Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
Journal Article
Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases
R. Giet, C. Prigent
Journal of Cell Science 1999 112: 3591-3601;
R. Giet
CNRS UPR41| Universite de Rennes I, Groupe Cycle Cellulaire, Faculte de Medecine, CS 34317, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Prigent
CNRS UPR41| Universite de Rennes I, Groupe Cycle Cellulaire, Faculte de Medecine, CS 34317, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

During the past five years, a growing number of serine-threonine kinases highly homologous to the Saccharomyces cerevisiae Ipl1p kinase have been isolated in various organisms. A Drosophila melanogaster homologue, aurora, was the first to be isolated from a multicellular organism. Since then, several related kinases have been found in mammalian cells. They localise to the mitotic apparatus: in the centrosome, at the poles of the bipolar spindle or in the midbody. The kinases are necessary for completion of mitotic events such as centrosome separation, bipolar spindle assembly and chromosome segregation. Extensive research is now focusing on these proteins because the three human homologues are overexpressed in various primary cancers. Furthermore, overexpression of one of these kinases transforms cells. Because of the myriad of kinases identified, we suggest a generic name: Aurora/Ipl1p-related kinase (AIRK). We denote AIRKs with a species prefix and a number, e.g. HsAIRK1.

  • © 1999 by Company of Biologists

REFERENCES

    1. Aizawa, H.,
    2. Kamijo, M.,
    3. Ohba, Y.,
    4. Mori, A.,
    5. Okuhara, K.,
    6. Kawasaki, H.,
    7. Murofushi, H.,
    8. Suzuki, K. and
    9. Yasuda, H.
    (1991). Microtubuledestabilization by cdc2-H1 histone kinase phosphorylation of a pro-rich region in the microtubule-binding domain of MAP-4. Biochem. Biophys. Res. Commun 179, 1620–1626
    OpenUrlCrossRefPubMed
    1. Altschul, S. F.,
    2. Madden, T. L.,
    3. Schäffer, A. A.,
    4. Zhang, J.,
    5. Zhang, Z.,
    6. Miller, W. and
    7. Lipman, D. J.
    (1997). ‘Gapped BLAST and PSI-BLAST: a new generation of protein database search programs’. Nucl. Acids Res 25, 3389–3402
    OpenUrlAbstract/FREE Full Text
    1. Andreassen, P. R.,
    2. Martineau, S. N. and
    3. Margolis, R. L.
    (1996). Chemical induction of mitotic checkpoint override in mammalian cells results in aneuploidy following a transient tetraploid state. Mutat. Res 372, 181–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Andresson, T. and
    2. Ruderman, J. V.
    (1998). The kinase EG2is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J 17, 5627–5637
    OpenUrlAbstract
    1. Bernard, M.,
    2. Sanseau, P.,
    3. Henry, C.,
    4. Couturier, A. and
    5. Prigent, C.
    (1998). Cloning of STK13, a third human protein kinase related to Drosophila Aurora and budding yeast Ipl1 that maps on chromosome 19q13. 3-ter. Genomics 53, 406–409
    OpenUrlCrossRefPubMedWeb of Science
    1. Bicher, A.,
    2. Ault, K.,
    3. Kimmelman, A.,
    4. Gershenson, D.,
    5. Reed, E. and
    6. Liang, B.
    (1997). Loss of heterozygosity in human ovarian cancer on chromosome 19q. Gynecol. Oncol 66, 36–40
