Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Journal Articles
Mechanisms of nuclear positioning
S. Reinsch, P. Gonczy
Journal of Cell Science 1998 111: 2283-2295;
S. Reinsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Gonczy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The mechanisms underlying two types of microtubule-dependent nuclear positioning are discussed. ‘MTOC-dependent nuclear positioning’ occurs when a nucleus is tightly associated with a microtubule organizing center (MTOC). ‘Nuclear tracking along microtubules’ is analogous to the motor-driven motility of other organelles and occurs when the nucleus lacks an associated MTOC. These two basic types of microtubule-dependent nuclear positioning may cooperate in many proliferating animal cells to achieve proper nuclear positioning. Microtubule polymerization and dynamics, motor proteins, MAPs and specialized sites such as cortical anchors function to control nuclear movements within cells.

  • © 1998 by Company of Biologists

REFERENCES

    1. Allan V.
    (1995). Membrane traffic motors. FEBS Lett 369, 101–106
    OpenUrlCrossRefPubMed
    1. Allan V.
    (1995). Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro. J. Cell Biol 128, 879–891
    OpenUrlAbstract/FREE Full Text
    1. Allen R. D.
    (1954). Fertilization and activation of sea urchin eggs in glass capillaries. Exp. Cell Res 6, 403–424
    OpenUrlCrossRefPubMedWeb of Science
    1. Aronson J. and
    2. Inoue S.
    (1970). Reversal by light of the action of N-methyl N-desacetyl colchicine on mitosis. J. Cell Biol 45, 470–477
    OpenUrlFREE Full Text
    1. Aronson J. F.
    (1971). Demonstration of a colcemid-sensitive attractive force acting between the nucleus and a center. J. Cell Biol 51, 579–583
    OpenUrlFREE Full Text
    1. Baker J.,
    2. Theurkauf W. E. and
    3. Schubiger G.
    (1993). Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J. Cell Biol 122, 113–121
    OpenUrlAbstract/FREE Full Text
    1. Baluska F.,
    2. Volkmann D. and
    3. Barlow P. W.
    (1997). Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations. Int. Rev. Cytol 175, 91–135
    OpenUrlPubMedWeb of Science
    1. Bjerknes M.
    (1986). Physical theory of the orientation of astral mitotic spindles. Science 234, 1413–1416
    OpenUrlAbstract/FREE Full Text
    1. Book K. J.,
    2. Howard R. and
    3. Morest D. K.
    (1991). Direct observation in vitro of how neuroblasts migrate: medulla and cochleovestibular ganglion of the chick embryo. Exp. Neurol 111, 228–243
    OpenUrlCrossRefPubMed
    1. Bornens M.
    (1977). Is the centriole bound to the nuclear membrane?. Nature 270, 80–82
    OpenUrlCrossRefPubMed
    1. Bruner J. M. and
    2. Bursztajn S.
    (1986). Acetylcholine receptor clusters are associated with nuclei in rat myotubes. Dev. Biol 115, 35–43
    OpenUrlCrossRefPubMedWeb of Science
    1. Busson S.,
    2. Dujardin D.,
    3. Moreau A.,
    4. Dompierre J. and
    5. De Mey J. R.
    (1998). Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol 8, 541–544
    OpenUrlCrossRefPubMedWeb of Science
    1. Carminati J. L. and
    2. Stearns T.
    (1997). Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol 138, 629–641
    OpenUrlAbstract/FREE Full Text
    1. Carre D. and
    2. Sardet C.
    (1984). Fertilization and early development in Beroe ovata. Dev. Biol 105, 188–195
    OpenUrlCrossRefPubMedWeb of Science
    1. Carre D.,
    2. Rouviere C. and
    3. Sardet C.
    (1991). In vitro fertilization in ctenophores: sperm entry, mitosis, and the establishment of bilateral symmetry in Beroe ovata. Dev. Biol 147, 381–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Chambers E. L.
    (1939). The movement of the egg nucleus in relation to the sperm aster in the echinoderm egg. J. Exp. Biol 16, 409–424
    OpenUrlAbstract
    1. Conklin E. G.
    (1894). The fertilization of the ovum. Biol. Lect., Marine Biol. Lab., Woods Hole.
