD function as heterodimers.

When amino acids are low, the EGOC and Ragulator–Rag is inactive,
Gtr1 (RagA or RagB) is loaded with GDP and Gtr2 (RagC or RagD) with
GTP. SEACIT (GATOR1) acts as a GAP for Gtr1 (RagA or RagB),
preserving it in an inactive form (Bar-Peled et al., 2013; Panchaud et al.,
2013a). SEACAT (GATOR2) inhibits SEACIT (GATOR1). Mammalian-
specific SH3BP4 interacts with RagB, inhibiting the dissociation of GDP
(Kim et al., 2012). Mammalian-specific sestrins might also interact with
RagA or RagB and inhibit GDP dissociation, therefore acting as GDIs
(Peng et al., 2014). Sestrins interact with and inhibit GATOR2
(Chantranupong et al., 2014; Parmigiani et al., 2014).

After amino acid stimulation, Ragulator and v-ATPase undergo a
conformational change that results in Ragulator exerting GEF activity
towards RagA or RagB (Bar-Peled et al., 2012). In yeast, GEF activity is
mediated by theVam6protein from theHOPScomplex. In addition, leucyl
t-RNA synthetase LeuRS (also known as LRS or LARS) might exhibit
GEF activity towards Gtr1 in yeast (Bonfils et al., 2012) or GAP activity
towards RagD in mammals (Han et al., 2012). Similarly, a complex
between folliculin (FLCN) and folliculin-interacting protein (FNIP) 1 and/or
2 might either stimulate the GEF activity towards RagA or RagB (Petit
et al., 2013) or GAP activity towards RagC (Tsun et al., 2013). There are
currently no data regarding an involvement of the yeast FLCN and FNIP
orthologs Lst7 and Lst4 in the regulation of the TORC1 pathway. GEFs
and GAPs promote the conversion of corresponding Gtrs and Rags
into Gtr2-GDP (RagC/D-GDP)]. The mammalian-specific transceptor
SLC38A9, which is imbedded in the lysosomal membrane and important
for TORC1 activation by arginine, interacts with Ragulator–Rag and
initiates amino acid signaling (Rebsamen et al., 2015; Wang et al., 2015).
Active Ragulator–Rag promotes recruitment of mTORC1 to the
lysosomal membrane, where it is then fully activated by another small
GTPase, Rheb-GTP. In yeast, where TORC1 localization at the vacuole
membrane is independent of nutrients, and the Rheb analog is not
involved in the TORC1 signaling, TORC1 is activated by EGOC,
containing Gtr1-GTP and Gtr2-GDP. Finally, amino acids can stimulate
TORC1 independently of the EGOC and Ragulator-Rag. In cells deficient
for both RagA and RagB, mTORC1 can be stimulated by glutamine (but
not leucine) and this activation is dependent on v-ATPase (Jewell et al.,
2015). In addition, in both yeast and mammals, amino acids can activate
TORC1 onGolgi membranes. The small GTPaseYpt1 in yeast (Rab1A in
mammals) recruits TORC1 to this organelle. mTORC1 is subsequently
activated by Rheb, which is located at the Golgi (Thomas et al., 2014).

Box 2. SEA/GATOR homologs in other organisms
Phylogenetic analysis has identified SEA complex homologs in many
organisms (Dokudovskaya et al., 2011), although experimental
information about the entire complex is so far only available for
S. cerevisiae and H. sapiens. With regard to the individual components,
the majority of data are available for the role of the Npr2 and Npr3
homologs in the TORC1 pathway, which have been investigated in
S. pombe (Ma et al., 2013), C. elegans (Zhu et al., 2013) and Drosophila
(Wei and Lilly, 2014).
In S. pombe, as in S. cerevisiae, Npr2 acts as a negative regulator of

