Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Articles
Mutational analysis of the potential phosphorylation sites in the cytoplasmic domain of integrin beta1A. Requirement for threonines 788–789 in receptor activation
K. Wennerberg, R. Fassler, B. Warmegard, S. Johansson
Journal of Cell Science 1998 111: 1117-1126;
K. Wennerberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Fassler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Warmegard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Johansson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

To investigate the role of the potential phosphorylation sites in the cytoplasmic domain of integrin beta1A, point mutated variants of the protein were stably expressed in the beta1-deficient cell line GD25. Mutants T777A, Y783F, S785A, and Y795F were fully active in promoting cell adhesion, de novo formation of focal contacts, formation of fibronectin fibrils, and activation of focal adhesion kinase. Thus, phosphorylation of these residues is not required for several basic functions of integrin beta1A. On the other hand, the TT788-9AA mutant, was defective in mediating cell attachment and did not contribute to fibronectin fibril formation. The conformation of the extracellular domain was shifted towards an inactive state as measured by binding of the monoclonal antibody 9EG7. Antibody induced clustering of beta1ATT788-9AA demonstrated that the mutant cytoplasmic part was functional in mediating activation of focal adhesion kinase. Therefore, we conclude that threonines 788–789, which are conserved among most integrin beta subunits, are of critical importance for integrin function due to effects on the extracellular conformation of the receptor.

  • © 1998 by Company of Biologists

REFERENCES

    1. Bajt M. L.,
    2. Ginsberg M. H.,
    3. Frelinger A. d.,
    4. Berndt M. C. and
    5. Loftus J. C.
    (1992). A spontaneous mutation of integrinIIb 3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J. Biol. Chem 267, 3789–3794
    OpenUrlAbstract/FREE Full Text
    1. Bazzoni G.,
    2. Shih D. T.,
    3. Buck C. A. and
    4. Hemler M. E.
    (1995). Monoclonal antibody 9EG7 defines a novel1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J. Biol. Chem 270, 25570–25577
    OpenUrlAbstract/FREE Full Text
    1. Blystone S. D.,
    2. Lindberg F. P.,
    3. Williams M. P.,
    4. McHugh K. P. and
    5. Brown E. J.
    (1996). Inducible tyrosine phosphorylation of the3 integrin requires the V integrin cytoplasmic tail. J. Biol. Chem 271, 31458–31462
    OpenUrlAbstract/FREE Full Text
    1. Bottger B. A.,
    2. Hedin U.,
    3. Johansson S. and
    4. Thyberg J.
    (1989). Integrin-type fibronectin receptors of rat arterial smooth muscle cells: isolation, partial characterization and role in cytoskeletal organisation and control of differentiated properties. Differentiation 41, 158–167
    OpenUrlCrossRefPubMedWeb of Science
    1. Buyon J. P.,
    2. Slade S. G.,
    3. Reibman J.,
    4. Abramson S. B.,
    5. Philips M. R.,
    6. Weissmann G. and
    7. Winchester R.
    (1990). Constitutive and induced phosphorylation of the-and -chains of the CD11/CD18 leukocyte integrin family. Relationship to adhesion-dependent functions. J. Immunol 144, 191–197
    OpenUrlAbstract
    1. Chatila T. A.,
    2. Geha R. S. and
    3. Arnaout M. A.
    (1989). Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J. Cell Biol 109, 3435–3444
    OpenUrlAbstract/FREE Full Text
    1. Chen Y. P.,
    2. Djaffar I.,
    3. Pidard D.,
    4. Steiner B.,
    5. Cieutat A. M.,
    6. Caen J. P. and
    7. Rosa J. P.
    (1992). Ser-752Pro mutation in the cytoplasmic domain of integrin 3 subunit and defective activation of platelet integrinIIb 3(glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc. Nat. Acad. Sci. USA 89, 10169–10173