    1. Conklin E. G.
    (1916). Effects of centrifugal force on the polarity of the eggs of Crepidula. Proc. Nat. Acad. Sci. USA 2, 87–90
    OpenUrlFREE Full Text
    1. Conklin E. G.
    (1917). Effects of centrifugal force on the structure and development of the eggs of Crepidula. J. Exp. Zool 22, 311–419
    OpenUrlCrossRef
    1. Cottingham F. R. and
    2. Hoyt M. A.
    (1997). Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J. Cell Biol 138, 1041–1053
    OpenUrlAbstract/FREE Full Text
    1. Dan K.
    (1979). Studies on unequal cleavage in sea urchins I. Migration of the nuclei to the vegetal pole. Dev. Growth Differ 21, 527–535
    OpenUrlCrossRef
    1. Dan K.,
    2. Endo S. and
    3. Uemura I.
    (1983). Studies on unequal cleavage in sea urchins II. Surface differentiation and the direction of nuclear migration. Dev. Growth Differ 25, 227–237
    OpenUrlCrossRef
    1. Dan K.
    (1984). The cause and consequence of unequal cleavage in sea urchins. Zool. Science 1, 151–160
    OpenUrl
    1. Dan K. and
    2. Ito S.
    (1984). Studies of unequal cleavage in molluscs: I. Nuclearbehavior and anchorage of a spindle pole to cortex as revealed by isolation technique. Dev. Growth Differ 26, 249–262
    OpenUrlCrossRef
    1. Desai A. and
    2. Mitchison T. J.
    (1997). Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol 13, 83–117
    OpenUrlCrossRefPubMedWeb of Science
    1. DeZwaan T. M.,
    2. Ellingson E.,
    3. Pellman D. and
    4. Roof D. M.
    (1997). Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell Biol 138, 1023–1040
    OpenUrlAbstract/FREE Full Text
    1. Dogterom M. and
    2. Yurke B.
    (1997). Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860
    OpenUrlAbstract/FREE Full Text
    1. Echeverri C. J.,
    2. Paschal B. M.,
    3. Vaughan K. T. and
    4. Vallee R. B.
    (1996). Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol 132, 617–633
    OpenUrlAbstract/FREE Full Text
    1. Endow S. A.,
    2. Kang S. J.,
    3. Satterwhite L. L.,
    4. Rose M. D.,
    5. Skeen V. P. and
    6. Salmon E. D.
    (1994). Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J 13, 2708–2713
    OpenUrlPubMedWeb of Science
    1. Englander L. L. and
    2. Rubin L. L.
    (1987). Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J. Cell Biol 104, 87–95
    OpenUrlAbstract/FREE Full Text
    1. Eshel D.,
    2. Urrestarazu L. A.,
    3. Vissers S.,
    4. Jauniaux J. C.,
    5. van V.,
    6. Reedijk J. C.,
    7. Planta R. J. and
    8. Gibbons I. R.
    (1993). Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc. Nat. Acad. Sci. USA 90, 11172–11176
    OpenUrlAbstract/FREE Full Text
    1. Euteneuer U. and
    2. Schliwa M.
    (1992). Mechanism of centrosome positioning during the wound response in BSC-1 cells. J. Cell Biol 116, 1157–1166
    OpenUrlAbstract/FREE Full Text
    1. Farkasovsky M. and
    2. Kuntzel H.
    (1995). Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions. J. Cell Biol 131, 1003–1014
    OpenUrlAbstract/FREE Full Text
    1. Fischer R. and
    2. Timberlake W. E.
    (1995). Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J. Cell Biol 128, 485–498
    OpenUrlAbstract/FREE Full Text
    1. Foe V. E. and
    2. Alberts B. M.
    (1983). Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci 61, 31–70
    OpenUrlAbstract/FREE Full Text
    1. Fontaine B.,
    2. Sassoon D.,
    3. Buckingham M. and
    4. Changeux J. P.
    (1988). Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J 7, 603–609
    OpenUrlPubMedWeb of Science
    1. Gard D. L.
    (1993). Ectopic spindle assembly during maturation of Xenopus oocytes: evidence for functional polarization of the oocyte cortex. Dev. Biol 159, 298–310