TORC1 signaling. However, several differences have been reported. For
example, depletion of Npr2 in S. pombe results in rapamycin sensitivity
(Ma et al., 2013), which is not the case in S. cerevisiae (Wu and Tu,
2011). In addition, based on genetic interactions, it has been suggested
that in S. pombe, Npr2 acts upstream of TORC1, but downstream of Gtr1
(Ma et al., 2013). However, this conclusion is difficult to reconcile with the
data for S. cerevisiae and the human system, where Npr2, as a member
of SEACIT or GATOR1, acts upstream of Gtrs or Rags (Bar-Peled et al.,
2013; Panchaud et al., 2013a).
InC. elegans, a new sphingolipid-TORC1 signaling pathway has been

shown to be under the control of Nprl2 and Nprl3 (Zhu et al., 2013). In the
absence of sphingolipids, postembryonic growth and development could
be initiated either by activating TORC1, or by inhibiting Nprl2 or Nprl3.
In Drosophila, Nprl2 and Nprl3, which localize to lysosomes, interact

with each other and inhibit TORC1 signaling in the female germline in
response to nitrogen starvation (Wei and Lilly, 2014). This inhibition is
important for female fertility during protein scarcity. The components of
DrosophilaGATOR2, Mio and Seh1 oppose activity of all three GATOR1
components (Nprl2, Nprl3, Iml1), which prevents TORC1 inhibition and
blocks oocyte development and growth (Wei et al., 2014).
Our previous phylogenetic analysis failed to identify Sea1–Sea4, Npr2

and Npr3 in plants (Dokudovskaya et al., 2011). However, it is possible,
that functional homologs of these proteins do exist. An Arabidopsis Seh1
homolog has been found localized at the prevacuolar compartment and
has been suggested to have a role in membrane association of dynamin-
related protein 2A, which, in turn, is required for protein trafficking from
trans-Golgi network to the central vacuole (Lee et al., 2006).
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promyelocytic leukemia (PML) bodies (Lunardi et al., 2009). Nprl2
and Nprl3 overexpressed in Drosophila can also be found in the
nucleus, in addition to their localization at the lysosome (Wei and
Lilly, 2014).

The SEA/GATOR complex – an upstream regulator of the
TORC1 pathway
Npr2 and Npr3 regulate TORC1 in response to amino acid starvation
The structural features of the yeast and mammalian SEA complex
discussed above together with their localization strongly suggest that
they function in the regulation of certain aspects of membrane
biology, most probably those that are involved in the processes
taking place around the vacuole or lysosome. Since its initial

discovery, functional studies of the SEA complex have concentrated
on its possible involvement in regulating the TORC1 signaling
pathway, and indeed, the first data for such a role came from an
elegant genome-wide screen for TORC1 regulators in yeast (Neklesa
andDavis, 2009). The screen revealed that, in response to amino acid
starvation (but not carbon starvation or rapamycin treatment), cells
lackingNpr2 andNpr3 failed to fully activate the TORC1-controlled
transcription factors Gln3 or Gat1; they also did not dephosphorylate
the TORC1 effector Npr1 and did not repress ribosomal protein gene
expression. The authors concluded that both proteins act upstream of
TORC1, communicating when amino acids become scarce.
However, Npr2 and Npr3 have little effect on TORC1 signaling
under conditions of glucose starvation or stress (Hughes Hallett

Table 1. Structural features of the SEA/GATOR complex members

Yeast protein (size
in amino acids)

Human protein
(size in amino
acids)

Domains
present

Domain boundaries in
yeast protein (amino
acids)

Domain boundaries in
human protein (amino
acids) Reference(s)

SEACIT/GATOR1
Sea1 (1584) Depdc5 (1594) Cdc48-like 101–275 4–170 Dokudovskaya et al.,

2011; Algret et al.,
2014

vWA-like 279–473 171–372 Dokudovskaya et al.,
2011; Algret et al.,
2014

GAP 877–1178 Not determined Panchaud et al., 2013
DEP 1178–1273 1171–1254 Dokudovskaya et al.,

2011; Algret et al.,
2014

Npr2 (615) Nprl2 (380) Longin 9–127 5–121 Zhang et al., 2012
PEST motif 138–166 Not determined Dokudovskaya et al.,

