Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Journal Articles
Tight junctions
M.S. Balda, K. Matter
Journal of Cell Science 1998 111: 541-547;
M.S. Balda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Matter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Tight junctions are the most apical intercellular junctions of epithelial and endothelial cells and create a regulatable semipermeable diffusion barrier between individual cells. On a cellular level, they form an intramembrane diffusion fence that restricts the intermixing of apical and basolateral membrane components. In addition to these well defined functions, more recent evidence suggests that tight junctions are also involved in basic cellular processes like the regulation of cell growth and differentiation.

  • © 1998 by Company of Biologists

REFERENCES

    1. Anderson J. M.,
    2. Stevenson B. R.,
    3. Jesaitis L. A.,
    4. Goodenough D. A. and
    5. Mooseker M. S.
    (1988). Characterizatin of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J. Cell Biol 106, 1141–1149
    OpenUrlAbstract/FREE Full Text
    1. Anderson J. M. and
    2. Van Itallie C. M.
    (1995). Tight junction and the molecular basis for regulation of paracellular permeability. Am. J. Physiol 269, 467–475
    OpenUrl
    1. Ando-Akatsuka Y.,
    2. Saitou M.,
    3. Hirase T.,
    4. Kishi M.,
    5. Sakakibara A.,
    6. Itoh M.,
    7. Yonemura S.,
    8. Furuse M. and
    9. Tsukita S.
    (1996). Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J. Cell Biol 133, 43–47
    OpenUrlAbstract/FREE Full Text
    1. Bacallao R.,
    2. Garfinkel A.,
    3. Monke S.,
    4. Zamighi G. and
    5. Mandel L. J.
    (1994). ATP depletion: a novel method to study junctional properties in epithelial tissues: I. Rearrangement of the actin cytoskeleton. J. Cell Sci 107, 3301–3313
    OpenUrlAbstract/FREE Full Text
    1. Balda M. S.,
    2. González-Mariscal L.,
    3. Contreras R. G.,
    4. Macias-Silva M.,
    5. Torres-Marquez M. E.,
    6. Garcia-Sainz J. A. and
    7. Cereijido M.
    (1991). Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J. Membr. Biol 122, 193–202
    OpenUrlCrossRefPubMedWeb of Science
    1. Balda M. and
    2. Anderson J.
    (1993). Two classes of tight junctions are revealed by ZO-1 isoforms. Am. J. Physiol 264, 918–.
    OpenUrl
    1. Balda M. S.,
    2. González-Mariscal L.,
    3. Matter K.,
    4. Cereijido M. and
    5. Anderson J. M.
    (1993). Assenbly of tight junctions: the role of diacylglycerol. J. Cell Biol 123, 293–302
    OpenUrlAbstract/FREE Full Text
    1. Balda M. S.,
    2. Whitney J. A.,
    3. Flores C.,
    4. González S.,
    5. Cereijido M. and
    6. Matter K.
    (1996). Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol 134, 1031–1049
    OpenUrlAbstract/FREE Full Text
    1. Balda M. S.,
    2. Anderson J. M. and
    3. Matter K.
    (1996). The SH3 domain of the tight junction protein ZO-1 binds to a serine protein kinase that phosphorylates a region C-terminal to this domain. FEBS Lett 399, 326–332
    OpenUrlCrossRefPubMedWeb of Science
    1. Barth A. I. M.,
    2. Näthke I. S. and
    3. Nelson W. J.
    (1997). Cadherins, catenins and APC protein: interplay between cytoskeletal complex and signaling pathways. Curr. Opin. Cell Biol 9, 683–690
    OpenUrlCrossRefPubMedWeb of Science
    1. Behrens J.,
    2. Birchmeier W.,
    3. Goodman S. L. and
    4. Imhof B. A.
    (1985). Dissociation of Mardin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol 101, 1307–1315