    OpenUrlCrossRefPubMed
    1. Geiser J. R.,
    2. Schott E. J.,
    3. Kingsbury T. J.,
    4. Cole N. B.,
    5. Totis L. J.,
    6. Bhattacharyya G.,
    7. He L. and
    8. Hoyt M. A.
    (1997). Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell 8, 1035–1050
    OpenUrlAbstract/FREE Full Text
    1. Gill S. R.,
    2. Schroer T. A.,
    3. Szilak I.,
    4. Steuer E. R.,
    5. Sheetz M. P. and
    6. Cleveland D. W.
    (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol 115, 1639–1650
    OpenUrlAbstract/FREE Full Text
    1. Gittes F.,
    2. Mickey B.,
    3. Nettleton J. and
    4. Howard J.
    (1993). Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol 120, 923–934
    OpenUrlAbstract/FREE Full Text
    1. Goldstein B.
    (1995). Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo. J. Cell Biol 129, 1071–10780
    OpenUrlAbstract/FREE Full Text
    1. Grolig F.
    (1998). Nuclear centering in Spirogyra: force integration by microfilaments along microtubules. Planta 204, 54–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Guild G. M.,
    2. Connelly P. S.,
    3. Shaw M. K. and
    4. Tilney L. G.
    (1997). Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J. Cell Biol 138, 783–797
    OpenUrlAbstract/FREE Full Text
    1. Hager G.,
    2. Dodt H. U.,
    3. Zieglgansberger W. and
    4. Liesi P.
    (1995). Novel forms of neuronal migration in the rat cerebellum. J. Neurosci. Res 40, 207–219
    OpenUrlCrossRefPubMedWeb of Science
    1. Hamaguchi M. S. and
    2. Hiramoto Y.
    (1980). Fertilization process in the heart urchin (Clypeaster japonicus) observed with differential interference microscopy. Dev. Growth Differ 22, 517–530
    OpenUrlCrossRef
    1. Hamaguchi M. S. and
    2. Hiramoto Y.
    (1986). Analysis of the role of astral rays in pronuclear migration by the colcemid-UV method. Dev. Growth Differ 28, 143–156
    OpenUrlCrossRefWeb of Science
    1. Hattori M.,
    2. Adachi H.,
    3. Tsujimoto M.,
    4. Arai H. and
    5. Inoue K.
    (1994). Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370, 216–218
    OpenUrlCrossRefPubMedWeb of Science
    1. Heidemann S. R. and
    2. Kirschner M. W.
    (1975). Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J. Cell Biol 67, 105–117
    OpenUrlAbstract/FREE Full Text
    1. Hill T. L. and
    2. Kirschner M. W.
    (1982). Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol 78, 1–125
    OpenUrlPubMedWeb of Science
    1. Hiramoto Y.
    (1970). Rheological properties of sea urchin eggs. Biorheology 6, 201–234
    OpenUrlPubMed
    1. Holleran E. A.,
    2. Karki S. and
    3. Holzbaur E. L.
    (1998). The role of the dynactin complex in intracellular motility. Int. Rev. Cytol 182, 69–109
    OpenUrlCrossRefPubMedWeb of Science
    1. Holy J. and
    2. Schatten G.
    (1991). Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos. J. Cell Sci 98, 423–431
    OpenUrlAbstract/FREE Full Text
    1. Holy T. E.,
    2. Dogterom M.,
    3. Yurke B. and
    4. Leibler S.
    (1997). Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Nat. Acad. Sci. USA 94, 6228–6231
    OpenUrlAbstract/FREE Full Text
    1. Hörstadius S.
    (1928). Ueber die Determination des Keimes bei Echinodermen. Acta Zool 9, 3–177
    OpenUrl
    1. Hyman A. A. and
    2. White J. G.
    (1987). Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol 105, 2123–2135
    OpenUrlAbstract/FREE Full Text
    1. Hyman A. A.
    (1989). Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol 109, 1185–1193
    OpenUrlAbstract/FREE Full Text
    1. Inoue S. and
    2. Salmon E. D.
    (1995). Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640
    OpenUrlAbstract/FREE Full Text
    1. Ishii R. and
    2. Shimizu T.
    (1997). Equalization of unequal first cleavage in the Tubifex egg by introduction of an additional centrosome: implications for the absence of cortical mechanisms for mitotic spindle asymmetry. Dev. Biol 189, 49–56
    OpenUrlCrossRefPubMed
    1. Jennings C. G. and
    2. Burden S. J.
    (1993). Development of the neuromuscular synapse. Curr. Opin. Neurobiol 3, 75–81
    OpenUrlCrossRefPubMed
    1. Kachar B. and
    2. Reese T. S.
    (1988). The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J. Cell Biol 106, 1545–1552
