Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Articles
Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations
T. Lesuffleur, N. Porchet, J.P. Aubert, D. Swallow, J.R. Gum, Y.S. Kim, F.X. Real, A. Zweibaum
Journal of Cell Science 1993 106: 771-783;
T. Lesuffleur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Porchet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Aubert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Swallow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.R. Gum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y.S. Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.X. Real
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Zweibaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mucin expression was analysed, in relation to cell growth, in parental HT-29 cells and in two populations of mucus-secreting HT-29 cells selected by adaptation to methotrexate (HT29-MTX) or 5-fluorouracil (HT29-FU). These two populations express mature mucins that differ in their immunoreactivity to antibodies against gastric (HT29-MTX) or colonic mucins (HT29-FU). In the parental population, at late confluency, only very few cells produce mucins or the MUC1 glycoprotein, this being consistent with the low level of expression of the mRNAs corresponding to the MUC1 to MUC5C mucin genes. In the HT29-MTX and HT29-FU populations, the appearance of mucus droplets, as shown by histochemistry and immunofluorescence, starts a few days after confluency, progressively involving a greater proportion of cells and reaching a steady state at late confluency. The MUC1 glycoprotein appears earlier, already being detectable in preconfluent cells. Its distribution is restricted to the apical surface of the cells and is distinct from that of the mucus droplets. In both populations the growth-related levels of MUC1 mRNA are concordant with the apparent levels of expression of the MUC1 glycoprotein. The levels of MUC2, MUC3, MUC4 and MUC5C mRNAs differ from one population to another and, within each population, according to the stage of the culture. The highest levels of MUC2 and MUC4 mRNAs are found in the HT29-FU cells, whereas the highest levels of MUC3 and MUC5C are found in the HT29-MTX cells, suggesting that the differences observed in the mature mucins expressed by either population may be related to which MUC genes are expressed. In both populations significant or even high levels of MUC mRNAs are already present in early cultures, i.e. at a stage when the mature mucins are not yet detectable, suggesting that mucin maturation is a later event.

  • © 1993 by Company of Biologists

REFERENCES

    1. Aubert J. P.,
    2. Porchet N.,
    3. Crepin M.,
    4. Duterque-Coquillaud M.,
    5. Vergnes G.,
    6. Mazzuca M.,
    7. Debuire B.,
    8. Petitprez D. and
    9. Degand P.
    (1991). Evidence for different human tracheobronchial mucin peptides deduced from nucleotide cDNA sequences. Amer. J. Resp. Cell. Mol. Biol 5, 178–185
    OpenUrlCrossRefPubMed
    1. Augeron C. and
    2. Laboisse C.
    (1984). Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res 44, 3961–3969
    OpenUrlAbstract/FREE Full Text
    1. Bara J.,
    2. Gautier R.,
    3. Daher N.,
    4. Zaghouani H. and
    5. Burtin P.
    (1986). Monoclonal antibodies against oncofetal mucin M1 antigens associated with precancerous colonic mucosae. Cancer Res 46, 3983–3989
    OpenUrlAbstract/FREE Full Text
    1. Bara J.,
    2. Mollicone R.,
    3. Herrero-Zabeleta E.,
    4. Gautier R.,
    5. Daher N. and
    6. Oriol R.
    (1988). Ectopic expression of the Y (Ley) antigen defined by monoclonal antibody 12–4LE in distal colonic adenocarcinomas. Int. J. Cancer 41, 683–689
    OpenUrlPubMed
    1. Capon C.,
    2. Laboisse C. L.,
    3. Wieruszeki J. M.,
    4. Maoret J. J.,
    5. Augeron C. and
    6. Fournet B.
    (1992). Oligosaccharide structures of mucins secreted by the human colonic cancer cell line CL. 16E. J. Biol. Chem 267, 19248–19257
    OpenUrlAbstract/FREE Full Text
    1. Chirgwin J. M.,
    2. Przybyla A. E.,
    3. MacDonald R. J. and
    4. Rutter W. J.
    (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299
    OpenUrlCrossRefPubMed
    1. Cleveland D. W.,
    2. Lopata M. A.,
    3. McDonald R. J.,
    4. Cowan N. J.,
    5. Rutter W. J. and
    6. Kirschner M. W.
    (1986). Number and evolutionnary conservation of-and -tubulin and cytoplasmic-and -actine genes using specific cloned cDNA probes. Cell 20, 95–105
