Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Articles
Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S
R. Pepperkok, M. Lowe, B. Burke, T.E. Kreis
Journal of Cell Science 1998 111: 1877-1888;
R. Pepperkok
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Lowe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Burke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.E. Kreis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Microinjected GTP gamma S revealed three distinct steps in the exocytic transport of the temperature sensitive glycoprotein of vesicular stomatitis virus (ts-O45-G) from the ER to the cell surface in intact Vero cells. While COPII dependent export of ts-O45-G from the ER is blocked in cells injected with recombinant protein of a dominant mutant of SAR1a (SAR1a[H79G]) inhibited in GTP hydrolysis, neither injected GTP gamma S nor antibodies against beta-COP (anti-EAGE) interfere with this transport step significantly. In contrast, transport to the Golgi complex is blocked by 50 microM GTP gamma S, a dominant mutant of ARF1 (ARF1[Q71L]) inhibited in GTP hydrolysis, or microinjected anti-EAGE, but injected Sar1a[H79G]p has no effect. Microinjection of GTP gamma S or expression of ARF[Q71L] rapidly induces accumulation of COPI coated vesicular structures lacking ts-O45-G. Finally, transport of ts-O45-G from the trans-Golgi network (TGN) to the cell surface is inhibited only by high concentrations of GTP gamma S (500 microM). Interestingly, this step is only partially brefeldin A sensitive, and injected antibodies against beta-COP and p200/myosin II, a TGN membrane associated protein, have no effect. These data provide first strong in vivo evidence for at least three distinct steps in the exocytic pathway of mammalian cells regulated by different sets of GTPases and coat proteins. COPII, but not COPI, is required for ER export of ts-O45-G. COPI plays a role in subsequent transport to the Golgi complex, and a so far unidentified GTP gamma S sensitive coat appears to be involved in transport from the TGN to the cell surface.

  • © 1998 by Company of Biologists

REFERENCES

    1. Aniento F.,
    2. Gu F.,
    3. Parton R. G. and
    4. Gruenberg J.
    (1996). An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J. Cell Biol 133, 29–41
    OpenUrlAbstract/FREE Full Text
    1. Aridor M.,
    2. Bannykh S. I.,
    3. Rowe T. and
    4. Balch W. E.
    (1995). Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol 131, 875–893
    OpenUrlAbstract/FREE Full Text
    1. Bannykh S. I.,
    2. Rowe T. and
    3. Balch W. E.
    (1996). The organization of endoplasmic reticulum export complexes. J. Cell Biol 135, 19–35
    OpenUrlAbstract/FREE Full Text
    1. Bannykh S. I. and
    2. Balch W. E.
    (1997). Membrane dynamics at the endoplasmic reticulum-Golgi interface. J. Cell Biol 138, 1–4
    OpenUrlFREE Full Text
    1. Barlowe C.,
    2. d'Enfert C. and
    3. Schekman R.
    (1993). Purification and characterization of SAR1p, a small GTP-binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem 268, 873–879
    OpenUrlAbstract/FREE Full Text
    1. Barlowe C.,
    2. Orci L.,
    3. Yeung T.,
    4. Hosobuchi M.,
    5. Hamamoto S.,
    6. Salama N.,
    7. Rexach M. F.,
    8. Ravazzola M.,
    9. Amherdt M. and
    10. Schekman R.
    (1994). COPII: A membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907
    OpenUrlCrossRefPubMedWeb of Science
    1. Barr F. A. and
    2. Huttner W. B.
    (1996). A role for ADP-ribosylation factor 1, but not COP I, in secretory vesicle biogenesis from the trans-Golgi network. FEBS Lett 384, 65–70
    OpenUrlCrossRefPubMedWeb of Science
    1. Beckers C. J. and
    2. Balch W. E.
    (1989). Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J. Cell Biol 108, 1245–1256
    OpenUrlAbstract/FREE Full Text
    1. Bednarek S. Y.,
    2. Ravazzola M.,
    3. Hosobuchi M.,
    4. Amherdt M.,
    5. Perrelet A.,
    6. Schekman R. and
    7. Orci L.
    (1995). COPI-and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83, 1183–1196