    OpenUrlAbstract/FREE Full Text
    1. Chen Y. P.,
    2. O'Toole T. E.,
    3. Ylanne J.,
    4. Rosa J. P. and
    5. Ginsberg M. H.
    (1994). A point mutation in the integrin3 cytoplasmic domain (S752 P) impairs bidirectional signaling throughIIb 3 (platelet glycoprotein IIb-IIIa). Blood 84, 1857–1865
    OpenUrlAbstract/FREE Full Text
    1. Dahl S. C. and
    2. Grabel L. B.
    (1989). Integrin phosphorylation is modulated during the differentiation of F-9 teratocarcinoma stem cells. J. Cell Biol 108, 183–190
    OpenUrlAbstract/FREE Full Text
    1. Dedhar S. and
    2. Hannigan G. E.
    (1996). Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr. Opin. Cell Biol 8, 657–669
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng W. P. and
    2. Nickoloff J. A.
    (1992). Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem 200, 81–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Detmers P. A.,
    2. Wright S. D.,
    3. Olsen E.,
    4. Kimball B. and
    5. Cohn Z. A.
    (1987). Aggregation of complement receptors on human neutrophils in the absence of ligand. J. Cell Biol 105, 1137–1145
    OpenUrlAbstract/FREE Full Text
    1. Fässler R.,
    2. Pfaff M.,
    3. Murphy J.,
    4. Noegel A. A.,
    5. Johansson S.,
    6. Timpl R. and
    7. Albrecht R.
    (1995). Lack of1 integrin gene in embryonic stem cells affects morphology, adhesion and migration but not integration into the inner cell mass of blastocysts. J. Cell Biol 128, 979–988
    OpenUrlAbstract/FREE Full Text
    1. Forsberg E.,
    2. Ek B.,
    3. Engström A. and
    4. Johansson S.
    (1994). Purification and characterization of integrin9 1. Exp. Cell Res 213, 183–190
    OpenUrlCrossRefPubMed
    1. Guan J. L. and
    2. Shalloway D.
    (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690–692
    OpenUrlCrossRefPubMedWeb of Science
    1. Hayashi Y.,
    2. Haimovich B.,
    3. Reszka A.,
    4. Boettiger D. and
    5. Horwitz A.
    (1990). Expression and function of chicken integrin1 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 cells. J. Cell Biol 110, 175–184
    OpenUrlAbstract/FREE Full Text
    1. Hibbs M. L.,
    2. Jakes S.,
    3. Stacker S. A.,
    4. Wallace R. W. and
    5. Springer T. A.
    (1991). The cytoplasmic domain of the integrin lymphocyte function-associated antigen 1subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site. J. Exp. Med 174, 1227–1238
    OpenUrlAbstract/FREE Full Text
    1. Hillery C. A.,
    2. Smyth S. S. and
    3. Parise L. V.
    (1991). Phosphorylation of human platelet glycoprotein IIIa (GPIIIa). Dissociation from fibrinogen receptor activation and phosphorylation of GPIIIa in vitro. J. Biol. Chem 266, 14663–14669
    OpenUrlAbstract/FREE Full Text
    1. Hirst R.,
    2. Horwitz A.,
    3. Buck C. and
    4. Rohrschneider L.
    (1986). Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc. Nat. Acad. Sci. USA 83, 6470–6474
    OpenUrlAbstract/FREE Full Text
    1. Holers V. M.,
    2. Ruff T. G.,
    3. Parks D. L.,
    4. McDonald J. A.,
    5. Ballard L. L. and
    6. Brown E. J.
    (1989). Molecular cloning of a murine fibronectin receptor and its expression during inflammation. Expression of VLA-5 is increased in activated peritoneal macrophages in a manner discordant from major histocompatibility complex class II. J. Exp. Med 169, 1589–1605