    OpenUrlCrossRefPubMed
    1. Biggins, S.,
    2. Severin, F.,
    3. Bhalla, N.,
    4. Sassoon, I.,
    5. Hyman, T. and
    6. Murray, A. W.
    (1999). The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13, 532–544
    OpenUrlAbstract/FREE Full Text
    1. Bischoff, J. R.,
    2. Anderson, L.,
    3. Zhu, Y.,
    4. Mossie, K.,
    5. Ng, L.,
    6. Souza, B.,
    7. Schryver, B.,
    8. Flanagan, P.,
    9. Clairvoyant, F.,
    10. Ginther, C.,
    11. Chan, C. S.,
    12. Novotny, M.,
    13. Slamon, D. J. and
    14. Plowman, G. D.
    (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17, 3052–3065
    OpenUrlAbstract
    1. Blangy, A.,
    2. Lane, H. A.,
    3. d'Herin, P.,
    4. Harper, M.,
    5. Kress, M. and
    6. Nigg, E. A.
    (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169
    OpenUrlCrossRefPubMedWeb of Science
    1. Blangy., A.,
    2. Arnaud, L. and
    3. Nigg, E. A.
    (1997). Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. J. Biol. Chem 272, 19418–19424
    OpenUrlAbstract/FREE Full Text
    1. Blangy, A.,
    2. Chaussepied, P. and
    3. Nigg, E. A.
    (1998). Rigor-type mutation in the kinesin-related protein HsEg5 changes its subcellular localization and induces microtubule bundling. Cell Motil. Cytoskel 40, 174–182
    OpenUrlCrossRefPubMed
    1. Bloecher, A. and
    2. Tatchell, K.
    (1999). Defects in Saccharomyces cerevisiae protein phosphatase type I activate the spindle/kinetochore checkpoint. Genes Dev 13, 517–522
    OpenUrlAbstract/FREE Full Text
    1. Boleti, H.,
    2. Karsenti, E. and
    3. Vernos, I.
    (1996). Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosomal separation during mitosis. Cell 84, 49–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Centonze, V. E. and
    2. Borisy, G. G.
    (1990). Nucleation of microtubules from mitotic centrosomes is modulated by a phosphorylated epitope. J. Cell Sci 95, 405–411
    OpenUrlAbstract/FREE Full Text
    1. Chan, C. S. and
    2. Botstein, D.
    (1993). Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135, 677–691
    OpenUrlAbstract/FREE Full Text
    1. Colbran, R. J.,
    2. Smith, M. K.,
    3. Schworer, C. M.,
    4. Fong, Y. L. and
    5. Soderling, T. R.
    (1989). Regulatory domain of calcium/calmodulin-dependent protein kinase II. Mechanism of inhibition and regulation by phosphorylation. J. Biol. Chem 264, 4800–4804
    OpenUrlAbstract/FREE Full Text
    1. Davis, F. M.,
    2. Tsao, T. Y.,
    3. Fowler, S. K. and
    4. Rao, P. N.
    (1983). Monoclonal antibodies to mitotic cells. Proc. Nat. Acad Sci. USA 80, 2926–2930
    OpenUrlAbstract/FREE Full Text
    1. Desai, A.,
    2. Maddox, P. S.,
    3. Mitchison, T. J. and
    4. Salmon, E. D.
    (1998). Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol 141, 703–13
    OpenUrlAbstract/FREE Full Text
    1. Eiriksdottir, G.,
    2. Barkardottir, R. B.,
    3. Agnarsson, B. A.,
    4. Johannesdottir, G.,
    5. Olafsdottir, K.,
    6. Egilsson, V. and
    7. Ingvarsson, S.
    (1998). High incidence of loss of heterozygosity at chromosome 17p13 in breast tumours from BRCA2 mutation carriers. Oncogene 16, 21–26
    OpenUrlCrossRefPubMed
    1. Farruggio, D. C.,
    2. Townsley, F. M. and
    3. Ruderman, J. V.
    (1999). Cdc20 associates with the kinase aurora/Aik. Proc. Nat. Acad. Sci. USA 96, 7306–7311
    OpenUrlAbstract/FREE Full Text
    1. Fernandez, A.,
    2. Brautigan, D. L. and
    3. Lamb, N. J. C.
    (1992). Protein phosphatase type 1 in mammalian cell mitosis: chromosome localization and involvement in mitotic exit. J. Cell Biol 2, 195–204