    OpenUrlAbstract/FREE Full Text
    1. Kellogg D. R.,
    2. Moritz M. and
    3. Alberts B. M.
    (1994). The centrosome and cellular organization. Annu. Rev. Biochem 63, 639–674
    OpenUrlCrossRefPubMedWeb of Science
    1. Kelly A. M. and
    2. Zacks S. I.
    (1969). The fine structure of motor endplate morphogenesis. J. Cell Biol 42, 154–169
    OpenUrlAbstract/FREE Full Text
    1. Klotz C.,
    2. Dabauvalle M. C.,
    3. Paintrand M.,
    4. Weber T.,
    5. Bornens M. and
    6. Karsenti E.
    (1990). Parthenogenesis in Xenopus eggs requires centrosomal integrity. J. Cell Biol 110, 405–415
    OpenUrlAbstract/FREE Full Text
    1. Li Y. Y.,
    2. Yeh E.,
    3. Hays T. and
    4. Bloom K.
    (1993). Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Nat. Acad. Sci. USA 90, 10096–10100
    OpenUrlAbstract/FREE Full Text
    1. Liesi P.
    (1992). Neuronal migration on laminin involves neuronal contact formation followed by nuclear movement inside a preformed process. Exp. Neurol 117, 103–113
    OpenUrlCrossRefPubMedWeb of Science
    1. Lillie F. R.
    (1909). Polarity and bilaterality of the annelid egg. Experiments with centrifugal force. Biol. Bull 16, 54–79
    OpenUrlFREE Full Text
    1. Lloyd C. W.,
    2. Pearce K. J.,
    3. Rawlins D. J.,
    4. Ridge R. W. and
    5. Shaw P. J.
    (1987). Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Motil. Cytoskel 8, 27–36
    OpenUrlCrossRefWeb of Science
    1. Lombillo V. A.,
    2. Stewart R. J. and
    3. McIntosh J. R.
    (1995). Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature 373, 161–164
    OpenUrlCrossRefPubMed
    1. Lutz D. A.,
    2. Hamaguchi Y. and
    3. Inoue S.
    (1988). Micromanipulation studies of the asymmetric positioning of the maturation spindle in Chaetopterus sp. oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindle. Cell. Motil. Cytoskel 11, 83–96
    OpenUrlCrossRefPubMed
    1. MacRae T. H.
    (1992). Microtubule organization by cross-linking and bundling proteins. Biochim. Biophys. Acta 1160, 145–155
    OpenUrlCrossRefPubMed
    1. Mandelkow E. and
    2. Mandelkow E. M.
    (1995). Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol 7, 72–81
    OpenUrlCrossRefPubMedWeb of Science
    1. Manes M. M. and
    2. Barbieri F. D.
    (1977). On the possibility of sperm aster involvement in dorso-ventral polarization and pronuclear migration in the amphibian egg. J. Embryol. Exp. Morphol 40, 187–197
    OpenUrlPubMed
    1. Maniotis A. J.,
    2. Chen C. S. and
    3. Ingber D. E.
    (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Nat. Acad. Sci. USA 94, 849–854
    OpenUrlAbstract/FREE Full Text
    1. McGrail M. and
    2. Hays T. S.
    (1997). The microtubule motor cytoplasmicdynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419
    OpenUrlAbstract
    1. McIntosh J. R. and
    2. Porter M. E.
    (1989). Enzymes for microtubule-dependent motility. J. Biol. Chem 264, 6001–6004
    OpenUrlFREE Full Text
    1. McMillan J. N. and
    2. Tatchell K.
    (1994). The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle. J. Cell Biol 125, 143–158
    OpenUrlAbstract/FREE Full Text
    1. Meindl U.,
    2. Zhang D. and
    3. Hepler P. K.
    (1994). Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias. Studies on living cells. J. Cell Sci 107, 1929–1934
    OpenUrlAbstract/FREE Full Text
    1. Micklem D. R.,
    2. Dasgupta R.,
    3. Elliott H.,
    4. Gergely F.,
    5. Davidson C.,
    6. Brand A.,
    7. Gonzalez R. A. and
    8. St J. D.
    (1997). The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol 7, 468–478
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller R. K. and
    2. Rose M. D.
    (1998). Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol 140, 377–390
    OpenUrlAbstract/FREE Full Text
    1. Muhua L.,
    2. Karpova T. S. and
    3. Cooper J. A.
    (1994). A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration. Cell 78, 669–679