    OpenUrlAbstract/FREE Full Text
    1. Hungerford J. E.,
    2. Compton M. T.,
    3. Matter M. L.,
    4. Hoffstrom B. G. and
    5. Otey C. A.
    (1996). Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J. Cell Biol 135, 1383–1390
    OpenUrlAbstract/FREE Full Text
    1. Hynes R. O.
    (1992). Integrins: versatility, modulation and signaling in cell adhesion. Cell 69, 11–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Johansson M. W.,
    2. Larsson E.,
    3. Luning B.,
    4. Pasquale E. B. and
    5. Ruoslahti E.
    (1994). Altered localization and cytoplasmic domain-binding properties of tyrosine-phosphorylated1 integrin. J. Cell Biol 126, 1299–1309
    OpenUrlAbstract/FREE Full Text
    1. Johansson S. and
    2. Höök M.
    (1984). Substrate adhesion of rat hepatocytes: on the mechanism of attachment to fibronectin. J. Cell Biol 98, 810–817
    OpenUrlAbstract/FREE Full Text
    1. Law D. A.,
    2. Nannizzi-Alaimo L. and
    3. Phillips D. R.
    (1996). Outside-in integrin signal transduction. IIb 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J. Biol. Chem 271, 10811–10815
    OpenUrlAbstract/FREE Full Text
    1. Lenter M.,
    2. Uhlig H.,
    3. Hamann A.,
    4. Jeno P.,
    5. Imhof B. and
    6. Vestweber D.
    (1993). A monoclonal antibody against an activation epitope on mouse integrin chain1 blocks adhesion of lymphocytes to the endothelial integrin 61. Proc. Nat. Acad. Sci. USA 90, 9051–9055
    OpenUrlAbstract/FREE Full Text
    1. Leong L.,
    2. Hughes P. E.,
    3. Schwartz M. A.,
    4. Ginsberg M. H. and
    5. Shattil S. J.
    (1995). Integrin signaling: roles for the cytoplasmic tails ofIIb 3 in the tyrosine phosphorylation of pp125FAK. J. Cell Sci 108, 3817–3825
    OpenUrlAbstract/FREE Full Text
    1. Lewis J. M. and
    2. Schwartz M. A.
    (1995). Mapping in vivo associations of cytoplasmic proteins with integrin1 cytoplasmic domain mutants. Mol. Biol. Cell 6, 151–160
    OpenUrlAbstract/FREE Full Text
    1. Lewis J. M.,
    2. Cheresh D. A. and
    3. Schwartz M. A.
    (1996). Protein kinase C regulatesv 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J. Cell Biol 134, 1323–1332
    OpenUrlAbstract/FREE Full Text
    1. Lin T. H.,
    2. Aplin A. E.,
    3. Shen Y.,
    4. Chen Q.,
    5. Schaller M.,
    6. Romer L.,
    7. Aukhil I. and
    8. Juliano R. L.
    (1997). Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J. Cell Biol 136, 1385–1395
    OpenUrlAbstract/FREE Full Text
    1. Lin W. H.,
    2. Higgins D.,
    3. Pacheco M.,
    4. Aletta J.,
    5. Perini S.,
    6. Marcucci K. A. and
    7. Roth J. A.
    (1993). Manganese induces spreading and process outgrowth in rat pheochromocytoma (PC12) cells. J. Neurosci. Res 34, 546–561
    OpenUrlCrossRefPubMedWeb of Science
    1. Lipfert L.,
    2. Haimovich B.,
    3. Schaller M. D.,
    4. Cobb B. S.,
    5. Parsons J. T. and
    6. Brugge J. S.
    (1992). Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J. Cell Biol 119, 905–912
    OpenUrlAbstract/FREE Full Text
    1. Marcantonio E. E.,
    2. Guan J. L.,
    3. Trevithick J. E. and
    4. Hynes R. O.
    (1990). Mapping of the functional determinants of the integrin1 cytoplasmic domain by site-directed mutagenesis. Cell Regul 1, 597–604