    OpenUrl
    1. Fesquet, D.,
    2. Labbe, J. C.,
    3. Derancourt, J.,
    4. Capony, J. P.,
    5. Galas, S.,
    6. Girard, F.,
    7. Lorca, T.,
    8. Shuttleworth, J.,
    9. Doree, M. and
    10. Cavadore, J. C.
    (1993). The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J 12, 3111–3121
    OpenUrlPubMedWeb of Science
    1. Francisco, L.,
    2. Wang, W. and
    3. Chan, C. S.
    (1994). Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol 14, 4731–4740
    OpenUrlAbstract/FREE Full Text
    1. Fukasawa, K.,
    2. Choi, T.,
    3. Kuriyama, R.,
    4. Rulong, S. and
    5. Vande Woude, G. F.
    (1996). Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747
    OpenUrlAbstract
    1. Fukasawa, K.,
    2. Wiener, F.,
    3. Vande Woude, G. F. and
    4. Mai, S.
    (1997). Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15, 1295–3102
    OpenUrlCrossRefPubMedWeb of Science
    1. Gaglio, T.,
    2. Saredi, A.,
    3. Bingham, J. B.,
    4. Hasbani, M. J.,
    5. Gill, S. R.,
    6. Schroer, T. A. and
    7. Compton, D. A.
    (1996). Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J. Cell Biol 135, 399–414
    OpenUrlAbstract/FREE Full Text
    1. Geiser, J. R.,
    2. Schott, E. J.,
    3. Kingsbury, T. J.,
    4. Cole, N. B.,
    5. Totis, L. J.,
    6. Bhattacharyya, G.,
    7. He, L. and
    8. Hoyt, M. A.
    (1997). Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol. Biol. Cell 8, 1035–1050
    OpenUrlAbstract/FREE Full Text
    1. Giet, R.,
    2. Uzbekov, R.,
    3. Cubizolles, F.,
    4. Le Guellec, K. and
    5. Prigent, C.
    (1999). The Xenopus laevis aurora-related protein kinase pEG2associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem 274, 15005–15013
    OpenUrlAbstract/FREE Full Text
    1. Giet, R.,
    2. Uzbekov, R.,
    3. Kireev, I. and
    4. Prigent, C.
    (1999). The Xenopus laevis centrosome aurora-related kinase: pEG2. Biol. Cell 91, 461–470
    OpenUrlCrossRefPubMedWeb of Science
    1. Glover, D. M.,
    2. Leibowitz, M. H.,
    3. McLean, D. A. and
    4. Parry, H.
    (1995). Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105
    OpenUrlCrossRefPubMedWeb of Science
    1. Glover, D. M.,
    2. Hagan, I. M. and
    3. Tavares, A. A. M.
    (1998). Polo-like kinases: a team that plays throughout mitosis,. Genes Dev 12, 3777–3787
    OpenUrlFREE Full Text
    1. Glotzer, M.,
    2. Murray, A. W. and
    3. Kirshner, M. W.
    (1991). Cyclin is degraded by the ubiquitin pathway. Nature 345, 132–138
    OpenUrl
    1. Goffeau, A.,
    2. Barrell, B. G.,
    3. Bussey, H.,
    4. Davis, R. W.,
    5. Dujon, B.,
    6. Feldmann, H.,
    7. Galibert, F.,
    8. Hoheisel, J. D.,
    9. Jacq, C.,
    10. Johnston, M.,
    11. Louis, E. J.,
    12. Mewes, H. W.,
    13. Murakami, Y.,
    14. Philippsen, P.,
    15. Tettelin, H. and
    16. Oliver, S. G.
    (1996). Life with 6000 genes. Science 274, 563–567
    OpenUrlCrossRef
    1. Golsteyn, R. M.,
    2. Mundt, K. E.,
    3. Fry, A. M. and
    4. Nigg, E. A.
    (1995). Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Cell Biol 129, 1617–1628
    OpenUrlAbstract/FREE Full Text
    1. Gopalan, G.,
    2. Chan, C. S. M. and
    3. Donovan, P. J.
    (1997). A novel mammalian, mitotic spindle-associated kinase is related to yeast and fly chromosome segregation regulators. J. Cell Biol 138, 643–656