    OpenUrlAbstract/FREE Full Text
    1. Cereijido M.,
    2. Robbins E. S.,
    3. Dolan W. J.,
    4. Rotunno C. A. and
    5. Sabatini D. D.
    (1978). Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol 77, 853–880
    OpenUrlAbstract/FREE Full Text
    1. Cereijido M.,
    2. Stefani E. and
    3. Palomo A. M.
    (1980). Occluding junctions in a cultured transporting epithelium: structural and functional heterogeneity. J. Membr. Biol 53, 19–32
    OpenUrlCrossRefPubMed
    1. Chapman L. M. and
    2. Eddy E. M.
    (1989). A protein associated with the mouse and rat hepatocyte junctional complex. Cell Tissue Res 257, 333–341
    OpenUrlCrossRefPubMed
    1. Chen Y.,
    2. Merzdorf C.,
    3. Paul D. L. and
    4. Goodenough D. A.
    (1997). COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J. Cell Biol 138, 891–899
    OpenUrlAbstract/FREE Full Text
    1. Citi S.,
    2. Sabanay H.,
    3. Jakes R.,
    4. Geiger B. and
    5. Kendrick Jones J.
    (1988). Cingulin, a new peripheral component of tight junctions. Nature 333, 272–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Citi S.
    (1992). Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells. J. Cell Biol 117, 169–178
    OpenUrlAbstract/FREE Full Text
    1. Citi S.,
    2. Volberg T.,
    3. Bershadsky A. D.,
    4. Denisenko N. and
    5. Geiger B.
    (1994). Cytoskeletal involvement in the modulation of cell-cell junctions by the protein kinase inhibitor H-7. J. Cell Sci 107, 683–692
    OpenUrlAbstract/FREE Full Text
    1. Claude P.
    (1978). Morphological factors influencing transepithelial permeability: A model for the resistance of the zonula occludens. J. Membr. Biol 39, 219–232
    OpenUrlCrossRefPubMedWeb of Science
    1. Claude P. and
    2. Goodenough D. A.
    (1973). Fracture faces of zonulae occludens from tight and leaky epithelia. J. Cell Biol 58, 390–400
    OpenUrlAbstract/FREE Full Text
    1. Denker B. M.,
    2. Saha C.,
    3. Khawaja S. and
    4. Nigam S. K.
    (1996). Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis. J. Biol. Chem 271, 25750–25753
    OpenUrlAbstract/FREE Full Text
    1. Diamond J. M. and
    2. Wright E. M.
    (1969). Biological membranes: The physical basis of ion and nonelectrolite selectivity. Annu. Rev. Physiol 31, 581–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Dragsten P. R.,
    2. Blumenthal R. and
    3. Handler J. S.
    (1981). Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane?. Nature 294, 718–722
    OpenUrlCrossRefPubMed
    1. Fanning A. S. and
    2. Anderson J. M.
    (1996). Protein-protein interactions: PDZ domain networks. Curr. Biol 6, 1385–1388
    OpenUrlCrossRefPubMedWeb of Science
    1. Farquhar M. G. and
    2. Palade G. E.
    (1963). Junctional complexes in various epithelia. J. Cell Biol 17, 375–412
    OpenUrlAbstract/FREE Full Text
    1. Frömter E.
    (1972). The route of passive ion movement through the epithelium of Necturus gallbladder. J. Membr. Biol 8, 259–301
    OpenUrlCrossRefPubMedWeb of Science
    1. Fujimoto K.
    (1995). Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of intergral membrane proteins: application to the immunogold labeling of intercellular junctional complex. J. Cell Sci 108, 3443–3449
    OpenUrlAbstract/FREE Full Text
    1. Furuse M.,
    2. Hirase T.,
    3. Itoh M.,
    4. Nagafuchi A.,
    5. Yonemura S.,
    6. Tsukita S. and
    7. Tsukita S.
    (1993). Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol 123, 1777–1788
    OpenUrlAbstract/FREE Full Text
    1. Furuse M.,
    2. Itoh M.,
    3. Hirase T.,
    4. Nagafuchi A.,
    5. Yonemura S.,
    6. Tsukita S. and
    7. Tsukita S.
    (1994). Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol 127, 1617–1626
    OpenUrlAbstract/FREE Full Text
    1. Furuse M.,
    2. Fujimoto K.,
    3. Sato N.,
    4. Hirase T.,
    5. Tsukita S. and
    6. Tsukita S.
    (1996). Overexpression of occludin, a tight junction integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J. Cell Sci 109, 429–435