    OpenUrlPubMedWeb of Science
    1. McNamee H. P.,
    2. Ingber D. E. and
    3. Schwartz M. A.
    (1993). Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell Biol 121, 673–678
    OpenUrlAbstract/FREE Full Text
    1. Miyamoto S.,
    2. Teramoto H.,
    3. Coso O. A.,
    4. Gutkind J. S.,
    5. Burbelo P. D.,
    6. Akiyama S. K. and
    7. Yamada K. M.
    (1995). Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol 131, 791–805
    OpenUrlAbstract/FREE Full Text
    1. Nobes C. D. and
    2. Hall A.
    (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Toole T. E.,
    2. Mandelman D.,
    3. Forsyth J.,
    4. Shattil S. J.,
    5. Plow E. F. and
    6. Ginsberg M. H.
    (1991). Modulation of the affinity of integrinIIb 3 (GPIIb-IIIa) by the cytoplasmic domain ofIIb. Science 254, 845–847
    OpenUrlAbstract/FREE Full Text
    1. O'Toole T. E.,
    2. Katagiri Y.,
    3. Faull R. J.,
    4. Peter K.,
    5. Tamura R.,
    6. Quaranta V.,
    7. Loftus J. C.,
    8. Shattil S. J. and
    9. Ginsberg M. H.
    (1994). Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol 124, 1047–1059
    OpenUrlAbstract/FREE Full Text
    1. O'Toole T. E.,
    2. Ylanne J. and
    3. Culley B. M.
    (1995). Regulation of integrin affinity states through an NPXY motif in thesubunit cytoplasmic domain. J. Biol. Chem 270, 8553–8558
    OpenUrlAbstract/FREE Full Text
    1. Otey C. A.,
    2. Vasquez G. B.,
    3. Burridge K. and
    4. Erickson B. W.
    (1993). Mapping of the-actinin binding site within the 1 integrin cytoplasmic domain. J. Biol. Chem 268, 21193–21197
    OpenUrlAbstract/FREE Full Text
    1. Otey C. A.
    (1996). pp125FAK in the focal adhesion. Int. Rev. Cytol 167, 161–183
    OpenUrlCrossRefPubMedWeb of Science
    1. Parise L. V.,
    2. Criss A. B.,
    3. Nannizzi L. and
    4. Wardell M. R.
    (1990). Glycoprotein IIIa is phosphorylated in intact human platelets. Blood 75, 2363–2368
    OpenUrlAbstract/FREE Full Text
    1. Parsons J. T.
    (1996). Integrin-mediated signalling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr. Opin. Cell Biol 8, 146–152
    OpenUrlCrossRefPubMedWeb of Science
    1. Reszka A. A.,
    2. Hayashi Y. and
    3. Horwitz A. F.
    (1992). Identification of amino acid sequences in the integrin1 cytoplasmic domain implicated in cytoskeletal association. J. Cell Biol 117, 1321–1330
    OpenUrlAbstract/FREE Full Text
    1. Sastry S. K.,
    2. Lakonishok M.,
    3. Thomas D. A.,
    4. Muschler J. and
    5. Horwitz A. F.
    (1996). Integrinsubunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J. Cell Biol 133, 169–184
    OpenUrlAbstract/FREE Full Text
    1. Schaller M. D.,
    2. Otey C. A.,
    3. Hildebrand J. D. and
    4. Parsons J. T.
    (1995). Focal adhesion kinase and paxillin bind to peptides mimickingintegrin cytoplasmic domains. J. Cell Biol 130, 1181–1187
    OpenUrlAbstract/FREE Full Text
    1. Schlaepfer D. D.,
    2. Hanks S. K.,
    3. Hunter T. and
    4. van der Geer P.