    OpenUrlCrossRefPubMedWeb of Science
    1. Bergmann J. E.,
    2. Tokuyasu K. T. and
    3. Singer S. J.
    (1981). Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proc. Nat. Acad. Sci. USA 78, 1746–1750
    OpenUrlAbstract/FREE Full Text
    1. Bloom G. S. and
    2. Brashear T. A.
    (1989). A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J. Biol. Chem 264, 16083–16092
    OpenUrlAbstract/FREE Full Text
    1. Bonatti S.,
    2. Migliaccio G. and
    3. Simons K.
    (1989). Palmitosylation of viral membrane glycoprotein takes place after exit from the endoplasmic retiulum. J. Biol. Chem 264, 12590–12595
    OpenUrlAbstract/FREE Full Text
    1. Campbell J. L. and
    2. Schekman R.
    (1997). Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. Proc. Nat. Acad. Sci. USA 94, 837–842
    OpenUrlAbstract/FREE Full Text
    1. Chen Y. G. and
    2. Shields D.
    (1996). ADP-ribosylation factor-1 stimulates formation of nascent secretory vesicles from the trans-Golgi network of endocrine cells. J. Biol. Chem 271, 5297–5300
    OpenUrlAbstract/FREE Full Text
    1. Cosson P. and
    2. Letourneur F.
    (1994). Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263, 1629–1631
    OpenUrlAbstract/FREE Full Text
    1. Cosson P.,
    2. Demolliere C.,
    3. Hennecke S.,
    4. Duden R. and
    5. Letourneur F.
    (1996). Delta-and zeta-COP, two coatomer subunits homologous to clathrin-associated proteins, are involved in ER retrieval. EMBO J 15, 1792–1798
    OpenUrlPubMedWeb of Science
    1. Cowles C. R.,
    2. Odorizzi G.,
    3. Payne G. S. and
    4. Emr S. D.
    (1997). The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91, 109–118
    OpenUrlCrossRefPubMedWeb of Science
    1. Dascher C. and
    2. Balch W. E.
    (1994). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem 269, 1437–1448
    OpenUrlAbstract/FREE Full Text
    1. Dell'Angelica E. D.,
    2. Ohno H.,
    3. Ooi C. E.,
    4. Rabinovich E.,
    5. Roche W. K. and
    6. Bonifacino J. S.
    (1997). AP-3: an adaptor like protein complex with ubiquitous expression. EMBO J 16, 917–928
    OpenUrlAbstract
    1. Donaldson J. G.,
    2. Lippincott-Schwartz J.,
    3. Bloom G. S.,
    4. Kreis T. E. and
    5. Klausner R. D.
    (1990). Dissociation of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A action. J. Cell Biol 111, 2295–2306
    OpenUrlAbstract/FREE Full Text
    1. Donaldson J. G.,
    2. Lippincott-Schwartz J.,
    3. Bloom G. S.,
    4. Kreis T. E. and
    5. Klausner R. D.
    (1991). Binding of ARF and-COP to Golgi membranes: possible regulation by trimeric G protein. Science 254, 1197–1199
    OpenUrlAbstract/FREE Full Text
    1. Duden R.,
    2. Griffiths G.,
    3. Frank R.,
    4. Argos P. and
    5. Kreis T. E.
    (1991). -COP, a 110kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to -adaptin. Cell 64, 649–665
    OpenUrlCrossRefPubMedWeb of Science
    1. Evan G. I.,
    2. Lewis G. K.,
    3. Ramsay G. and
    4. Bishop J. M.
    (1985). Isolationof monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol 5, 3610–3616
    OpenUrlAbstract/FREE Full Text
    1. Fiedler K.,
    2. Veit M.,
    3. Stamnes M. A. and
    4. Rothman J. E.
    (1996). Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273, 1396–1399
    OpenUrlAbstract
    1. Griffiths G.,
    2. Pfeiffer S.,
    3. Simons K. and
    4. Matlin K.
    (1985). Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol 101, 949–964
    OpenUrlAbstract/FREE Full Text
    1. Griffiths G.,
    2. Ericsson M.,
    3. Krijnse-Locker J.,
    4. Nilsson T.,
    5. Goud B.,
    6. Soling H. D.,
    7. Tang B. L.,
    8. Wong S. H.,
    9. Hong W. and
    10. et al.