    OpenUrlAbstract/FREE Full Text
    1. González-Mariscal L.,
    2. Chávez de Ramirez B. C. and
    3. Cereijido M.
    (1984). Effect of temperature on the occluding junctions of monolayers of epithelioid cells (MDCK). J. Membr. Biol 79, 175–184
    OpenUrlCrossRefPubMedWeb of Science
    1. González-Mariscal L.,
    2. Chávez de Ramirez B.,
    3. Lázaro A. and
    4. Cereijido M.
    (1989). Establishment of tight junctions between cells from different animal species and different sealing capacities. J. Membr. Biol 107, 43–56
    OpenUrlCrossRefPubMedWeb of Science
    1. Gottardi C. J.,
    2. Arpin M.,
    3. Fanning A. S. and
    4. Louvard D.
    (1996). The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc. Nat. Acad. Sci. USA 93, 10779–10784
    OpenUrlAbstract/FREE Full Text
    1. Gumbiner B. and
    2. Simons K.
    (1986). A functional assay for proteins involved in establishing an epithelial occluding barrier: Identification of a uvomorulin-like polypeptide. J. Cell Biol 102, 457–468
    OpenUrlAbstract/FREE Full Text
    1. Gumbiner B.,
    2. Lowenkopf T. and
    3. Apatira D.
    (1991). Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc. Nat. Acad. Sci. USA 88, 3460–3464
    OpenUrlAbstract/FREE Full Text
    1. Gumbiner B. M.
    (1993). Breaking through the tight junction barrier. J. Cell Biol 123, 1631–1633
    OpenUrlFREE Full Text
    1. Gumbiner B. M.
    (1997). Carcinogenesis: A balance between-catenin and APC. Curr. Biol 7, 433–.
    OpenUrl
    1. Han M.
    (1997). Gut reaction to wtn signaling in worms. Cell 90, 581–584
    OpenUrlCrossRefPubMed
    1. Hirase T.,
    2. Staddon J. M.,
    3. Saitou M.,
    4. Ando-Akatsuka Y.,
    5. Itoh M.,
    6. Furse W.,
    7. Fujimoto K.,
    8. Tsukita S. and
    9. Rubin L. L.
    (1997). Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci 110, 1603–1613
    OpenUrlAbstract/FREE Full Text
    1. Howarth A. G.,
    2. Hughes M. R. and
    3. Stevenson B. R.
    (1992). Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am. J. Physiol 262, 461–.
    OpenUrl
    1. Huber L.,
    2. Pimplikar S.,
    3. Parton R. G.,
    4. Virta H.,
    5. Zerial M. and
    6. Simons K.
    (1993). Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol 123, 35–45
    OpenUrlAbstract/FREE Full Text
    1. Huber O.,
    2. Bierkamp C. and
    3. Kemler R.
    (1996). Cadherins and catenins in develpment. Curr. Opin. Cell Biol 8, 685–691
    OpenUrlCrossRefPubMedWeb of Science
    1. Itoh M.,
    2. Yonemura S.,
    3. Nagafuchi A.,
    4. Kitani-Yosuda T.,
    5. Tsukita S. and
    6. Tsukita S.
    (1993). The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein inepithelial cells: cDNA cloning and immunoelectron microscopy. J. Cell Biol 121, 491–502
    OpenUrlAbstract/FREE Full Text
    1. Itoh M.,
    2. Nagafuchi A.,
    3. Moroi S. and
    4. Tsukita S.
    (1997). Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to-catenin and actin filaments. J. Cell Biol 138, 181–192
    OpenUrlAbstract/FREE Full Text
    1. Jesaitis L. A. and
    2. Goodenough D. A.
    (1994). Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and Drosophila tumor suppressor gene dlg-A. J. Cell Biol 124, 949–961
    OpenUrlAbstract/FREE Full Text
    1. Kachar B. and
    2. Reese T. S.
    (1982). Evidence for the lipidic nature of tight junction strands. Nature 296, 464–466
    OpenUrlCrossRefPubMed
    1. Keon B. H.,
    2. Schäfer S.,
    3. Kuhn C.,
    4. Grund C. and
    5. Franke W. W.
    (1996). Symplekin, a novel type of tight junction plaque protein. J. Cell Biol 134, 1003–1018