    (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786–791
    OpenUrlCrossRefPubMedWeb of Science
    1. Schwartz M. A. and
    2. Denninghoff K.
    (1994). v integrins mediate the rise in intracellular calcium in endothelial cells on fibronectin even though they play a minor role in adhesion. J. Biol. Chem 269, 11133–11137
    OpenUrlAbstract/FREE Full Text
    1. Smilenov L.,
    2. Forsberg E.,
    3. Zeligman I.,
    4. Sparrman M. and
    5. Johansson S.
    (1992). Separation of fibronectin from a plasma gelatinase using immobilized metal affinity chromatography. FEBS Lett 302, 227–230
    OpenUrlCrossRefPubMed
    1. Takada Y.,
    2. Ylanne J.,
    3. Mandelman D.,
    4. Puzon W. and
    5. Ginsberg M. H.
    (1992). A point mutation of integrin1 subunit blocks binding of 51 to fibronectin and invasin but not recruitment to adhesion plaques. J. Cell Biol 119, 913–921
    OpenUrlAbstract/FREE Full Text
    1. Tapley P.,
    2. Horwitz A.,
    3. Buck C.,
    4. Duggan K. and
    5. Rohrschneider L.
    (1989). Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts. Oncogene 4, 325–333
    OpenUrlPubMedWeb of Science
    1. Valmu L. and
    2. Gahmberg C. G.
    (1995). Treatment with okadaic acid reveals strong threonine phosphorylation of CD18 after activation of CD11/CD18 leukocyte integrins with phorbol esters or CD3 antibodies. J. Immunol 155, 1175–1183
    OpenUrlAbstract/FREE Full Text
    1. Vuori K. and
    2. Ruoslahti E.
    (1993). Activation of protein kinase C precedes5 1 integrin-mediated cell spreading on fibronectin. J. Biol. Chem 268, 21459–21462
    OpenUrlAbstract/FREE Full Text
    1. Wary K. K.,
    2. Mainiero F.,
    3. Isakoff S. J.,
    4. Marcantonio E. E. and
    5. Giancotti F. G.
    (1996). The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733–743
    OpenUrlCrossRefPubMedWeb of Science
    1. Wennerberg K.,
    2. Lohikangas L.,
    3. Gullberg D.,
    4. Pfaff M.,
    5. Johansson S. and
    6. Fässler R.
    (1996). 1 integrin-dependent and-independent polymerization of fibronectin. J. Cell Biol 132, 227–238
    OpenUrlAbstract/FREE Full Text
    1. Woods A.,
    2. Couchman J. R.,
    3. Johansson S. and
    4. Hook M.
    (1986). Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments. EMBO J 5, 665–670
    OpenUrlPubMedWeb of Science
    1. Woods A. and
    2. Couchman J. R.
    (1992). Protein kinase C involvement in focal adhesion formation. J. Cell Sci 101, 277–290
    OpenUrlAbstract/FREE Full Text
    1. Yamada K. M. and
    2. Miyamoto S.
    (1995). Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell Biol 7, 681–689
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mutational analysis of the potential phosphorylation sites in the cytoplasmic domain of integrin beta1A. Requirement for threonines 788–789 in receptor activation
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Mutational analysis of the potential phosphorylation sites in the cytoplasmic domain of integrin beta1A. Requirement for threonines 788–789 in receptor activation
K. Wennerberg, R. Fassler, B. Warmegard, S. Johansson
Journal of Cell Science 1998 111: 1117-1126;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Mutational analysis of the potential phosphorylation sites in the cytoplasmic domain of integrin beta1A. Requirement for threonines 788–789 in receptor activation
K. Wennerberg, R. Fassler, B. Warmegard, S. Johansson
Journal of Cell Science 1998 111: 1117-1126;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized madin-darby canine kidney cells
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Cell scientist to watch: Janet Iwasa

Read our interview with molecular animator Janet Iwasa, where she talks about her transition from the wet lab, explains how animation can facilitate research and discusses the challenges of the field.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Mole – The Corona files

“Despite everything, it's just incredible that we get to do science.”

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992