2011
Npr3 (1146) Nprl3 (569) Longin 1–31 4–165 Dokudovskaya et al.,

2011; Algret et al.,
2014

PEST motif 140–203 437–481 Dokudovskaya et al.,
2011

Longin 322–438 Zhang et al., 2012
Longin 531–577 Zhang et al., 2012

SEACAT/GATOR2
Sea2 (1341) Wdr24 (790) β-propeller 127–520 21–530 Dokudovskaya et al.,

2011; Algret et al.,
2014

Ring 1280–1341 858–913 Dokudovskaya et al.,
2011; Algret et al.,
2014

Sea3 (1148) Wdr59 (974) β-propeller 54–278 7–432 Dokudovskaya et al.,
2011; Algret et al.,
2014

RWD 430–536 381–498 Dokudovskaya et al.,
2011; Algret et al.,
2014

Ring 1092–1139 918–973 Dokudovskaya et al.,
2011; Algret et al.,
2014

Sea4 (1038) Mios (875) β-propeller 45–426 3–351 Dokudovskaya et al.,
2011; Algret et al.,
2014

SPAH 659–835 487–723 Dokudovskaya et al.,
2011; Algret et al.,
2014

Ring 942–1032 797–856 Dokudovskaya et al.,
2011; Algret et al.,
2014

Seh1 (346) Seh1L (360) β-propeller 1–346 1–360 Devos et al., 2004
Sec13 (296) Sec13 (322) β-propeller 2–296 1–322 Devos et al., 2004
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et al., 2014; Neklesa and Davis, 2009). Taken together, these data
suggest that Npr2- and Npr3-mediated signaling through TORC1
diverts energy from protein biosynthesis towards the production of
amino acids and other metabolites (Hughes Hallett et al., 2014).

Molecular basis of SEA/GATOR-mediated regulation of TORC1
During the past few years, it has become clear that not only Npr2
and Npr3, but also the entire SEA and GATOR complexes are
upstream regulators of the TORC1 pathway and have an essential
role in nutrient-mediated and, in particular, amino-acid-mediated
signaling. The way in which nutrient and stress levels in a cell are
fed back to control metabolism and growth are, unsurprisingly,
highly complex – as responding with great sensitivity and speed to
the ‘feast or famine, soothing or stress’ status of its environment is a
central goal for any organism, be it yeast or yak.
Recent studies in yeast, Drosophila and human cell lines have

provided a breakthrough in our understanding of how the
communication between SEA/GATOR and TORC1 occurs on the
molecular level (Bar-Peled et al., 2013; Panchaud et al., 2013a;
Panchaud et al., 2013b). Deletion of either Sea1, Npr2 and Npr3 or
their human orthologs results in increased enzymatic activity of
TORC1, both in the presence and the absence of amino acids,
indicating that these proteins are involved in TORC1 inhibition (Bar-
Peled et al., 2013; Panchaud et al., 2013a); hence the subcomplex

formed by Sea1, Npr2 and Npr3 was given the name SEA complex
inhibiting TORC1 (SEACIT). By contrast, deletions of Sea2, Sea3,
Sea4, Seh1 and Sec13 led to inhibition of TORC1 activity, implying
that these SEA components are required for TORC1 activation
(Panchaud et al., 2013a; Panchaud et al., 2013b), and this subcomplex
was named SEA complex activating TORC1 (SEACAT).

