Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
Journal Articles
A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides
S.W. James, C.D. Silflow, P. Stroom, P.A. Lefebvre
Journal of Cell Science 1993 106: 209-218;
S.W. James
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.D. Silflow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Stroom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.A. Lefebvre
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.

  • © 1993 by Company of Biologists

REFERENCES

    1. Birkett C. R.,
    2. Foster K. E.,
    3. Johnson L. and
    4. Gull K.
    (1985). Use of monoclonal antibodies to analyze the expression of a multi-tubulin family. FEBS Lett 187, 211–218
    OpenUrlCrossRefPubMedWeb of Science
    1. Bolduc C.,
    2. Lee V. D. and
    3. Huang B.
    (1988). -tubulin mutants of the unicellular green alga Chlamydomonasreinhardtii. Proc. Nat. Acad. Sci. USA 85, 131–135
    OpenUrlAbstract/FREE Full Text
    1. Burland T. G.,
    2. Gull K.,
    3. Schedl T.,
    4. Boston R. S. and
    5. Dove W. F.
    (1983). Cell type-dependent expression of tubulins in Physarum. J. Cell Biol 97, 1852–1859
    OpenUrlAbstract/FREE Full Text
    1. Cabral F.,
    2. Sobel M. E. and
    3. Gottesman M. M.
    (1980). CHO mutants resistant to colchicine, colcemid, or griseofulvin have an altered-tubulin. Cell 20, 29–36
    OpenUrlCrossRefPubMedWeb of Science
    1. Doonan J. H. and
    2. Grief C.
    (1987). Microtubule cycle in Chlamydomonas reinhardtii. An immunofluorescence study. Cell Motil. Cytoskel 7, 381–392
    OpenUrlCrossRef
    1. Fernandez E. and
    2. Matagne R. F.
    (1986). In vivo complementation analysis of nitrate reductase-deficient mutants in Chlamydomonas reinhardtii. Curr. Gen 10, 397–403
    OpenUrlCrossRefPubMedWeb of Science
    1. Gaffal K. P.
    (1988). The basal body-root complex of Chlamydomonas reinhardtii during mitosis. Protoplasma 143, 118–129
    OpenUrlCrossRef
    1. Gaffal K. P. and
    2. el-Gammal S.
    (1990). Elucidation of the enigma of the ‘metaphase band’ of Chlamydomonasreinhardtii. Protoplasma 156, 139–148
    OpenUrlCrossRef
    1. Gergen J.,
    2. Stern R. and
    3. Wensink P.
    (1979). Filter replicas and permanent collections of recombinant DNA plasmids. Nucl. Acids Res 7, 2115–2136
    OpenUrlAbstract/FREE Full Text
    1. Gross C. H.,
    2. Ranum L. P. W. and
    3. Lefebvre P. A.
    (1988). Extensive restriction fragment length polymorphisms in a new isolate of Chlamydomonas reinhardtii. Curr. Genet 13, 503–508
    OpenUrlCrossRefPubMed
    1. Helftenbein E.
    (1985). Nucleotide sequence of a macronuclear DNA molecule coding for-tubulin from the ciliate Stylonychia lemnae. Special codon usage: TAA is not a translation termination codon. Nucl. Acids Res 13, 415–433
    OpenUrlAbstract/FREE Full Text
    1. Hiraoka Y.,
    2. Toda T. and
    3. Yanagida M.
    (1984). The NDA3 gene of fission yeast encodes-tubulin: a cold-sensitive nda3 mutation reversiblyblocks spindle formation and chromosome movement in mitosis. Cell 39, 349–358
    OpenUrlCrossRefPubMedWeb of Science
    1. Holmes J. A. and
    2. Dutcher S. K.
    (1989). Cellular asymmetry in Chlamydomonasreinhardtii. J. Cell Sci 94, 273–285
    OpenUrlAbstract/FREE Full Text
    1. Huang B. P.-H.
    (1986). Chlamydomonasreinhardtii: A model system for the genetic analysis of flagellar structure and motility. Int. Rev. Cytol 99, 181–215
    OpenUrlCrossRefWeb of Science
    1. Huffaker T. C.,
    2. Hoyt M. A. and
    3. Botstein D.
    (1987). Genetic analysis of the yeast cytoskeleton. Annu. Rev. Genet 21, 259–284
    OpenUrlCrossRefPubMedWeb of Science
    1. Huffaker T. C.,
    2. Thomas J. H. and
    3. Botstein D.
    (1988). Diverse effects of-tubulin mutations on microtubule formation and function. J. Cell Biol 106, 1997–2010
    OpenUrlAbstract/FREE Full Text
    1. Hussey P. J.,
    2. Lloyd C. W. and
    3. Gull K.
    (1988). Differential and developmental expression of-tubulins in a higher plant. J. Biol. Chem 263, 5474–5479
    OpenUrlAbstract/FREE Full Text
    1. James S. W. and
    2. Lefebvre P. A.
    (1989). Isolation and characterization of dominant, pleiotropic drug-resistance mutants in Chlamydomonas reinhardtii. Curr. Gen 15, 443–452
