Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Articles
Metabolic control of peroxisome abundance
C.C. Chang, S. South, D. Warren, J. Jones, A.B. Moser, H.W. Moser, S.J. Gould
Journal of Cell Science 1999 112: 1579-1590;
C.C. Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. South
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Warren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.B. Moser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.W. Moser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.J. Gould
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Zellweger syndrome and related disorders represent a group of lethal, genetically heterogeneous diseases. These peroxisome biogenesis disorders (PBDs) are characterized by defective peroxisomal matrix protein import and comprise at least 10 complementation groups. The genes defective in seven of these groups and more than 90% of PBD patients are now known. Here we examine the distribution of peroxisomal membrane proteins in fibroblasts from PBD patients representing the seven complementation groups for which the mutant gene is known. Peroxisomes were detected in all PBD cells, indicating that the ability to form a minimal peroxisomal structure is not blocked in these mutants. We also observed that peroxisome abundance was reduced fivefold in PBD cells that are defective in the PEX1, PEX5, PEX12, PEX6, PEX10, and PEX2 genes. These cell lines all display a defect in the import of proteins with the type-1 peroxisomal targeting signal (PTS1). In contrast, peroxisome abundance was unaffected in cells that are mutated in PEX7 and are defective only in the import of proteins with the type-2 peroxisomal targeting signal. Interestingly, a fivefold reduction in peroxisome abundance was also observed for cells lacking either of two PTS1-targeted peroxisomal beta-oxidation enzymes, acyl-CoA oxidase and 2-enoyl-CoA hydratase/D-3-hydroxyacyl-CoA dehydrogenase. These results indicate that reduced peroxisome abundance in PBD cells may be caused by their inability to import these PTS1-containing enzymes. Furthermore, the fact that peroxisome abundance is influenced by peroxisomal 105-oxidation activities suggests that there may be metabolic control of peroxisome abundance.

  • © 1999 by Company of Biologists

REFERENCES

    1. Braverman N.,
    2. Steel G.,
    3. Obie C.,
    4. Moser A.,
    5. Moser H.,
    6. Gould S. J. and
    7. Valle D.
    (1997). Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nature Genet 15, 369–376
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang C.-C.,
    2. Lee W.-H.,
    3. Moser H. W.,
    4. Valle D. and
    5. Gould S. J.
    (1997). Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nature Genet 15, 385–388
    OpenUrlCrossRefPubMedWeb of Science
    1. de Vet E. C.,
    2. Ijlst L.,
    3. Oostheim W.,
    4. Wanders R. J. and
    5. van den Bosch H.
    (1998). Alkyl-dihydroxyacetonephosphate synthase. Fate in peroxisome biogenesis disorders and identification of the point mutation underlying a single enzyme deficiency. J. Biol. Chem 273, 10296–10301
    OpenUrlAbstract/FREE Full Text
    1. Distel B.,
    2. Erdmann R.,
    3. Gould S. J.,
    4. Blobel G.,
    5. Crane D. I.,
    6. Cregg J. M.,
    7. Dodt G.,
    8. Fujiki Y.,
    9. Goodman J. M.,
    10. Just W. W.,
    11. Kiel J. A. K. W.,
    12. Kunau W.-H.,
    13. Lazarow P. B.,
    14. Mannaerts G. P.,
    15. Moser H.,
    16. Osumi T.,
    17. Rachubinski R. A.,
    18. Roscher A.,
    19. Subramani S.,
    20. Tabak H. F.,
    21. Tsukamoto T.,
    22. Valle D.,
    23. van der Klei I.,
    24. van Veldhoven P. P. and
    25. Veenhuis M.
    (1996). A unified nomenclature for peroxisome biogenesis. J. Cell Biol 135, 1–3
    OpenUrlFREE Full Text
    1. Dodt G.,
    2. Braverman N.,
    3. Wong C.,
    4. Moser A.,
    5. Moser H. W.,
    6. Watkins P.,
    7. Valle D. and
    8. Gould S. J.
    (1995). Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genet 9, 115–124
    OpenUrlCrossRefPubMedWeb of Science
    1. Dodt G. and
    2. Gould S. J.
    (1996). Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: Evidence that PTS1 protein import is mediated by a cycling receptor. J. Cell Biol 135, 1763–1774