    OpenUrl
    1. Corcoran D. and
    2. Walker R. A.
    (1990). Ultrastructural localization of milk fat globule membrane antigens in human breast carcinomas. J. Pathol 161, 161–166
    OpenUrlCrossRefPubMed
    1. Crepin M.,
    2. Porchet N.,
    3. Aubert J. P. and
    4. Degand P.
    (1990). Diversity of the peptide moiety of human airway mucins. Biorheology 27, 471–484
    OpenUrlPubMed
    1. Dahiya R.,
    2. Lesuffleur T.,
    3. Kwak K. S.,
    4. Byrd J. C.,
    5. Barbat A.,
    6. Zweibaum A. and
    7. Kim Y. S.
    (1992). Expression and characterization of mucins associated with the resistance to methotrexate of HT-29 human colonic adenocarcinoma cell line. Cancer Res 52, 4655–4662
    OpenUrlAbstract/FREE Full Text
    1. Darmoul D.,
    2. Rouyer-Fessard C.,
    3. Blais A.,
    4. Voisin T.,
    5. Sapin C.,
    6. Baricault L.,
    7. Couvineau A.,
    8. Laburthe M. and
    9. Trugnan G.
    (1991). Dipeptidylpeptidase IV expression in rat jejunal crypt-villus axis is controlled at mRNA level. Amer. J. Physiol 261, 24–.
    OpenUrl
    1. Devine P. L.,
    2. Layton G. T.,
    3. Clark B. A.,
    4. Birrell G. W.,
    5. Ward B. G.,
    6. Xing P. and
    7. McKenzie I. F. C.
    (1991). Production of MUC1 and MUC2 mucins by human tumor cell lines. Biochem. Biophys. Res. Commun 178, 593–599
    OpenUrlCrossRefPubMedWeb of Science
    1. Dippold W. G.,
    2. Klingel R.,
    3. Bernhard H.,
    4. Dienes H. P.,
    5. Knuth A. and
    6. Meyer Zum Buschenfelde K. H.
    (1987). Secretory epithelial cell marker on gastrointestinal tumors and in human secretions defined by a monoclonal antibody. Cancer Res 47, 2092–2097
    OpenUrlAbstract/FREE Full Text
    1. Fox M. F.,
    2. Lahbib F.,
    3. Pratt W.,
    4. Attwood J.,
    5. Gum J.,
    6. Kim Y. and
    7. Swallow D. M.
    (1992). Regional localization of the intestinal mucin MUC3 to chromosome 7q22. Ann. Hum. Genet 56, 281–287
    OpenUrlCrossRefPubMedWeb of Science
    1. Gambus G.,
    2. de Bolos C.,
    3. Andreu D.,
    4. Franci C.,
    5. Egea G. and
    6. Real F. X.
    (1993). Detection of a peptide epitope of the MUC2 gene product with a mouse monoclonal antibody. Gastroenterology 104, 93–102
    OpenUrlPubMed
    1. Gendler S. J.,
    2. Burchell J. M.,
    3. Duhig T.,
    4. Lamport D.,
    5. White R.,
    6. Parker M. and
    7. Taylor-Papidimitriou J.
    (1987). Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc. Nat. Acad. Sci. USA 84, 6060–6064
    OpenUrlAbstract/FREE Full Text
    1. Gendler S. J.,
    2. Lancaster C. A.,
    3. Taylor-Papadimitrou J.,
    4. Duhig T.,
    5. Peat N.,
    6. Burchell J.,
    7. Pemberton L.,
    8. Lalani E. and
    9. Wilson D.
    (1990). Molecular cloning and expression of the human tumour-associated polymorphic epithelial mucin, PEM. J. Biochem 265, 15286–15293
    OpenUrl
    1. Gendler S. J.,
    2. Taylor-Papadimitriou J.,
    3. Duhig T.,
    4. Rothbard J. and
    5. Burchell J.
    (1988). A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem 263, 12820–12823
    OpenUrlAbstract/FREE Full Text
    1. Gerard C.,
    2. Eddy R. L. and
    3. Shows T. B.
    (1990). The core polypeptide of cystic fibrosis tracheal mucin contains a tandem repeat structure. Evidence for a common mucin in airway and gastrointestinal tissue. J. Clin. Invest 86, 1921–1927