    OpenUrlAbstract/FREE Full Text
    1. Hanks, S. K. and
    2. Quinn, A. M.
    (1991). Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members,. Meth. Enzymol 200, 38–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartwell, L. H. and
    2. Smith, D.
    (1985). Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110, 381–395
    OpenUrlAbstract/FREE Full Text
    1. Hartwell, L.
    (1992). Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71, 543–546
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartwell, L. H. and
    2. Kastan, M. B.
    (1994). Cell cycle control and cancer. Science 266, 1821–1828
    OpenUrlAbstract/FREE Full Text
    1. Heck, M. M.,
    2. Pereira, A.,
    3. Pesavento, P.,
    4. Yannoni, Y.,
    5. Spradling, A. C. and
    6. Goldstein, L. S.
    (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol 123, 665–679
    OpenUrlAbstract/FREE Full Text
    1. Hoffmann, I.,
    2. Clarke, P. R.,
    3. Marcote, M. J.,
    4. Karsenti, E. and
    5. Draetta, G.
    (1993). Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J 12, 53–63
    OpenUrlPubMedWeb of Science
    1. Hoglund, M.,
    2. Gorunova, L.,
    3. Andren-Sandberg, A.,
    4. Dawiskiba, S.,
    5. Mitelman, F. and
    6. Johansson, B.
    (1998). Cytogenetic and fluorescence in situ hybridization analyses of chromosome 19 aberrations in pancreatic carcinomas: frequent loss of 19p13.3 and gain of 19q13.1-13.2. Genes Chromosomes Cancer 21, 8–16
    OpenUrlCrossRefPubMed
    1. Hsu, L. C. and
    2. White, R. L.
    (1998). BRCA1 is associated with the centrosome during mitosis. Proc. Nat. Acad. Sci. USA 95, 12983–12988
    OpenUrlAbstract/FREE Full Text
    1. Hunter, T. and
    2. Plowman, G. D.
    (1997). The protein kinases of budding yeast: six score and more. Trends Biochem. Sci 22, 18–22
    OpenUrlCrossRefPubMedWeb of Science
    1. Isola, J. J.,
    2. Kallioniemi, O. P.,
    3. Chu, L. W.,
    4. Fuqua, S. A.,
    5. Hilsenbeck, S. G.,
    6. Osborne, C. K. and
    7. Waldman, F. M.
    (1995). Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am. J. Pathol 147, 905–911
    OpenUrlPubMedWeb of Science
    1. Kallioniemi, A.,
    2. Kallioniemi, O. P.,
    3. Piper, J.,
    4. Tanner, M.,
    5. Stokke, T.,
    6. Chen, L.,
    7. Smith, H. S.,
    8. Pinkel, D.,
    9. Gray, J. W. and
    10. Waldman, F. M.
    (1994). Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc. Nat. Acad. Sci. USA 91, 2156–21560
    OpenUrlAbstract/FREE Full Text
    1. Katayama, H.,
    2. Ota, T.,
    3. Morita, K.,
    4. Terada, Y.,
    5. Suzuki, F.,
    6. Katoh, O. and
    7. Tatsuka, M.
    (1998). Human AIM-1: cDNA cloning and reduced expression during endomitosis in megakaryocyte-lineage cells. Gene 224, 1–7
    OpenUrlCrossRefPubMedWeb of Science
    1. Kashina, A. S.,
    2. Rogers, G. C. and
    3. Scholey, J. M.
    (1997). The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochim. Biophys. Acta 1357, 257–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimura, M.,
    2. Kotani, S.,
    3. Hattori, T.,
    4. Sumi, N.,
    5. Yoshioka, T.,
    6. Todokoro, K. and
    7. Okano, Y.
    (1997). Cell cycle-dependent expression and spindle pole localization of a novel human protein kinase, Aik, related to Aurora of Drosophila and yeast Ipl1. J. Biol. Chem 272, 13766–13771