    (1994). Localization of the Lys, Asp, Glu, Leu tetrepeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell Biol 127, 1557–1574
    OpenUrlAbstract/FREE Full Text
    1. Griffiths G.,
    2. Pepperkok R.,
    3. Locker J. K. and
    4. Kreis T. E.
    (1995). Immunocytochemical localization of beta-COP to the ER-Golgi boundary and the TGN. J. Cell Sci 108, 2839–2856
    OpenUrlAbstract/FREE Full Text
    1. Hammond C. and
    2. Helenius A.
    (1994). Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment and Golgi apparatus. J. Cell Biol 126, 41–52
    OpenUrlAbstract/FREE Full Text
    1. Harter C.,
    2. Pavel J.,
    3. Coccia F.,
    4. Draken E.,
    5. Wegehingel S.,
    6. Tschochner H. and
    7. Wieland F.
    (1996). Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc. Nat. Acad. Sci. USA 93, 1902–1906
    OpenUrlAbstract/FREE Full Text
    1. Hosobuchi M.,
    2. Kreis T. E. and
    3. Schekman R.
    (1992). Sec 21 is a gene required for ER to Golgi transport that encodes a subunit of a yeast coatomer. Nature 360, 603–605
    OpenUrlCrossRefPubMedWeb of Science
    1. Ikonen E.,
    2. Parton R. G.,
    3. Lafont F. and
    4. Simons K.
    (1996). Analysis of the role of p200-containing vesicles in post-Golgi traffic. Mol. Biol. Cell 7, 961–974
    OpenUrlAbstract/FREE Full Text
    1. Ikonen E.,
    2. De Almeid J. B.,
    3. Fath K. F.,
    4. Burgess D. R.,
    5. Ashman K.,
    6. Simons K. and
    7. Stow J. L.
    (1997). Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J. Cell Sci 110, 2155–2164
    OpenUrlAbstract/FREE Full Text
    1. Kreis T. E.
    (1986). Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J 5, 931–941
    OpenUrlPubMedWeb of Science
    1. Kreis T. E. and
    2. Lodish H. F.
    (1986). Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46, 929–937
    OpenUrlCrossRefPubMedWeb of Science
    1. Kreis T. E.,
    2. Lowe M. and
    3. Pepperkok R.
    (1995). COPs regulating membrane traffic. Annu. Rev. Cell Dev. Biol 11, 677–706
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuge O.,
    2. Dascher C.,
    3. Orci L.,
    4. Rowe T.,
    5. Amherdt M.,
    6. Plutner H.,
    7. Ravazzola M.,
    8. Tanigawa G.,
    9. Rothman J. E. and
    10. Balch W. E.
    (1994). Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol 125, 51–65
    OpenUrlAbstract/FREE Full Text
    1. Letourneur F.,
    2. Gaynor E. C.,
    3. Hennecke S.,
    4. Demolliere C.,
    5. Duden R.,
    6. Emr S. D.,
    7. Riezman H. and
    8. Cosson P.
    (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199–1207
    OpenUrlCrossRefPubMedWeb of Science
    1. Lewis M. J. and
    2. Pelham H. R.
    (1992). Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68, 353–364
    OpenUrlCrossRefPubMedWeb of Science
    1. Lowe M. and
    2. Kreis T. E.
    (1995). In vitro assembly and disassembly of coatomer. J. Biol. Chem 270, 31364–31371
    OpenUrlAbstract/FREE Full Text
    1. Malhotra V.,
    2. Serafini T.,
    3. Orci L.,
    4. Shepherd J. C. and
    5. Rothman J. E.
    (1989). Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58, 329–336
    OpenUrlCrossRefPubMedWeb of Science
    1. Matlin K. S. and
    2. Simons K.
    (1983). Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34, 233–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Melançon P.,
    2. Glick B. S.,
    3. Malhotra V.,
    4. Weidmann P. J.,
    5. Serafini T.,
    6. Gleason M. L.,
    7. Orci L. and
    8. Rothman J. E.
    (1987). Involvement of GTP-binding ‘G’ proteins in transport through the Golgi stack. Cell 51, 1053–1062
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller S. G.,
    2. Carnell L. and
    3. Moore H. H.
    (1992). Post-Golgi membrane traffic: brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling. J. Cell Biol 118, 267–283