    OpenUrlCrossRefPubMed
    1. Griffiths B.,
    2. Mathews D. J.,
    3. West L.,
    4. Attwood J.,
    5. Povey S.,
    6. Swallow D. M.,
    7. Gum J. R. and
    8. Kim Y. S.
    (1990). Assignment of the polymorphic intestinal mucin gene (MUC2) to chromosome 11p15. Ann. Hum. Gen 54, 277–285
    OpenUrlCrossRefPubMedWeb of Science
    1. Gross M. S.,
    2. Guyonnet-Duperat V.,
    3. Porchet N.,
    4. Bernheim A.,
    5. Aubert J. P. and
    6. Nguyen V. C.
    (1992). Mucin 4 (MUC4) gene: regional assignment (3q29) and RFLP analysis. Ann. Genet 35, 21–26
    OpenUrlPubMed
    1. Gum J. R.,
    2. Byrd J. C.,
    3. Hicks J. W.,
    4. Toribara N. W.,
    5. Lamport D. T. A. and
    6. Kim Y. S.
    (1989). Molecular cloning of human intestinal mucin cDNAs. J. Biol. Chem 264, 6480–6487
    OpenUrlAbstract/FREE Full Text
    1. Gum J. R.,
    2. Hicks J. W.,
    3. Swallow D. M.,
    4. Lagace R. L.,
    5. Byrd J. C.,
    6. Lamport D. T. A.,
    7. Siddiki B. and
    8. Kim Y. S.
    (1990). Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun 171, 407–415
    OpenUrlCrossRefPubMedWeb of Science
    1. Gum J. R.,
    2. Hicks J. W.,
    3. Toribara N. W.,
    4. Rothe E. M.,
    5. Lagace R. E. and
    6. Kim Y. S.
    (1992). The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem 267, 21375–21383
    OpenUrlAbstract/FREE Full Text
    1. Hafez M. M.,
    2. Infante D.,
    3. Winawer S. and
    4. Friedman E.
    (1990). Transforming growth factor1 acts as an autocrine-negative growth regulator in colon enterocytic differentiation but not in goblet cell maturation. Cell Growth Differ 1, 617–626
    OpenUrlAbstract
    1. Hauri H. P.,
    2. Sterchi E. E.,
    3. Bienz D.,
    4. Fransen J. A. M. and
    5. Marxer A.
    (1985). Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol 101, 838–851
    OpenUrlAbstract/FREE Full Text
    1. Ho S. B.,
    2. Niehans G. A.,
    3. Lyftogt C.,
    4. Yan P. S.,
    5. Cherwitz D. L.,
    6. Gum E. T.,
    7. Dahyia R. and
    8. Kim Y. S.
    (1993). Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 53, 641–651
    OpenUrlAbstract/FREE Full Text
    1. Huet C.,
    2. Sahuquillo-Merino C.,
    3. Coudrier E. and
    4. Louvard D.
    (1987). Absorptive and mucus-secreting subclones isolated from a multipotentent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J. Cell Biol 105, 345–358
    OpenUrlAbstract/FREE Full Text
    1. Jany B. H.,
    2. Gallup M. W.,
    3. Yan P. S.,
    4. Gum J. R.,
    5. Kim Y. S. and
    6. Basbaum C. B.
    (1991). Human bronchus and intestine express the same mucin gene. J. Clin. Invest 87, 77–82
    OpenUrlCrossRefPubMed
    1. Kreusel K. M.,
    2. Fromm M.,
    3. Schulze J. D. and
    4. Hegel U.
    (1991). Clsecretion in epithelial monolayers of mucus-forming human colon cells (HT-29/B6). Amer. J. Physiol 261, 30–.