TORC1 activity is under control of several GTPases (Fig. 1). The
small GTPases that signal amino acid levels to TORC1 are part of the
EGO complex (EGOC) in yeast, whose mammalian counterpart is the
Ragulator–Rag complex. EGO consists of Ego1–Ego3 (Ragulator in
mammals), Gtr1 (RagA or RagB in mammals) and Gtr2 (RagC or
RagD in mammals) (RagA–RagD are also known as RRAGA–
RRAGD) (Bar-Peled et al., 2012; Binda et al., 2009; Sancak et al.,
2010; Sancak et al., 2008). The small GTPases Gtr1 and Gtr2 function
as heterodimers and in their active formexist as aGtr1-GTP–Gtr2-GDP
complex. In mammals, availability of amino acids results in loading of
RagA or RagB with GTP and of RagC or RagD with GDP, which
promotes the interaction of Ragulator–Rag with mTORC1 (Sancak
et al., 2010; Sancaket al., 2008), althoughRag-independent stimulation
of mTORC1 by amino acids has also been discovered very recently
(Jewell et al., 2015; Oshiro et al., 2014; Thomas et al., 2014). To
regulate their GTP-bound states, and thus their activity, these GTPases
must haveGAPs (Han et al., 2012; Tsun et al., 2013), GEFs (Bar-Peled
et al., 2012;Binda et al., 2009;Bonfils et al., 2012;Petit et al., 2013) and
GDIs (Kim et al., 2012; Peng et al., 2014) – and this is where the SEA
(GATOR) complex comes in (Bar-Peled et al., 2013; Panchaud et al.,
2013a). Indeed, Sea1 in yeast and GATOR1 in humans exhibit GAP
activity towards Gtr1 (Rag A and/or Rag B), but it has not been
determined which of the GATOR1 proteins is the GAP in the human
system (Bar-Peled et al., 2013; Panchaud et al., 2013a). Therefore, the
human homolog of SEACITwas named GATOR1 (GTPase activating
proteins activity towards TORC1 regulator RagA), and the SEACAT
analog was named GATOR2. Some experiments suggest that
SEACAT/GATOR2 acts upstream of SEACIT/GATOR1, thus being
an ‘inhibitor of an inhibitor’ (Bar-Peled et al., 2013; Panchaud et al.,
2013b). Recently, it has been reported that GATOR2 interacts in an
amino-acid-sensitive manner with a family of growth regulators called
sestrins (consisting of sestrin-1 to -3) (Chantranupong et al., 2014;
Parmigiani et al., 2014). Sestrins also require GATOR1 and the Rags to
function as negative regulators upstream of TORC1 (Chantranupong
et al., 2014; Parmigiani et al., 2014). In a parallel study, sestrins have
been identified to act as GDIs for RagA and RagB (Peng et al., 2014).
However, sestrins do not have homologs in yeast and so far it is
unknown whether there are any proteins in the yeast TORC1 pathway
that have GDI function.

Immunoprecipitation of various SEA components has revealed
that they can be co-purified with members of TORC1 (i.e. Tor1,
Kog1 and Lst8) (Algret et al., 2014). Interestingly, this proteomics
study also revealed that the SEA complex can interact with
components of the vacuole protein pump v-ATPase (Algret et al.,
2014), which has been described as an essential modulator of
amino-acid-mediated mTORC1 signaling (Zoncu et al., 2011). SEA
components are also involved in ensuring the proper localization of
TORC1, as deletion of either SEA1, NPR2 or NPR3 during nitrogen
starvation causes a dramatic relocalization of Tor1 to the cytoplasm
(Algret et al., 2014). Therefore, the response of TORC1 to stresses
not only involves changes in its enzymatic activity, but also
alterations in its location. Given the structural and evolutionary
relationships of the SEA complex with the coating and tethering
assemblies (Dokudovskaya et al., 2011), it is conceivable that the
SEA complex helps to maintain the localization of TORC1 at the
vacuole membrane during nitrogen starvation.
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Fig. 3. Molecular architecture of the SEA complex. Schematic
representation of the molecular architecture of the SEA complex obtained
through integrative modeling. Domains and folds of each SEA member are
represented by different geometric forms. Mammalian homologs of SEACAT
(GATOR2) and SEACIT (GATOR1) subcomplexes are indicated. All of the
components of GATOR1 have been linked to cancer and other diseases; see
main text for details.
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SEA/GATOR in autophagy
Amajor function of TORC1 is in the regulation of autophagy, which
is induced when TORC1 is inhibited, either by rapamycin or by
nitrogen starvation. Thus, it is not surprising that SEACIT, which
inhibits TORC1, also controls autophagy (Algret et al., 2014;
Dokudovskaya et al., 2011; Graef and Nunnari, 2011; Kira et al.,
2014; Laxman et al., 2014; Sutter et al., 2013; Wu and Tu, 2011);
there are some indications this is also the case inmammals (Kira et al.,
2014). So far, the effects of SEACIT have only been described for a
specific form of autophagy, non-nitrogen-starvation (NNS)-induced
autophagy (Laxman et al., 2013; Sutter et al., 2013; Wu and Tu,
2011). NNS autophagy happens in yeast when cells are switched
from a rich to a minimal medium with non-fermentable lactate as a
carbon source (Wu and Tu, 2011). NNS autophagy promotes the
dephosphorylation of Npr2, which in turn inhibits TORC1 (Sutter
et al., 2013). It will be interesting to investigatewhether other specific
forms of autophagy (i.e.mitophagy or pexophagy) are also subjected
to control by the SEA complex and whether such a function is
preserved in mammals.
Deletion of SEA1 or double deletion ofNPR2 andNPR3 results in