    OpenUrlAbstract/FREE Full Text
    1. Erdmann R.,
    2. Wiebel F. F.,
    3. Flessau A.,
    4. Rytka J.,
    5. Beyer A.,
    6. Frohlich K. U. and
    7. Kunau W.-H.
    (1991). PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64, 499–510
    OpenUrlCrossRefPubMedWeb of Science
    1. Erdmann R. and
    2. Blobel G.
    (1995). Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J. Cell Biol 128, 509–523
    OpenUrlAbstract/FREE Full Text
    1. Espeel M.,
    2. Roels F.,
    3. Giros M.,
    4. Mandel H.,
    5. Peltier A.,
    6. Poggi F.,
    7. Poll-The B. T.,
    8. Smeitink J. A.,
    9. Van Maldergem L. and
    10. Santos M. J.
    (1995). Immunoloclaization of a 43 kDa peroxisomal membrane protein in the liver of patients with generalized peroxisomal disorders. Eur. J. Cell Biol 67, 319–327
    OpenUrlPubMed
    1. Evan G. E.,
    2. Lewis G. K.,
    3. Ramsay G. and
    4. Bishop J. M.
    (1985). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol 5, 3610–3616
    OpenUrlAbstract/FREE Full Text
    1. Faber K. N.,
    2. Heyman J. A. and
    3. Subramani S.
    (1998). Two AAA family proteins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell. Biol 18, 936–943
    OpenUrlAbstract/FREE Full Text
    1. Fournier B.,
    2. Saudubray J. M.,
    3. Benichou B.,
    4. Lyonnet S.,
    5. Munnich A.,
    6. Clevers H. and
    7. Poll-The B. T.
    (1994). Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J. Clin. Invest 94, 526–531
    OpenUrlCrossRefPubMedWeb of Science
    1. Fransen M.,
    2. Terlecky S. R. and
    3. Subramani S.
    (1998). Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc. Nat. Acad. Sci. USA 95, 8087–8092
    OpenUrlAbstract/FREE Full Text
    1. Fukuda S.,
    2. Shimozawa N.,
    3. Suzuki Y.,
    4. Zhang Z.,
    5. Tomatsu S.,
    6. Tsukamoto T.,
    7. Hashiguchi N.,
    8. Osumi T.,
    9. Masuno M.,
    10. Imaizumi K.,
    11. Kuroki Y.,
    12. Fujiki Y.,
    13. Orii T. and
    14. Kondo N.
    (1996). Human peroxisome assembly factor-2 (PAF-2): a gene responsible for group C peroxisome biogenesis disorder in humans. Am. J. Hum. Genet 59, 1210–1220
    OpenUrlPubMedWeb of Science
    1. Goldfischer S.,
    2. Moore C. L.,
    3. Johnson A. B.,
    4. Spiro A. J.,
    5. Valsmis M. P.,
    6. Wisniewski H. K.,
    7. Ritch R. H.,
    8. Norton W. T.,
    9. Rapin I. and
    10. Gartner L. M.
    (1973). Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182, 62–64
    OpenUrlAbstract/FREE Full Text
    1. Imanaka T.,
    2. Small G. M. and
    3. Lazarow P. B.
    (1987). Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol 105, 2915–2922
    OpenUrlAbstract/FREE Full Text
    1. Jansen G. A.,
    2. Ofman R.,
    3. Ferdiandusse S.,
    4. Ijlst L.,
    5. Muijsers A. O.,
    6. Skjeldal O. H.,
    7. Stokke O.,
    8. Jakobs C.,
    9. Besley G. T. N.,
    10. Wraith J. E. and
    11. Wanders R. J. A.
    (1997). Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nature Genet 17, 190–193
    OpenUrlCrossRefPubMedWeb of Science
    1. Jones J. M.,
    2. Nau K.,
    3. Geraghty M. T.,
    4. Erdmann R. and
    5. Gould S. J.
    (1999). Identification of peroxisomal acyl-CoA thioesterase in yeast and humans. J. Biol. Chem 274, 9216–9223
    OpenUrlAbstract/FREE Full Text
    1. Kalish J. E.,
    2. Theda C.,
    3. Morrell J. C.,
    4. Berg J. M. and
    5. Gould S. J.
    (1995). Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome. Mol. Cell. Biol 15, 6406–6419