    OpenUrlAbstract/FREE Full Text
    1. Miller S. G. and
    2. Moore H. P.
    (1991). Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium. J. Cell Biol 112, 39–54
    OpenUrlAbstract/FREE Full Text
    1. Musch A.,
    2. Cohen D. and
    3. Rodriguez-Boulan E.
    (1997). Myosin II isinvolved in the production of constitutive transport vesicles from the TGN. J. Cell Biol 138, 291–306
    OpenUrlAbstract/FREE Full Text
    1. Narula N.,
    2. McMorrow I.,
    3. Plopper G.,
    4. Doherty J.,
    5. Matlin K. S.,
    6. Burke B. and
    7. Stow J. L.
    (1992). Identification of a 200-kD, brefeldin-sensitive protein on Golgi membranes. J. Cell Biol 117, 27–38
    OpenUrlAbstract/FREE Full Text
    1. Narula N. and
    2. Stow J. L.
    (1995). Distinct coated vesicles labeled for p200 bud from trans-Golgi network membranes. Proc. Nat. Acad. Sci. USA 92, 2874–2878
    OpenUrlAbstract/FREE Full Text
    1. Newman L. S.,
    2. McKeever M. O.,
    3. Okano H. J. and
    4. Darnell R. B.
    (1995). b-NAP, a cebrellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 82, 773–783
    OpenUrlCrossRefPubMedWeb of Science
    1. Novick P. and
    2. Brennwald P.
    (1993). Friends and family: the role of the Rab GTPases in vesicular traffic. Cell 75, 597–601
    OpenUrlCrossRefPubMedWeb of Science
    1. Nuoffer C. and
    2. Balch W. E.
    (1994). GTPases: multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem 63, 949–990
    OpenUrlCrossRefPubMedWeb of Science
    1. Oka T. and
    2. Nakano A.
    (1994). Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER to Golgi transport in yeast. J. Cell Biol 124, 425–434
    OpenUrlAbstract/FREE Full Text
    1. Oka T.,
    2. Nishikawa S. and
    3. Nakano A.
    (1991). Reconstitution of GTP-binding Sar1 protein function in ER to Golgi transport. J. Cell Biol 114, 671–679
    OpenUrlAbstract/FREE Full Text
    1. Orci L.,
    2. Stamnes M.,
    3. Ravazzola M.,
    4. Amherdt M.,
    5. Perrelet A.,
    6. Söllner T. H. and
    7. Rothman J. E.
    (1997). Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335–349
    OpenUrlCrossRefPubMedWeb of Science
    1. Paccaud J. P.,
    2. Reith W.,
    3. Carpentier J.-L.,
    4. Ravazzola M.,
    5. Amherdt M.,
    6. Schekman R. and
    7. Orci L.
    (1996). Cloning and characterization of mammalian homologues of the COPII component Sec23. Mol. Biol. Cell 7, 1535–1546
    OpenUrlAbstract/FREE Full Text
    1. Palade G.
    (1975). Intracellular aspects of the process of protein synthesis. Science 187, 347–358
    OpenUrl
    1. Palmer D. J.,
    2. Helms J. B.,
    3. Beckers C. J. L.,
    4. Orci and
    5. Rothman J. E.
    (1993). Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem 268, 12083–12089
    OpenUrlAbstract/FREE Full Text
    1. Pearse B. M. F. and
    2. Robinson M. S.
    (1990). Clathrin, adaptors and sorting. Annu. Rev. Cell Biol 1, 151–171
    OpenUrlCrossRef
    1. Pepperkok R.,
    2. Scheel J.,
    3. Horstmann H.,
    4. Hauri H. P.,
    5. Griffiths G. and
    6. Kreis T. E.
    (1993). Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Peter F.,
    2. Plutner H.,
    3. Zhu H.,
    4. Kreis T. E. and
    5. Balch W. E.
    (1993). Beta-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol 122, 1155–1167
    OpenUrlAbstract/FREE Full Text
    1. Pierre P.,
    2. Pepperkok R. and
    3. Kreis T. E.
    (1994). Molecular characterization of two functional domains of CLIP-170 in vivo. J. Cell Sci 107, 1909–1920