the inhibition of vacuolar fusion upon nitrogen starvation (Algret
et al., 2014). Autophagic defects are not commonly associated with
inhibition of vacuole fusion; however, a recent study has reported
that inactivation of TORC1 during nitrogen deprivation, and
therefore induction of autophagy, promotes vacuole coalescence
(Michaillat et al., 2012). Because deletions of any of the SEACIT
members results in increased TORC1 activity during starvation, this
leads to increased vacuolar fragmentation and inhibition and/or
defects in autophagy. Therefore, signaling upstream of TORC1
controls vacuolar fusion and fission events.

Modulation of nitrogen metabolism by the SEA complex
Nitrogen catabolite repression in yeast is a process that ensures that
cells selectively use the preferred nitrogen sources (e.g. glutamate,
glutamine) when they are available, whereas in their absence cells
can utilize alternative, non-preferred nitrogen sources (e.g. urea,
proline) (Ljungdahl and Daignan-Fornier, 2012). The SEACIT
component Npr2, which stands for nitrogen permease regulator 2,
was originally identified as a protein necessary for yeast growth in
poor nitrogen sources (Rousselet et al., 1995). In turn, Npr3 was
described as a protein required for sporulation – a ‘hard times
coming’ response that is initiated by the depletion of multiple
factors, including nitrogen (Enyenihi and Saunders, 2003). Both
Npr2 and Npr3 are involved in controlling nitrogen catabolite
repression (Godard et al., 2007).
Nitrogen catabolite repression is ultimately connected to amino acid

biosynthesis. The analysis of synthetic genetic interactions for thegenes
encoding the SEA complex demonstrates that almost the entire set of
genes that are responsible for homoserine biosynthesis exhibit very
stronggenetic interactionswith the genes that encode bothSEACITand
SEACAT proteins, indicating that the entire SEA complex is involved
(Costanzo et al., 2010; Dokudovskaya et al., 2011). The majority of
genes encoding for factors that participate in amino acid biosynthesis
pathways, including those involved in genetic interactions with SEA
component genes, are regulated by the transcriptional activator Gcn4
(Natarajan et al., 2001). Interestingly, the SEA4 gene has multiple
binding sites for Gcn4 in its promoter (Schuldiner et al., 1998),
suggesting that this SEACAT component is directly involved in the
control of amino acid biosynthesis.
The retrograde signaling pathway is a mechanism by which

dysfunctional mitochondria transmit signals to effect changes in
nuclear gene expression, which then lead to the reconfiguration of

nitrogen and carbohydrate metabolism (Butow and Avadhani,
2004). Mitochondrial dysfunction caused by mitochondrial
genomic defects leads to downregulation of TORC1 (Jazwinski
and Kriete, 2012; Kawai et al., 2011). Interestingly, the retrograde
signaling pathway has been found to be deregulated in NPR2 and
NPR3 deletion mutants (Neklesa and Davis, 2009). However, links
between the SEA complex and mitochondria might be even more
direct, as genes encoding SEA components also show synthetic
genetic interactions with many mitochondrial genes (Costanzo
et al., 2010). Moreover, SEA proteins have been shown to interact
with several mitochondrial membrane proteins, including the
cytochrome bc1 complex, the cytochrome c oxidase complex and
prohibitins (Algret et al., 2014), and enriched mitochondrial
fractions contain SEA proteins (Elbaz-Alon et al., 2014). Taken
together, this suggests a close functional and perhaps even physical
connection between the SEA complex and mitochondria.