    OpenUrlCrossRefPubMed
    1. James S. W. and
    2. Lefebvre P. A.
    (1992). Genetic interactions among Chlamydomonasreinhardtii mutations that confer resistance to anti-microtubule herbicides. Genetics 130, 305–314
    OpenUrlAbstract/FREE Full Text
    1. James S. W.,
    2. Ranum L. P. W.,
    3. Silflow C. D. and
    4. Lefebvre P. A.
    (1988). Mutants resistant to anti-microtubule herbicides map to a locus on the uni linkage group in Chlamydomonasreinhardtii. Genetics 118, 141–147
    OpenUrlAbstract/FREE Full Text
    1. James S. W.,
    2. Thompson M. D.,
    3. Silflow C. D.,
    4. Ranum L. P. W. and
    5. Lefebvre P. A.
    (1989). Extragenic suppression and synthetic lethality among Chlamydomonasreinhardtii mutants resistant to anti-microtubule drugs. Genetics 122, 567–577
    OpenUrlAbstract/FREE Full Text
    1. Joyce C. M.,
    2. Villemur R.,
    3. Snustad D. P. and
    4. Silflow C. D.
    (1992). Tubulin gene expression in maize (Zea mays L.) Change in isotype expression along the developmental axis of seedling root. J. Mol. Biol 227, 97–107
    OpenUrlCrossRefPubMedWeb of Science
    1. Kartner N.,
    2. Shales M.,
    3. Riordan J. R. and
    4. Ling V.
    (1983). Daunorubicin-resistant Chinese Hamster Ovary cells expressing multidrug resistance and a cell surface glycoprotein. Cancer Res 43, 4413–4419
    OpenUrlAbstract/FREE Full Text
    1. Kimmel B. E.,
    2. Samson S.,
    3. Wu J.,
    4. Hirschberg R. and
    5. Yarbrough L. R.
    (1985). Tubulin genes of the African trypanosome Trypanosoma brucei rhodesiense: nucleotide sequence of a 3.7 kb fragment containing genes for-and -tubulins. Gene 35, 237–248
    OpenUrlCrossRefPubMedWeb of Science
    1. Laemmli U.-P.
    (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685
    OpenUrlCrossRefPubMedWeb of Science
    1. LeDizet M. and
    2. Piperno G.
    (1987). Identification of an acetylation site of Chlamydomonas -tubulin. Proc. Nat. Acad. Sci. USA 84, 5720–5724
    OpenUrlAbstract/FREE Full Text
    1. Lefebvre P. A.,
    2. Nordstrom S. A.,
    3. Moulder J. E. and
    4. Rosenbaum J. L.
    (1978). Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration and resorption on the induction of flagellar protein synthesis. J. Cell Biol 78, 8–27
    OpenUrlAbstract/FREE Full Text
    1. Lefebvre P. A. and
    2. Rosenbaum J. L.
    (1986). Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu. Rev. Cell Biol 2, 517–546
    OpenUrlCrossRef
    1. Lefebvre P. A.,
    2. Silflow C. D.,
    3. Wieben E. D. and
    4. Rosenbaum J. L.
    (1980). Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas flagella. Cell 20, 469–477
    OpenUrlCrossRefPubMedWeb of Science
    1. L'Hernault S. W. and
    2. Rosenbaum J. L.
    (1985). Chlamydomonas -tubulin is post-translationally modified by acetylation on the-amino group of a lysine. Biochemistry 24, 473–478
    OpenUrlCrossRefPubMed
    1. Luck D. J. L.
    (1984). Genetic and biochemical dissection of the eucaryotic flagellum. J. Cell Biol 98, 789–794
    OpenUrlAbstract/FREE Full Text
    1. McMullen M. D.,
    2. Hunter B.,
    3. Phillips R. L. and
    4. Rubenstein I.
    (1986). The structure of the maize ribosomal DNA spacer region. Nucl. Acids Res 14, 4953–4967
    OpenUrlAbstract/FREE Full Text
    1. Morejohn L. C.,
    2. Bureau T. E.,
    3. Mole-Bajer J.,
    4. Bajer A. S. and
    5. Fosket D. E.
    (1987). Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172, 252–264
    OpenUrlCrossRefPubMedWeb of Science
    1. Oakley B. R. and
    2. Morris N. R.
    (1981). A-tubulin mutation in218 Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24, 837–845
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Farrell P. H.
    (1975). High resolution two-dimensional electrophoresis of protein. J. Biol. Chem 250, 4007–4021
    OpenUrlAbstract/FREE Full Text
    1. Piperno G. and
    2. Fuller M. T.
    (1985). Monoclonal antibodies specific for an acetylated form of-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol 101, 2085–2094
    OpenUrlAbstract/FREE Full Text
    1. Piperno G.,
    2. LeDizet M. and
    3. Chang X.