    OpenUrlAbstract/FREE Full Text
    1. Kalish J. E.,
    2. Keller G. A.,
    3. Morrell J. C.,
    4. Mihalik S. J.,
    5. Smith B.,
    6. Cregg J. M. and
    7. Gould S. J.
    (1996). Characterization of a novel component ofthe peroxisomal protein import apparatus using fluorescent peroxisomal proteins. EMBO J 15, 3275–3285
    OpenUrlPubMedWeb of Science
    1. Kamijo K.,
    2. Taketani S.,
    3. Yokata S.,
    4. Osumi T. and
    5. Hashimoto T.
    (1990). The 70 kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J. Biol. Chem 265, 4534–4540
    OpenUrlAbstract/FREE Full Text
    1. Kok F.,
    2. Neumann S.,
    3. Sarde C.-O.,
    4. Zheng S.,
    5. Wu K.-H.,
    6. Wei H.-M.,
    7. Bergin J.,
    8. Watkins P.,
    9. Gould S.,
    10. Sack G.,
    11. Moser H.,
    12. Mandel J.-L. and
    13. Smith K.
    (1995). Mutational analysis of patients with X-linked adrenoleukodystrophy. Hum Mut 6, 104–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Lazarow P. B.,
    2. Fujiki Y.,
    3. Small G. M.,
    4. Watkins P. and
    5. Moser H.
    (1986). Presence of the peroxisomal 22-kDa integral membrane protein in the liver of a person lacking recognizable peroxisomes (Zellweger syndrome). Proc. Nat. Acad. Sci. USA 83, 9193–9196
    OpenUrlAbstract/FREE Full Text
    1. Marshall P.,
    2. Krimkevich Y.,
    3. Lark R.,
    4. Dyer J.,
    5. Veenhuis M. and
    6. Goodman J.
    (1995). Pmp27 promotes peroxisomal proliferation. J. Cell Biol 129, 345–355
    OpenUrlAbstract/FREE Full Text
    1. Mihalik S.,
    2. Morrell J.,
    3. Kim D.,
    4. Sacksteder K.,
    5. Watkins P. and
    6. Gould S.
    (1997). Identification of PAHX as a Refsum disease gene. Nature Genet 17, 185–189
    OpenUrlCrossRefPubMedWeb of Science
    1. Moser A.,
    2. Rasmussen M.,
    3. Naidu S.,
    4. Watkins P.,
    5. McGuinness M.,
    6. Hajra A.,
    7. Chen G.,
    8. Raymond G.,
    9. Liu A.,
    10. Gordon D.,
    11. Garnaas K.,
    12. Walton D.,
    13. Okjeldal O.,
    14. Guggenheim M.,
    15. Jackson L.,
    16. Elias E. and
    17. Moser H.
    (1995). Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J. Pediat 127, 13–22
    OpenUrlCrossRefPubMedWeb of Science
    1. Mosser J.,
    2. Douar A. M.,
    3. Sarde C. O.,
    4. Kioschis P.,
    5. Feil R.,
    6. Moser H.,
    7. Poustka A. M.,
    8. Mandel J. L. and
    9. Aubourg P.
    (1993). Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730
    OpenUrlCrossRefPubMedWeb of Science
    1. Mosser J.,
    2. Lutz Y.,
    3. Stoeckel M. E.,
    4. Sarde C. O.,
    5. Kretz C.,
    6. Douar A. M.,
    7. Lopez J.,
    8. Aubourg P. and
    9. Mandel J. L.
    (1994). The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum. Mol. Genet 3, 265–271
    OpenUrlAbstract/FREE Full Text
    1. Motley A. M.,
    2. Hettema E. H.,
    3. Hogenhout E. M.,
    4. Brittes P.,
    5. ten Asbroek A. L. M. A.,
    6. Wijburg F. A.,
    7. Baas F.,
    8. Heijmans H. S.,
    9. Tabak H. F.,
    10. Wanders R. J. A. and
    11. Distel B.
    (1997). Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nature Genet 15, 377–380