    OpenUrl
    1. Lan M. S.,
    2. Batra S. K.,
    3. Qi W.,
    4. Metzgard R. S. and
    5. Hollingsworth M. A.
    (1990). Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem 265, 15294–15299
    OpenUrlAbstract/FREE Full Text
    1. Lesuffleur T.,
    2. Barbat A.,
    3. Dussaulx E. and
    4. Zweibaum A.
    (1990). Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50, 6334–6343
    OpenUrlAbstract/FREE Full Text
    1. Lesuffleur T.,
    2. Barbat A.,
    3. Luccioni C.,
    4. Beaumatin J.,
    5. Claire M.,
    6. Kornowski A.,
    7. Dussaulx E.,
    8. Dutrillaux B. and
    9. Zweibaum A.
    (1991). Dihydrofolate reductase gene amplification-associated shift of differentiation in methotrexate-adapted HT-29 cells. J. Cell. Biol 115, 1409–1418
    OpenUrlAbstract/FREE Full Text
    1. Lesuffleur T.,
    2. Kornowski A.,
    3. Augeron C.,
    4. Dussaulx E.,
    5. Barbat A.,
    6. Laboisse C. and
    7. Zweibaum A.
    (1991). Increased growth adaptability to 5-fluorouracil and methotrexate of HT-29 sub-populations selected for their commitment to differentiation. Int. J. Cancer 49, 731–737
    OpenUrlPubMedWeb of Science
    1. Lesuffleur T.,
    2. Kornowski A.,
    3. Luccioni C.,
    4. Muleris M.,
    5. Barbat A.,
    6. Beaumatin J.,
    7. Dussaulx E.,
    8. Dutrillaux B. and
    9. Zweibaum A.
    (1991). Adaptation to 5-fluorouracil of the heterogeneous human colon tumor cell line HT-29 results in the selection of cells committed to differentiation. Int. J. Cancer 49, 721–730
    OpenUrlCrossRefPubMedWeb of Science
    1. Mc. Ilhinney R. A. J.,
    2. Patel S. and
    3. Gore M. E.
    (1985). Monoclonal antibodies recognizing epitopes carried on both glycolipids and glycoproteins of the human fat globule membrane. Biochem. J 227, 155–162
    OpenUrlAbstract/FREE Full Text
    1. Van Cong Nguyen,
    2. Aubert J. P.,
    3. Gross M. S.,
    4. Porchet N.,
    5. Degand P. and
    6. Frezal J.
    (1990). Assignment of human tracheobronchial mucin gene(s) to 11p15 and a tracheobronchial mucin-related sequence to chromosome 13. Hum. Genet 86, 167–172
    OpenUrlPubMedWeb of Science
    1. Nuti M.,
    2. Teramoto Y. A.,
    3. Mariani-Constantini R.,
    4. Horan Hand P.,
    5. Colcher D. and
    6. Schlom J. A.
    (1982). A monoclonal antibody (B72. 3) defines patterns of distribution of a novel tumor-associated antigen in human mammary carcinoma cell populations. Int. J. Cancer 29, 539–545
    OpenUrlPubMedWeb of Science
    1. Ogata S.,
    2. Uehara H.,
    3. Chen A. and
    4. Itzkowitz S. H.
    (1992). Mucin gene expression in colonic tissues and cell lines. Cancer Res 52, 5971–5978
    OpenUrlAbstract/FREE Full Text
    1. Oriol R.,
    2. Samuelsson B. E. and
    3. Messeter L.
    (1990). ABO antibodies: serological behaviour and immuno-chemical characterization. J. Immunogenet 17, 279–299
    OpenUrlPubMedWeb of Science
    1. Ormerod M. G.,
    2. Monoghan P.,
    3. Easty D. and
    4. Easty G. C.
    (1981). Asymmetrical distribution of epithelial membrane antigen on the plasma membranes of human breast cell lines in culture. Diagn. Histopathol 4, 89–93
    OpenUrlPubMed
    1. Phillips T. E.,
    2. Huet C.,
    3. Bilbo P. R.,
    4. Podolsky D. K.,
    5. Louvard D. and
    6. Neutra M.
    (1988). Human intestinal goblet cells in monolayer culture: characterization of a mucus-secreting subclone derived from the HT29 colon adenocarcinoma cell line. Gastroenterology 94, 1390–1403
    OpenUrlPubMedWeb of Science
    1. Podolsky D. K.
    (1985). Oligosaccharide structures of human colonic mucin. J. Biol. Chem 260, 8262–8271
    OpenUrlAbstract/FREE Full Text
    1. Podolsky D. K.
    (1985). Oligosaccharide structures of isolated human colonic mucin species. J. Biol. Chem 260, 15510–15515
    OpenUrlAbstract/FREE Full Text
    1. Podolsky D. K.,
    2. Fournier D. A. and
    3. Lynch K. E.
    (1986). Human colonic goblet cells. Demonstration of distinct subpopulations defined by mucin-specific monoclonal antibodies. J. Clin. Invest 77, 1263–1271