    OpenUrlCrossRefPubMedWeb of Science
    1. Murray A. W.,
    2. Desai A. B. and
    3. Salmon E. D.
    (1996). Real time observation of anaphase in vitro. Proc. Nat. Acad. Sci. USA 93, 12327–12332
    OpenUrlAbstract/FREE Full Text
    1. Nothnagel E. A. and
    2. Webb W. W.
    (1982). Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J. Cell Biol 94, 444–454
    OpenUrlAbstract/FREE Full Text
    1. Oakley B. R. and
    2. Morris N. R.
    (1980). Nuclear movement is beta-tubulin-dependent in Aspergillus nidulans. Cell 19, 255–262
    OpenUrlCrossRefPubMedWeb of Science
    1. Palmer R. E.,
    2. Sullivan D. S.,
    3. Huffaker T. and
    4. Koshland D.
    (1992). Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol 119, 583–593
    OpenUrlAbstract/FREE Full Text
    1. Paschal B. M. and
    2. Vallee R. B.
    (1993). Microtubule and axoneme gliding assays for force production by microtubule motor proteins. Meth. Cell Biol 39, 65–74
    OpenUrlPubMed
    1. Raff J. W. and
    2. Glover D. M.
    (1988). Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol 107, 2009–2019
    OpenUrlAbstract/FREE Full Text
    1. Reiner O.,
    2. Carrozzo R.,
    3. Shen Y.,
    4. Wehnert M.,
    5. Faustinella F.,
    6. Dobyns W. B.,
    7. Caskey C. T. and
    8. Ledbetter D. H.
    (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717–721
    OpenUrlCrossRefPubMedWeb of Science
    1. Reinsch S. and
    2. Karsenti E.
    (1994). Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol 126, 1509–1526
    OpenUrlAbstract/FREE Full Text
    1. Reinsch S. and
    2. Karsenti E.
    (1997). Movement of nuclei along microtubules in Xenopus egg extracts. Curr. Biol 7, 211–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Rose M. D.
    (1996). Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu. Rev. Cell Dev. Biol 12, 663–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Roth S.,
    2. Neuman S. F.,
    3. Barcelo G. and
    4. Schupbach T.
    (1995). cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967–978
    OpenUrlCrossRefPubMedWeb of Science
    1. Rouviere C.,
    2. Houliston E.,
    3. Carre D.,
    4. Chang P. and
    5. Sardet C.
    (1994). Characteristics of pronuclear migration in Beroe ovata. Cell Motil. Cytoskel 29, 301–311
    OpenUrlCrossRefPubMedWeb of Science
    1. Sapir T.,
    2. Elbaum M. and
    3. Reiner O.
    (1997). Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J 16, 6977–6984
    OpenUrlAbstract
    1. Saunders W.,
    2. Hornack D.,
    3. Lengyel V. and
    4. Deng C.
    (1997). The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules. J. Cell Biol 137, 417–431
    OpenUrlAbstract/FREE Full Text
    1. Schatten G.
    (1981). The movements and fusion of the pronuclei at fertilization of the sea urchin Lytechinus variegatus: time-lapse video microscopy. J. Morphol 167, 231–247
    OpenUrl
    1. Schatten G. and
    2. Schatten H.
    (1981). Effects of motility inhibitors during sea urchin fertilization: microfilament inhibitors prevent sperm incorporation and restructuring of fertilized egg cortex, whereas microtubule inhibitors prevent pronuclear migrations. Exp. Cell Res 135, 311–330
    OpenUrlCrossRefPubMedWeb of Science
    1. Schatten G.
    (1982). Motility during fertilization. Int. Rev. Cytol 79, 59–163
    OpenUrlPubMedWeb of Science
    1. Schatten G.
    (1994). The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol 165, 299–335
    OpenUrlCrossRefPubMedWeb of Science
    1. Shaw S. L.,
    2. Yeh E.,
    3. Maddox P.,
    4. Salmon E. D. and
    5. Bloom K.
    (1997). Astral microtubule dynamics in yeast: a microtubule-based searchingmechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol 139, 985–994
    OpenUrlAbstract/FREE Full Text
    1. Singal P. K. and
    2. Sanders E. J.
    (1974). Cytomembranes in first cleavage Xenopus embryos. Interrelationship between Golgi bodies, endoplasmic reticulum and lipid droplets. Cell Tissue Res 154, 189–209