SEA you later – functions of SEA/GATOR components beyond
TORC1 regulation
As mentioned above, a peculiarity of the SEA complex is the
propensity of a number of its components to moonlight in other
processes in the cell. The SEACAT components Seh1 and Sec13 are
also found at the core scaffold of the nuclear pore complex, and Sec13
further participates as a component of the COPII vesicle-coating
complexes. Of course, as mentioned before, this might reflect the
common evolutionary origin of nuclear pore complexes, vesicle-
coating complexes, tethering complexes, suchasHOPSandCORVET,
and the SEA complex as a progenitor membrane-associated coating
complex; however, other SEA proteins also appear to have ‘double
lives’. In Drosophila, the Sea4 homolog Mio (Senger et al., 2011) is
also localized to the nucleus and is required for the maintenance of the
meiotic cycle and oocyte identity (Iida and Lilly, 2004). In addition, a
chemical genomic survey in yeast has identified a small groupofgenes,
among themNPR2 andNPR3, that appear to be required formultidrug
resistance (Hillenmeyer et al., 2008).

Nprl3 (the human Npr3 homolog) might be involved in some
nuclear functions. Overexpression of Nprl3 in human andDrosophila
cell lines targets a substantial fraction of the protein to the PML
nuclear bodies (Lunardi et al., 2009), which have multiple functions,
including involvement in DNA repair. In addition, Nprl3 interacts
with the transcriptional factor p73, amemberof p53 familyof proteins
that are involved in tumor suppression and embryonic development
(Lunardi et al., 2009). Importantly, the NPRL3 gene is located just
upstream of the α-globin gene cluster. Consequently, Nprl3 is widely
expressed throughout development and is highly induced in erythroid
cells when the α-globin genes are fully activated (Kowalczyk et al.,
2012b). Mice in which a promoter of the NPRL3 gene has been
deleted die in late gestation, often with severe cardiac defects,
suggesting that perturbation of Nprl3 function might adversely affect
the development of the myocardium (Kowalczyk et al., 2012a).

Npr2 has come under particular scrutiny, as mutations in this
protein, both in yeast and humans, confer resistance to the
anticancer drugs cisplatin and doxorubicin (Schenk et al., 2003;
Ueda et al., 2006); the effects of these compounds are mainly
mediated by inducing high levels of DNA damage, which
eventually lead to cell cycle arrest and apoptosis (Galluzzi et al.,
2012; Granados-Principal et al., 2010). Therefore, the possible role
of Nprl2 in DNA damage was investigated in non-small-cell-lung
cancer cells treated with cisplatin (Jayachandran et al., 2010).
Indeed, it was demonstrated that ectopic expression of Nprl2
activates the DNA damage checkpoint pathway in cisplatin-resistant
and Nprl2-negative cells, leading to cell cycle arrest in G2/M phase
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and induction of apoptosis. It has been suggested that Nprl2
stimulates the phosphorylation of ATM kinase, the key component
of the DNA damage signaling pathway, although the underlying
molecular mechanisms remain unknown. It is also unclear whether
this function of Nprl2 is coupled to or is independent from its role in
regulating the TORC1 pathway. Interestingly, in yeast, NPR2
mutants are synthetically lethal with CDC45 and RAD50 mutants,
two genes involved in processing of double-strand DNA breaks,
suggesting that such a functional interplay exists (Tong et al., 2004).