    OpenUrlCrossRefPubMed
    1. Porchet N.,
    2. Nguyen V. C.,
    3. Dufosse J.,
    4. Audie J. P.,
    5. Guyonnet-Duperat V.,
    6. Gross M. S.,
    7. Denis C.,
    8. Degand P.,
    9. Bernheim A. and
    10. Aubert J. P.
    (1991). Molecular cloning and chromosomal localization of a novel human tracheobronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Commun 175, 414–422
    OpenUrlCrossRefPubMedWeb of Science
    1. Rettig W. J.,
    2. Cordon-Cardo C.,
    3. No J. S. C.,
    4. Oettgen H. F.,
    5. Old L. J. and
    6. Lloyd K. O.
    (1985). High molecular weight glycoproteins of human teratocarcinoma defined by monoclonal antibodies to carbohydrate determinants. Cancer Res 45, 815–821
    OpenUrlAbstract/FREE Full Text
    1. Robine S.,
    2. Huet C.,
    3. Moll R.,
    4. Sahuquillo-Merino C.,
    5. Coudrier E.,
    6. Zweibaum A. and
    7. Louvard D.
    (1985). Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells?. Proc. Nat. Acad. Sci. USA 82, 8488–8492
    OpenUrlAbstract/FREE Full Text
    1. Swallow D. M.,
    2. Gendler S.,
    3. Griffiths B.,
    4. Corney G.,
    5. Taylor-Papadimitriou J. and
    6. Bramwell M. E.
    (1987). The human tumour-associated epithelial mucins are coded by an hypervariable gene locus PUM. Nature 328, 82–84
    OpenUrlCrossRefPubMed
    1. Takahashi H. K.,
    2. Metoki R. and
    3. Hakomori S.
    (1988). Immunoglobulin G3 monoclonal antibody directed to Tn antigen (tumor-associated-N-acetylgalactosaminyl epitope) that does not cross-react with blood group A antigen. Cancer Res 48, 4361–4367
    OpenUrlAbstract/FREE Full Text
    1. Thomas P. S.
    (1980). Hybridization of denaturel mRNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77, 5201–5205
    OpenUrlAbstract/FREE Full Text
    1. Toribara N. W.,
    2. Gum J. R.,
    3. Culhane P. J.,
    4. Lagace R. E.,
    5. Hicks J. W.,
    6. Petersen G. M. and
    7. Kim Y. S.
    (1991). MUC2 human small intestinal mucin gene structure. J. Clin. Invest 88, 1005–1013
    OpenUrlCrossRefPubMedWeb of Science
    1. Toribara N. W.,
    2. Roberton A. M.,
    3. Ho S. B.,
    4. Kuo W. L.,
    5. Gum E.,
    6. Hicks J. W.,
    7. Gum J. R.,
    8. Byrd J. C.,
    9. Siddiki B. and
    10. Kim Y. S.
    (1993). Human gastric mucin. Identification of a unique species by expression cloning. J. Biol. Chem 268, 5879–5885
    OpenUrlAbstract/FREE Full Text
    1. Wesley A.,
    2. Mantle M.,
    3. Man D.,
    4. Qureshi R.,
    5. Forstner G. and
    6. Forstner J.
    (1985). Neutral and acidic species of human intestinal mucin. J. Biol. Chem 260, 7955–7959
    OpenUrlAbstract/FREE Full Text
    1. Xing P. X.,
    2. Tjandra J. J.,
    3. Reynolds K.,
    4. McLaughlin P. J.,
    5. Purcell D. F. J. and
    6. McKenzie I.
    (1989). Reactivity of anti-human milk fat globule antibodies with synthetic peptides. J. Immunol 142, 3503–3509
    OpenUrlAbstract
    1. Yonezawa S.,
    2. Byrd J. C.,
    3. Dahiya R.,
    4. Ho J. J. L.,
    5. Gum J. J.,
    6. Griffiths B.,
    7. Swallow D. M. and
    8. Kim Y. S.
    (1991). Differential mucin gene expression in human pancreatic and colon cancer cells. Biochem. J 276, 599–605
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations
T. Lesuffleur, N. Porchet, J.P. Aubert, D. Swallow, J.R. Gum, Y.S. Kim, F.X. Real, A. Zweibaum
Journal of Cell Science 1993 106: 771-783;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations
T. Lesuffleur, N. Porchet, J.P. Aubert, D. Swallow, J.R. Gum, Y.S. Kim, F.X. Real, A. Zweibaum
Journal of Cell Science 1993 106: 771-783;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Cell scientist to watch: Janet Iwasa

Read our interview with molecular animator Janet Iwasa, where she talks about her transition from the wet lab, explains how animation can facilitate research and discusses the challenges of the field.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Mole – The Corona files

“Despite everything, it's just incredible that we get to do science.”

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992