    OpenUrlAbstract/FREE Full Text
    1. Kim S. K.
    (1995). Tight junctions, membrane-associated guanylate kinase and cell signaling. Curr. Opin. Cell Biol 7, 641–649
    OpenUrlCrossRefPubMedWeb of Science
    1. Kirkpatrick C. and
    2. Peifer M.
    (1995). Not just glue: cell-cell junctions as cellular signaling centers. Curr. Opin. Gen. Dev 5, 56–65
    OpenUrlCrossRefPubMed
    1. Lindemann B. and
    2. Solomon A. K.
    (1962). Permeability of luminal surface of intestinal mucosal cells. J. Gen. Physiol 45, 801–810
    OpenUrlAbstract/FREE Full Text
    1. Madara J. L.
    (1988). Tight junction dynamics: Is paracellular permeability regulated?. Cell 53, 497–498
    OpenUrlCrossRefPubMedWeb of Science
    1. Mandel L. J.,
    2. Bacallao R. and
    3. Zampighi G.
    (1993). Uncoupling of the molecular fence and paracellular gate function in epithelial tight junctions. Nature 361, 552–555
    OpenUrlCrossRefPubMed
    1. Matsumine A.,
    2. Ogai A.,
    3. Senda T.,
    4. Okumura N.,
    5. Satoh K.,
    6. Baeg G.-H.,
    7. Kawahara T.,
    8. Kobayashi S.,
    9. Okada M.,
    10. Toyoshima K. and
    11. Akiyama T.
    (1996). Binding of APC to the human homolog of the Drosophila Disc Large tumor suppressor protein. Science 272, 1020–1023
    OpenUrlAbstract
    1. McCarthy K. M.,
    2. Skare I. B.,
    3. Stankewich M. C.,
    4. Furuse M.,
    5. Tsukita S.,
    6. Rogers R. A.,
    7. Lynch R. D. and
    8. Schneeberger E. E.
    (1996). Occludin is a functional component of the tight junction. J. Cell Sci 109, 2287–2298
    OpenUrlAbstract/FREE Full Text
    1. Merzdorf C. S. and
    2. Goodenough D. A.
    (1997). Localization of a novel 210 kDa protein in Xenopus tight junctions. J. Cell Sci 110, 1005–1012
    OpenUrlAbstract/FREE Full Text
    1. Ohsugi M.,
    2. Larue L.,
    3. Schwarz H. and
    4. Kemler R.
    (1997). Cell-junctional and cytoskeletal organization in mouse blastocysts lacking E-cadherin. Dev. Biol 185, 261–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Pinto da Silva P. and
    2. Kachar B.
    (1982). On tight junction structure. Cell 28, 441–450
    OpenUrlCrossRefPubMedWeb of Science
    1. Rajasekaran A. K.,
    2. Hojo M.,
    3. Huima T. and
    4. Rodriguez-Boulan E.
    (1996). Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol 132, 451–463
    OpenUrlAbstract/FREE Full Text
    1. Rosson D.,
    2. O'Brien T. G.,
    3. Kampherstein J. A.,
    4. Szallasi Z.,
    5. Bogi K.,
    6. Blumberg P. M. and
    7. Mullin J. M.
    (1997). Protein kinase C-alpha activity modulates transepithelial permeability and cell junctions in the LLC-PK1 epithelial cell line. J. Biol. Chem 272, 14950–14953
    OpenUrlAbstract/FREE Full Text
    1. Sakakibara A.,
    2. Furuse M.,
    3. Saitou M.,
    4. Ando Akatsuka Y. and
    5. Tsukita S.
    (1997). Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol 137, 1393–1401
    OpenUrlAbstract/FREE Full Text
    1. Sheth B.,
    2. Fesenko I.,
    3. Collins J.,
    4. Moran B.,
    5. Wild A.,
    6. Anderson J. and
    7. Fleming T.
    (1997). Tight junction assembly during mouse blastocyt formation is regulated by late expression of ZO-1 alpha plus isoform. Development 124, 2027–2037
    OpenUrlAbstract
    1. Simske J. S.,
    2. Kaech S. M.,
    3. Harp S. A. and
    4. Kim S. K.
    (1996). LET-23receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Staehelin L. A.