    (1987). Microtubules containing acetylated-tubulin in mammalian cells in culture. J. Cell Biol 104, 289–302
    OpenUrlAbstract/FREE Full Text
    1. Pratt L. F.,
    2. Okamura S. and
    3. Cleveland D. W.
    (1987). A divergent testis-specific-tubulin isotype that does not contain a coded C-terminal tyrosine. Mol. Cell. Biol 7, 552–555
    OpenUrlAbstract/FREE Full Text
    1. Ranum L. P. W.,
    2. Thompson M. D.,
    3. Lefebvre P. A. and
    4. Silflow C. D.
    (1988). Mapping flagellar genes in Chlamydomonas using restriction fragment length polymorphisms. Genetics 120, 109–122
    OpenUrlAbstract/FREE Full Text
    1. Ringo D. L.
    (1967). Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J. Cell Biol 33, 543–571
    OpenUrlAbstract/FREE Full Text
    1. Rosenbaum J. L. and
    2. Child F. M.
    (1967). Flagellar regeneration in protozoan flagellates. J. Cell Biol 34, 345–364
    OpenUrlAbstract/FREE Full Text
    1. Schatz P. J.,
    2. Solomon F. and
    3. Botstein D.
    (1988). Isolation and characterization of conditional-lethal mutations in the TUB1 -tubulin gene of the yeast Saccharomyces cerevisiae. Genetics 120, 681–695
    OpenUrlAbstract/FREE Full Text
    1. Schibler M. J. and
    2. Cabral F.
    (1985). Maytansine-resistant mutants of Chinese hamster ovary cells with an alteration in-tubulin. Can. J. Biochem. Cell Biol 63, 503–510
    OpenUrlPubMed
    1. Schibler M. J. and
    2. Huang B.
    (1991). The colR 4 and colR 15 -tubulin mutations in Chlamydomonasreinhardtii confer altered sensitivities tomicrotubule inhibitors and herbicides by enhancing microtubule stability.. J. Cell Biol 113, 605–614
    OpenUrlAbstract/FREE Full Text
    1. Schloss J. A.,
    2. Silflow C. D. and
    3. Rosenbaum J. L.
    (1984). mRNA abundance changes during flagellar regeneration in Chlamydomonas reinhardtii. Mol. Cell. Biol 4, 424–434
    OpenUrlAbstract/FREE Full Text
    1. Silflow C. D.,
    2. Chisholm R. L.,
    3. Conner T. W. and
    4. Ranum L. P. W.
    (1985). The two-tubulin genes of Chlamydomonasreinhardtii code for slightly different proteins. Mol. Cell Biol 5, 2389–2398
    OpenUrlAbstract/FREE Full Text
    1. Silflow C. D.,
    2. Oppenheimer D. G.,
    3. Kopczak S. D.,
    4. Ploense S. E.,
    5. Ludwig S. R.,
    6. Haas N. and
    7. Snustad D. P.
    (1987). Plant tubulin genes: structure and differential expression during development. Dev. Gen 8, 435–460
    OpenUrlCrossRefWeb of Science
    1. Toda T.,
    2. Adachi Y.,
    3. Hiraoka Y. and
    4. Yanagida M.
    (1984). Identification of the pleiotropic cell division cycle gene NDA2 as one of two different-tubulin genes in Schizosaccharomyces pombe. Cell 37, 233–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Towbin H.,
    2. Staehlin T. and
    3. Gordon J.
    (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Nat. Acad. Sci. USA 76, 4350–4354
    OpenUrlAbstract/FREE Full Text
    1. Viera J. and
    2. Messing J.
    (1987). Production of single-stranded plasmid DNA. Meth. Enzymol 153, 3–11
    OpenUrlCrossRefPubMedWeb of Science
    1. Weiss R. L.
    (1984). Ultrastructure of the flagellar roots in Chlamydomonas gametes. J. Cell Sci 67, 133–143
    OpenUrlAbstract/FREE Full Text
    1. Witman G. B.,
    2. Carlson K.,
    3. Berliner J. and
    4. Rosenbaum J. L.
    (1972). Chlamydomonas flagella: isolation and electrophoretic analysis of microtubules, matrix, membrane, and mastigonemes. J. Cell Biol 54, 507–539
    OpenUrlAbstract/FREE Full Text
    1. Youngblom J.,
    2. Schloss J. A. and
    3. Silflow C. D.
    (1984). The two-tubulin genes of Chlamydomonasreinhardtii code for identical proteins. Mol. Cell. Biol 4, 2686–2696
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
Share
Journal Articles
A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides
S.W. James, C.D. Silflow, P. Stroom, P.A. Lefebvre
Journal of Cell Science 1993 106: 209-218;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides
S.W. James, C.D. Silflow, P. Stroom, P.A. Lefebvre
Journal of Cell Science 1993 106: 209-218;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • Integrin cytoplasmic domain-binding proteins
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