    OpenUrlPubMed
    1. Snyder M.
    (1994). The spindle pole body of yeast. Chromosoma 103, 369–380
    OpenUrlPubMedWeb of Science
    1. Stearns T.
    (1997). Motoring to the finish: kinesin and dynein work together to orient the yeast mitotic spindle. J. Cell Biol 138, 957–960
    OpenUrlFREE Full Text
    1. Strome S. and
    2. Hill D. P.
    (1988). Early embryogenesis in Caenorhabditis elegans: the cytoskeleton and spatial organization of the zygote. BioEssays 8, 145–149
    OpenUrlCrossRefPubMed
    1. Subtelny S. and
    2. Bradt C.
    (1963). Cytological observations on the early developmental stages of activated Rana pipens eggs receiving a transplanted blastula nucleus. J. Morphol 112, 45–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Swope R. E. and
    2. Kropf D. L.
    (1993). Pronuclear positioning and migration during fertilization in Pelvetia. Dev. Biol 157, 269–276
    OpenUrlCrossRefPubMed
    1. Tassin A. M.,
    2. Maro B. and
    3. Bornens M.
    (1985). Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol 100, 35–46
    OpenUrlAbstract/FREE Full Text
    1. Terasaki M. and
    2. Jaffe L. A.
    (1991). Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J. Cell Biol 114, 929–940
    OpenUrlAbstract/FREE Full Text
    1. Theurkauf W. E.,
    2. Smiley S.,
    3. Wong M. L. and
    4. Alberts B. M.
    (1992). Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923–936
    OpenUrlAbstract
    1. Theurkauf W. E.,
    2. Alberts B. M.,
    3. Jan Y. N. and
    4. Jongens T. A.
    (1993). A central role for microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180
    OpenUrlAbstract/FREE Full Text
    1. Theurkauf W. E.
    (1994). Microtubules and cytoplasm organization during Drosophila oogenesis. Dev. Biol 165, 352–360
    OpenUrlCrossRefPubMed
    1. Thorpe C. J.,
    2. Schlesinger A.,
    3. Carter J. C. and
    4. Bowerman B.
    (1997). Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705
    OpenUrlCrossRefPubMedWeb of Science
    1. Tournebize R.,
    2. Andersen S. S.,
    3. Verde F.,
    4. Doree M.,
    5. Karsenti E. and
    6. Hyman A. A.
    (1997). Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J 16, 5537–5549
    OpenUrlAbstract
    1. von Dassow G. and
    2. Schubiger G.
    (1994). How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J. Cell Biol 127, 1637–1653
    OpenUrlAbstract/FREE Full Text
    1. Waddle J. A.,
    2. Cooper J. A. and
    3. Waterston R. H.
    (1994). Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric divisions. Development 120, 2317–2328
    OpenUrlAbstract
    1. Walczak C. E.,
    2. Mitchison T. J. and
    3. Desai A.
    (1996). XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47
    OpenUrlCrossRefPubMedWeb of Science
    1. Waters J. C.,
    2. Cole R. W. and
    3. Rieder C. L.
    (1993). The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. J. Cell Biol 122, 361–372
    OpenUrlAbstract/FREE Full Text
    1. Willins D. A.,
    2. Liu B.,
    3. Xiang X. and
    4. Morris N. R.
    (1997). Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol. Gen. Genet 255, 194–200
    OpenUrlCrossRefPubMedWeb of Science
    1. Xiang X.,
    2. Osmani A. H.,
    3. Osmani S. A.,
    4. Roghi C. H.,
    5. Willins D. A.,
    6. Beckwith S.,
    7. Goldman G.,
    8. Chiu Y.,
    9. Xin M.,
    10. Liu B. and
    11. et al.
    (1995). Analysis of nuclear migration in Aspergillus nidulans. Cold Spring Harbor Symp. Quant. Biol 60, 813–819
    OpenUrlAbstract/FREE Full Text
    1. Xiang X.,
    2. Osmani A. H.,
    3. Osmani S. A.,
    4. Xin M. and
    5. Morris N. R.
    (1995). NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310
    OpenUrlAbstract/FREE Full Text
    1. Yeh E.,
    2. Skibbens R. V.,
    3. Cheng J. W.,
    4. Salmon E. D. and
    5. Bloom K.
    (1995). Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol 130, 687–700
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms of nuclear positioning
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Mechanisms of nuclear positioning
S. Reinsch, P. Gonczy
Journal of Cell Science 1998 111: 2283-2295;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Mechanisms of nuclear positioning
S. Reinsch, P. Gonczy
Journal of Cell Science 1998 111: 2283-2295;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992