    (1973). Further observations of the fine structure of freeze-cleaved tight junctions. J. Cell Sci 13, 763–786
    OpenUrlAbstract/FREE Full Text
    1. Stevenson B. R.,
    2. Siliciano J. D.,
    3. Mooseker M. S. and
    4. Goodenough D. A.
    (1986). Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol 103, 755–766
    OpenUrlAbstract/FREE Full Text
    1. Stevenson B.,
    2. Anderson J. M.,
    3. Goodenough D. A. and
    4. Mooseker M. S.
    (1988). Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J. Cell Biol 107, 2401–2408
    OpenUrlAbstract/FREE Full Text
    1. Takeichi M.
    (1995). Morphogenetic roles of clasical cadherins. Curr. Opin. Cell Biol 7, 619–627
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsukita S.,
    2. Itoh M.,
    3. Nagafuchi A.,
    4. Yonemura S. and
    5. Tsukita S.
    (1993). Submembranous junctional plaque proteins include potential tumor suppressor molecules. J. Cell Biol 123, 1049–1053
    OpenUrlFREE Full Text
    1. van Itallie C. M. and
    2. Anderson J. M.
    (1997). Occludin confers adhesiveness when expressed in fibroblasts. J. Cell Sci 110, 1113–1121
    OpenUrlAbstract/FREE Full Text
    1. van Meer G. and
    2. Simons K.
    (1986). The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 5, 1455–1464
    OpenUrlPubMedWeb of Science
    1. van Os C. H.,
    2. de Jong M. D. and
    3. Slegers J. F. G.
    (1974). Dimensions of polar pathways through rabbit gallbladder epithelium. J. Membr. Biol 15, 363–382
    OpenUrlCrossRefPubMedWeb of Science
    1. Weber E.,
    2. Berta G.,
    3. Tousson A.,
    4. John P.,
    5. Green M.,
    6. Gopalokrishnan U.,
    7. Jilling T.,
    8. Sorscher E.,
    9. Elton T.,
    10. Abrahamson D. and
    11. Kirk K.
    (1994). Expression and polarized targeting of rab3 isoform in epithelial cells. J. Cell Biol 125, 583–594
    OpenUrlAbstract/FREE Full Text
    1. Wegener J. and
    2. Gall H.-J.
    (1996). The role of non-lamellar lipid structures in the formation of tight junctions. Chem. Phys. Lipids 81, 229–255
    OpenUrl
    1. Willott E.,
    2. Balda M. S.,
    3. Fanning A. S.,
    4. Jameson B.,
    5. van Itallie C. and
    6. Anderson J. M.
    (1993). The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc. Nat. Acad. Sci. USA 90, 7834–7838
    OpenUrlAbstract/FREE Full Text
    1. Wong V. and
    2. Gumbiner B. M.
    (1997). A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J. Cell Biol 136, 399–409
    OpenUrlAbstract/FREE Full Text
    1. Woods D. F. and
    2. Bryant P. J.
    (1993). ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic junctions. Mech. Dev 44, 85–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Woods D. F.,
    2. Hough C.,
    3. Peel D.,
    4. Callaini G. and
    5. Bryant P. J.
    (1996). Dlg protein is required for junctional structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol 134, 1469–1482
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto T.,
    2. Harada N.,
    3. Kano K.,
    4. Taya S.,
    5. Canaani E.,
    6. Matsuura Y.,
    7. Mizoguchi A.,
    8. Ide C. and
    9. Kaibuchi K.
    (1997). The ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J. Cell Biol 139, 785–795
    OpenUrlAbstract/FREE Full Text
    1. Zahraoui A.,
    2. Joberty G.,
    3. Arpin M.,
    4. Fontaine J. J.,
    5. Hellio R.,
    6. Tavitian A. and
    7. Louvard D.
    (1994). A small rab GTPase is distributed in cytoplasmic vesicles in non polarized cells but colocalizes with the tight junction marker ZO-1 in polarized epithelial cells. J. Cell Biol 124, 101–115
    OpenUrlAbstract/FREE Full Text
    1. Zhong Y.,
    2. Saitoh T.,
    3. Minase T.,
    4. Sawada N.,
    5. Enomoto K. and
    6. Mori M.
    (1993). Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J. Cell Biol 120, 477–483
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tight junctions
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Tight junctions
M.S. Balda, K. Matter
Journal of Cell Science 1998 111: 541-547;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Tight junctions
M.S. Balda, K. Matter
Journal of Cell Science 1998 111: 541-547;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992