Deregulation of GATOR in cancer and other diseases
The above described links between Npr2, the DNA damage signaling
pathway and resistance to anticancer drugs might reflect a role for
deregulation of Nprl2 in oncogenesis. More than a decade ago, Nprl2
was suggested to be a tumor suppressor (Lerman and Minna, 2000).
Since then, low levels of Nprl2 expression have been detected in many
cancers, including hepatocellular carcinoma (Otani et al., 2009),
glioblasomas (Bar-Peled et al., 2013), as well as in lung (Anedchenko
et al., 2008; Ji et al., 2002; Li et al., 2004; Ueda et al., 2006), ovarian
(Bar-Peled et al., 2013;Li et al., 2004), renal (Li et al., 2004; Tang et al.,
2014), colorectal (Liu et al., 2014; Yogurtcu et al., 2012) and breast
cancers (Li et al., 2004). In addition, it has been reported that Nprl2
interacts with the kinase Pdk1, a key regulator of cell proliferation and
survival (Kurata et al., 2008). Pdk1, which plays a role in cellular
transformation and tumor growth, is a well-defined upstream regulator
of the TORC1 pathway in mammalian cells – closing the circle of
GATOR functions back to the TOR regulatory pathway. Indeed, a
growing body of data illustrates the impact of the GATOR–TORC1
regulatory pathway in human diseases (Fig. 3). Of particular note, the
first evidence for a genetic link came from inherited focal epilepsies,
where loss-of-function mutations in the mammalian SEA1 gene
(DEPDC5) have been associated with various forms of this disorder
(Baulac, 2014; Dibbens et al., 2013; Ishida et al., 2013; Scheffer et al.,
2014). Some of thesemutations have been shown to disruptDEPDC5-
dependent inhibition of TORC1 (van Kranenburg et al., 2015). Thus,
DEPDC5 is a new factor to be considered in ‘mTORopathies’ (Crino,
2007; Crino, 2011), a set of conditions associated with multiple
neurological disorders and that often exhibit mutations in regulators
acting upstream of mTORC1, such as Tsc1 and Tsc2, among many
others (Lim and Crino, 2013).

Later, alliGATOR – future directions and perspectives
The TORC1 signaling pathway is one of themost complex networks in
the cell and thus a lot of attention has been paid to the factors that
function upstream of TORC1. The SEA complex and its mammalian
homolog GATOR have emerged as important regulators of TORC1
during amino acid sensing. As these complexes have only been
discovered very recently, many details regarding their structure,
function and involvement in different human disorders are still
unknown.
From a structural point of view it will be important to determine

the high-resolution structure of the individual components and the
subcomplexes comprising SEA and GATOR. Given that the
majority of these components are high-molecular-mass proteins
with some disordered regions, solving their structure (as well as the
structure of the entire ∼1 MDa assembly) using X-ray
crystallography or even electron microscopy alone might be a
considerable challenge. Instead, integrative approaches to structure
determination could be more promising, and indeed this has been
successfully demonstrated for the SEA complex (Algret et al.,
2014). Nevertheless, further details and information remain to be
collected in order to obtain near-to-atomic resolution structures for

this assembly. It should be noted that there is practically no
structural information for GATOR.

One of the particular interesting outstanding questions is how the
two SEA subcomplexes interact with each other and how this
interaction is affected during nutrient stresses? What is the
molecular function of SEACAT and GATOR2? Is it only a
structural platform (and, if so, for which activities), or has it other
functions, such as, for example, the ability to act as an E3 ligase
(based on its profusion of RING domains)? Given that Npr2, Npr3
and their human orthologs possess longin domains, is it possible
that these proteins have GEF activity? If this is the case, how can
GAPs (i.e. Sea1) and GEFs (i.e. Npr2 and Npr3), co-exist in one
complex? Another important question is how is information
regarding amino acid availability is transmitted to SEA/GATOR?
And lastly, how do the ‘moonlighting’ functions of the SEA/
GATOR proteins impact upon their roles in the TORC1 pathway?

Furthermore, the emerging realization that SEA/GATOR
components are implicated in a number of important genetic and
oncogenic diseases puts them in the spotlight for future research.We
expect that we will SEA a lot more of GATOR in the future.
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