    OpenUrlAbstract/FREE Full Text
    1. Pevsner J.,
    2. Volknandt W.,
    3. Wong B. R. and
    4. Scheller R. H.
    (1994). Two rat homologs of clathrin-associated adaptor proteins. Gene 146, 279–283
    OpenUrlCrossRefPubMedWeb of Science
    1. Pimplikar S. W. and
    2. Simons K.
    (1993). Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature 362, 456–458
    OpenUrlCrossRefPubMed
    1. Ponnambalam S.,
    2. Rabouille C.,
    3. Luzio J. P.,
    4. Nilsson T. and
    5. Warren G.
    (1994). The TGN38 glycoprotein contains two non-overlapping signals that mediate localisation to the trans-Golgi network. J. Cell Biol 125, 253–268
    OpenUrlAbstract/FREE Full Text
    1. Presley J. F.,
    2. Cole N. B.,
    3. Schroer T. A.,
    4. Hirschberg K.,
    5. Zaal K. J. and
    6. Lippincott-Schwartz J.
    (1997). ER-to-Golgi transport visualized in living cells. Nature 389, 81–85
    OpenUrlCrossRefPubMedWeb of Science
    1. Rexach M. F.,
    2. Latterich M. and
    3. Schekman R. W.
    (1994). Characteristics of endoplasmic reticulum-derived transport vesicles. J. Cell Biol 126, 1133–1148
    OpenUrlAbstract/FREE Full Text
    1. Robinson M. S.
    (1994). The role of clathrin, adaptors and dynamin in endocytosis. Curr. Opin. Cell Biol 6, 538–544
    OpenUrlCrossRefPubMedWeb of Science
    1. Robinson M. S. and
    2. Kreis T. E.
    (1992). Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators. Cell 69, 129–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Rosa P.,
    2. Barr F. A.,
    3. Stinchcombe J. C.,
    4. Binacchi C. and
    5. Huttner W. B.
    (1992). Brefeldin A inhibits the formation of constitutive secretory vesicles and immature secretory granules from the trans-Golgi network. Eur. J. Cell Biol 59, 265–274
    OpenUrlPubMedWeb of Science
    1. Saraste J. and
    2. Kuismanen E.
    (1984). Pre-and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell 38, 535–549
    OpenUrlCrossRefPubMedWeb of Science
    1. Saraste J.,
    2. Lahtinen U. and
    3. Goud B.
    (1995). Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway. J. Cell Sci 108, 1541–1552
    OpenUrlAbstract/FREE Full Text
    1. Satoh A. K.,
    2. Tokunaga F.,
    3. Kawamura S. and
    4. Ozaki K.
    (1997). In situinhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of Drosophila. J. Cell Sci 110, 2943–2953
    OpenUrlAbstract/FREE Full Text
    1. Scales S. J.,
    2. Pepperkok R. and
    3. Kreis T. E.
    (1997). Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148
    OpenUrlCrossRefPubMedWeb of Science
    1. Scheel J.,
    2. Pepperkok R.,
    3. Lowe M.,
    4. Griffiths G. and
    5. Kreis T.
    (1997). Dissociation of coatomer from membranes is required for brefeldin A-induced transfer of Golgi enzymes to the endoplasmic reticulum. J. Cell Biol 137, 319–333
    OpenUrlAbstract/FREE Full Text
    1. Schekman R. and
    2. Orci L.
    (1996). Coat proteins and vesicle budding. Science 271, 1526–1533
    OpenUrlAbstract
    1. Schekman R. and
    2. Mellman I.
    (1997). Does COPI go both ways?. Cell 90, 197–200
    OpenUrlCrossRefPubMedWeb of Science
    1. Schweizer A.,
    2. Fransen J. A. M.,
    3. Bächi T.,
    4. Ginsel L. and
    5. Hauri H.-P.
    (1988). Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis -side of the Golgi complex. J. Cell Biol 107, 1643–1653
    OpenUrlAbstract/FREE Full Text
    1. Shaywitz D. A.,
    2. Orci L.,
    3. Ravazzola M.,
    4. Swaroop A. and
    5. Kaiser C. A.
    (1995). Human SEC13Rp functions in yeast and is located on transport vesicles budding from the endoplasmic reticulum. J. Cell Biol 128, 769–777