ASCBǀEMBO 2019 Special Collection

We're at ASCB - visit booth 1000 to meet the JCS team!
Enjoy a collection of articles published in Journal of Cell Science by a range of speakers at the ASCBǀEMBO 2019 Meeting. Featuring articles from the labs of JCS Editorial Advisory Board members, all articles in the collection are free to access.


Early-bird meeting deadline - 20 December

Wotton House

Don’t miss the early-bird application deadline for the 2020 JCS meeting on Host-Pathogen interface! Taking place 17-20 May 2020 at Wotton House, Surrey, UK, the meeting will bring together experts working at the interface between cell biology and pathogens. Places are limited, so apply to attend now.


Cell Scientist to Watch – Elizabeth Hinde

Elizabeth with her daughter and father.

From physics and chemistry to art and back again, Elizabeth Hinde is currently based at the University of Melbourne. Her research focuses on fluorescence microscopy methods to quantify live-cell nuclear organisation and the role chromatin dynamics play in maintaining genome function. Read the full interview to find out more. 


Have you heard about our Travelling Fellowships?

Huw and colleagues from the lab in Beijing

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Huw’s experience in Beijing, where he spent time with the world leaders in the development of super-resolution microscopy, the Li lab at the Chinese Academy of Sciences.


Articles of interest in our sister journals

Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae
Chang-Ru Tsai, Michael J. Galko
Development

Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis
Elizabeth Vargas, Karen P. McNally, Daniel B. Cortes, Michelle T. Panzica, Brennan M. Danlasky, Qianyan Li, Amy Shaub Maddox, Francis J. McNally
Development

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Journal of Cell Science
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992