    OpenUrlCrossRefPubMedWeb of Science
    1. Ofman R.,
    2. Hettema E. H.,
    3. Hogenhout E. M.,
    4. Caruso U.,
    5. Muijsers A. O. and
    6. Wanders R. J. A.
    (1998). Acyl-CoA:dihydroxyacetonephosphate acyltransferase: cloning of the human cDNA and resolution of the molecular basis in rhizomelic chondrodysplasia punctata type 2. Hum. Mol. Genet 7, 847–853
    OpenUrlAbstract/FREE Full Text
    1. Okumoto K.,
    2. Itoh R.,
    3. Shimozawa N.,
    4. Suzuki Y.,
    5. Tamura S.,
    6. Kondo N. and
    7. Fujiki Y.
    (1998). Mutations in PEX10 is the cause of Zellweger peroxisome deficiency syndrome of complementation group B. Hum. Mol. Genet 7, 1399–1405
    OpenUrlAbstract/FREE Full Text
    1. Portsteffen H.,
    2. Beyer A.,
    3. Becker E.,
    4. Epplen C.,
    5. Pawlak A.,
    6. Kunau W.-H. and
    7. Dodt G.
    (1997). Human PEX1 is mutated in complementation group 1 of the peroxiosme biogenesis disorders. Nature Genet 17, 449–452
    OpenUrlCrossRefPubMedWeb of Science
    1. Purdue P. E.,
    2. Zhang J. W.,
    3. Skoneczny M. and
    4. Lazarow P. B.
    (1997). Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nature Genet 15, 381–384
    OpenUrlCrossRefPubMedWeb of Science
    1. Reuber B. E.,
    2. Germain Lee E.,
    3. Collins C. S.,
    4. Morrell J. C.,
    5. Ameritunga R.,
    6. Moser H. W.,
    7. Valle D. and
    8. Gould S. J.
    (1997). Mutations in PEX1 are the most common cause of the peroxisome biogenesis disorders. Nature Genet 17, 445–448
    OpenUrlCrossRefPubMedWeb of Science
    1. Santos M.,
    2. Imanaka T.,
    3. Shio H.,
    4. Small G. M. and
    5. Lazarow P. B.
    (1988). Peroxisomal membrane ghosts in Zellweger syndrome—aberrant organelle assembly. Science 239, 1536–1538
    OpenUrlAbstract/FREE Full Text
    1. Santos M. J.,
    2. Imanaka T.,
    3. Shio H. and
    4. Lazarow P. B.
    (1988). Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J. Biol. Chem 263, 10502–10509
    OpenUrlAbstract/FREE Full Text
    1. Schrader M.,
    2. Reuber B. E.,
    3. Morrell J. C.,
    4. Jimenez-Sanchez G.,
    5. Obie C.,
    6. Stroh T.,
    7. Valle D.,
    8. Schroer T. A. and
    9. Gould S. J.
    (1998). Expression of PEX11 b mediates peroxisome proliferation in the absence of extracellular stimuli. J. Biol. Chem 273, 29607–29614
    OpenUrlAbstract/FREE Full Text
    1. Shimozawa N.,
    2. Tsukamoto T.,
    3. Suzuki Y.,
    4. Orii T.,
    5. Shirayoshi Y.,
    6. Mori T. and
    7. Fujiki Y.
    (1992). A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255, 1132–1134
    OpenUrlAbstract/FREE Full Text
    1. Slawecki M.,
    2. Dodt G.,
    3. Steinberg S.,
    4. Moser A. B.,
    5. Moser H. W. and
    6. Gould S. J.
    (1995). Identification of three distinct peroxisomal protein import defects in patients with peroxisomal biogenesis disorders. J. Cell Sci 108, 1817–1829
    OpenUrlAbstract/FREE Full Text
    1. Small G. M.,
    2. Santos M. J.,
    3. Imanaka T.,
    4. Poulos A.,
    5. Danks D. M.,
    6. Moser H. W. and
    7. Lazarow P. B.
    (1988). Peroxisomal integral membrane proteins in livers of patients with Zellweger syndrome, infantile Refsum's disease and X-linked adrenoleukodystrophy. J. Inherit. Metab. Dis 11, 358–371
    OpenUrlCrossRefPubMed
    1. Suzuki Y.,
    2. Jiang L. L.,
    3. Souri M.,
    4. Miyazawa S.,
    5. Fukuda S.,
    6. Zhang Z.,
    7. Une M.,
    8. Shimozawa N.,
    9. Kondo N.,
    10. Orii T. and
    11. Hashimoto T.
    (1997). D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am. J. Hum. Genet 61, 1153–1162