    OpenUrlAbstract/FREE Full Text
    1. Simon J. P.,
    2. Ivanov I. E.,
    3. Shopsin B.,
    4. Hersh D.,
    5. Adesnik M. and
    6. Sabatini D. D.
    (1996). The in vitro generation of post-Golgi vesicles carrying viral envelope glycoproteins requires an ARF-like GTP-binding protein and a protein kinase C associated with the Golgi apparatus. J. Biol. Chem 271, 16952–16961
    OpenUrlAbstract/FREE Full Text
    1. Simpson F.,
    2. Bright N. A.,
    3. West M. A.,
    4. Newman L. S.,
    5. Darnell R. B. and
    6. Robinson M. S.
    (1996). A novel adaptor-related protein complex. J. Cell Biol 133, 749–760
    OpenUrlAbstract/FREE Full Text
    1. Sönnichsen B.,
    2. Watson R.,
    3. Clausen H.,
    4. Misteli T. and
    5. Warren G.
    (1996). Sorting by COP I-coated vesicles under interphase and mitotic conditions. J. Cell Biol 134, 1411–1425
    OpenUrlAbstract/FREE Full Text
    1. Sohn K.,
    2. Orci L.,
    3. Ravazzola M.,
    4. Amherdt M.,
    5. Bremser M.,
    6. Lottspeich F.,
    7. Fiedler K.,
    8. Helms J. B. and
    9. Wieland F. T.
    (1996). A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol 135, 1239–1248
    OpenUrlAbstract/FREE Full Text
    1. Stamnes M. A. and
    2. Rothman J. E.
    (1993). The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73, 999–1005
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanigawa G.,
    2. Orci L.,
    3. Amherdt M.,
    4. Ravazzola M.,
    5. Helms J. B. and
    6. Rothman J. E.
    (1993). Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol 123, 1365–1371
    OpenUrlAbstract/FREE Full Text
    1. Tang B. L.,
    2. Peter F.,
    3. Krijnse-Locker J.,
    4. Low S. H.,
    5. Griffiths G. and
    6. Hong W.
    (1997). The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus. Mol. Cell Biol 17, 256–266
    OpenUrlAbstract/FREE Full Text
    1. Teal S. B.,
    2. Hsu V. W.,
    3. Peters P. J.,
    4. Klausner R. D. and
    5. Donaldson J. G.
    (1994). An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem 269, 3135–3138
    OpenUrlAbstract/FREE Full Text
    1. Tisdale E. J.,
    2. Bourne J. R.,
    3. Khosravi-Far R.,
    4. Der C. J. and
    5. Balch W. E.
    (1992). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol 119, 749–761
    OpenUrlAbstract/FREE Full Text
    1. Traub L. M.,
    2. Ostrom J. A. and
    3. Kornfeld S.
    (1993). Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol 123, 561–573
    OpenUrlAbstract/FREE Full Text
    1. Vaux D.,
    2. Tooze J. and
    3. Fuller S.
    (1990). Identification by anti-idiotype antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum retention signal. Nature 345, 495–502
    OpenUrlCrossRefPubMed
    1. West M. A.,
    2. Bright N. A. and
    3. Robinson M. S.
    (1997). The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. J. Cell Biol 138, 1239–1254
    OpenUrlAbstract/FREE Full Text
    1. Whitney J. A.,
    2. Gomez M.,
    3. Sheff D.,
    4. Kreis T. E. and
    5. Mellman I.
    (1995). Cytoplasmic coat proteins involved in endosome function. Cell 83, 703–713
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu H. and
    2. Shields D.
    (1993). Prohormone processing in the trans-Golgi network: endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells. J. Cell Biol 122, 1169–1184
    OpenUrlAbstract/FREE Full Text
    1. Zerial M. and
    2. Stenmark H.
    (1993). Rab GTPases in vesicular transport. Curr. Opin. Cell Biol 5, 613–620
    OpenUrlCrossRefPubMed
    1. Zhang C. J.,
    2. Rosenwald A. G.,
    3. Willingham M. C.,
    4. Skuntz S.,
    5. Clark J. and
    6. Kahn R. A.
    (1994). Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo. J. Cell Biol 124, 289–300
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S
R. Pepperkok, M. Lowe, B. Burke, T.E. Kreis
Journal of Cell Science 1998 111: 1877-1888;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S
R. Pepperkok, M. Lowe, B. Burke, T.E. Kreis
Journal of Cell Science 1998 111: 1877-1888;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • Integrin cytoplasmic domain-binding proteins
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992