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki Y.,
    2. Shimozawa N.,
    3. Orii T.,
    4. Aikawa J.,
    5. Tada K.,
    6. Kuwabara T. and
    7. Hashimoto T.
    (1987). Biosynthesis of peroxisomal membrane polypeptides in infants with Zellweger syndrome. J. Inherit. Metab. Dis 10, 297–300
    OpenUrlCrossRefPubMed
    1. Tan X.,
    2. Waterham H. R.,
    3. Veenhuis M. and
    4. Creeg J. M.
    (1995). The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J. Cell Biol 128, 307–319
    OpenUrlAbstract/FREE Full Text
    1. Terlecky S. R.,
    2. Nuttley W. M.,
    3. McCollum D.,
    4. Sock E. and
    5. Subramani S.
    (1995). The Pichia pastoris peroxisomal protein Pas8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. EMBO J 14, 3627–3634
    OpenUrlPubMedWeb of Science
    1. Titorenko V. I.,
    2. Ogrydziak D. M. and
    3. Rachubinski R. A.
    (1997). Four distinct secretory pathways serve protein secretion, cell surface growth and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol. Cell. Biol 17, 5210–5226
    OpenUrlAbstract/FREE Full Text
    1. Titorenko V. I. and
    2. Rachubinski R. A.
    (1998). The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem. Sci 23, 231–233
    OpenUrlCrossRefPubMedWeb of Science
    1. Titorenko V. I. and
    2. Rachubinski R. A.
    (1998). Mutants of the yeast Yarrowia lipolytica defective in protein export exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol 18, 2789–2803
    OpenUrlAbstract/FREE Full Text
    1. van Grunsven E. G.,
    2. van Berkel E.,
    3. Ijlst L.,
    4. Vreken P.,
    5. de Klerk J. B.,
    6. Adamski J.,
    7. Lemonde H.,
    8. Clayton P. T.,
    9. Cuebas D. A. and
    10. Wanders R. J.
    (1998). Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc. Nat. Acad. Sci. USA 95, 2128–2133
    OpenUrlAbstract/FREE Full Text
    1. Wanders R. J.,
    2. Jansen G.,
    3. van Roermund C. W.,
    4. Denis S.,
    5. Schutgens R. B. and
    6. Jakobs B. S.
    (1996). Metabolic aspects of peroxisomal disorders. Ann. NY Acad. Sci 804, 450–460
    OpenUrlCrossRefPubMedWeb of Science
    1. Warren D. S.,
    2. Morrell J. C.,
    3. Moser H. W.,
    4. Valle D. and
    5. Gould S. J.
    (1998). Identification of PEX10, the gene defective in complementation group 7 of the peroxisome-biogenesis disorders. Am. J. Hum. Genet 63, 347–359
    OpenUrlCrossRefPubMedWeb of Science
    1. Waterham H. R.,
    2. de Vries Y.,
    3. Russel K. A.,
    4. Xie W.,
    5. Veenhuis M. and
    6. Cregg J. M.
    (1996). The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1. Mol. Cell. Biol 16, 2527–2536
    OpenUrlAbstract/FREE Full Text
    1. Wendland M. and
    2. Subramani S.
    (1993). Cytosol-dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol 120, 675–685
    OpenUrlAbstract/FREE Full Text
    1. Wiemer E. A. C.,
    2. Nuttley W. M.,
    3. Bertolaet B. L.,
    4. Li X.,
    5. Franke U.,
    6. Wheelock M. J.,
    7. Anne W. K.,
    8. Johnson K. R. and
    9. Subramani S.
    (1995). Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol 130, 51–65
    OpenUrlAbstract/FREE Full Text
    1. Yahraus T.,
    2. Braverman N.,
    3. Dodt G.,
    4. Kalish J. E.,
    5. Morrell J. C.,
    6. Moser H. W.,
    7. Valle D. and
    8. Gould S. J.
    (1996). The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 15, 2914–2923
    OpenUrlPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic control of peroxisome abundance
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Metabolic control of peroxisome abundance
C.C. Chang, S. South, D. Warren, J. Jones, A.B. Moser, H.W. Moser, S.J. Gould
Journal of Cell Science 1999 112: 1579-1590;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Metabolic control of peroxisome abundance
C.C. Chang, S. South, D. Warren, J. Jones, A.B. Moser, H.W. Moser, S.J. Gould
Journal of Cell Science 1999 112: 1579-1590;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts
  • University administration
  • Integrin cytoplasmic domain-binding proteins
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992