    OpenUrlAbstract/FREE Full Text
    1. Kimura, M.,
    2. Matsuda, Y.,
    3. Eki, T.,
    4. Yoshioka, T.,
    5. Okumura, K.,
    6. Hanaoka, F. and
    7. Okano, Y.
    (1997). Assignment of STK6 to human chromosome 20q13. 2q13. 3 and a pseudogene STK6P to 1q41 q42. Cytogenet Cell. Genet 79, 201–203
    OpenUrlCrossRefPubMed
    1. Kimura, M.,
    2. Matsuda, Y.,
    3. Yoshioka, T.,
    4. Sumi, N. and
    5. Okano, Y.
    (1998). Identification and characterization of STK12/Aik2: a human gene related to aurora of Drosophila and yeast IPL1. Cytogenet. Cell. Genet 82, 147–152
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimura, M.,
    2. Matsuda, Y.,
    3. Yoshioka, T. and
    4. Okano, Y.
    (1999). Cell cycle-dependent expression and centrosome localization of a third human Aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem 274, 7334–7340
    OpenUrlAbstract/FREE Full Text
    1. Kuang, J. and
    2. Ashorn, C. L.
    (1993). At least two kinases phosphorylate the MPM-2 epitope during Xenopus oocyte maturation. J. Cell Biol 123, 859–868
    OpenUrlAbstract/FREE Full Text
    1. Kumagai, A. and
    2. Dunphy, W. G.
    (1998). Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380
    OpenUrl
    1. Liao, H.,
    2. Li, G. and
    3. Yen, T. J.
    (1994). Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265, 394–398
    OpenUrlAbstract/FREE Full Text
    1. Logarinho, E. and
    2. Sunkel, C. E.
    (1998). The drosophila POLO kinase localises to multiple compartments of the mitotic apparatus and is required for the phosphorylation of MPM2 reactive epitopes. J. Cell Sci 111, 2897–2909
    OpenUrlAbstract/FREE Full Text
    1. MacNeill, S. A. and
    2. Nurse, P.
    (1993). Mutational analysis of the fission yeast p34cdc2 protein kinase gene. Mol. Gen. Genet 236, 415–426
    OpenUrlCrossRefPubMed
    1. Minn, A. J.,
    2. Boise, L. H. and
    3. Thompson, C. B.
    (1996). Expression of Bcl_xL and loss pf p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 10, 2621–2631
    OpenUrlAbstract/FREE Full Text
    1. Nigg, E. A.,
    2. Blangy, A. and
    3. Lane, H. A.
    (1996). Dynamic changes in nuclear architecture during mitosis: on the role of protein phosphorylation in spindle assembly and chromosome segregation. Exp. Cell Res 229, 174–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Niwa, H.,
    2. Abe, K.,
    3. Kunisada, T. and
    4. Yamamura, K.
    (1996). Cell-cycle-dependent expression of the STK-1 gene encoding a novel murine putative protein kinase. Gene 169, 197–201
    OpenUrlCrossRefPubMed
    1. Ohkura, H.,
    2. Hagan, I. M. and
    3. Glover, D. M.
    (1995). The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1and G2cells. Genes Dev 9, 1059–1073
    OpenUrlAbstract/FREE Full Text
    1. Paris, J.,
    2. Osborne, H. B.,
    3. Couturier, A.,
    4. Le Guellec, R. and
    5. Philippe, M.
    (1988). Changes in the polyadenylation of specific stable RNA during the early development of Xenopus laevis. Gene 72, 169–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Paris, J. and
    2. Philippe, M.
    (1990). Poly(A) metabolism and polysomal recruitment of maternal mRNAs during early Xenopus development. Dev. Biol 140, 221–224
    OpenUrlCrossRefPubMedWeb of Science
    1. Patra, D. and
    2. Dunphy, W. G.
    (1998). Xe-p9, a Xenopus Suc1/Cks protein, is essential for the Cdc2-dependent phosphorylation of the anaphase-promoting complex at mitosis. Genes Dev 12, 2549–2459
    OpenUrlAbstract/FREE Full Text
    1. Paulovich, A. G.,
    2. Toczyski, D. P. and
    3. Hartwell, L. H.
    (1997). When checkpoints fail. Cell 88, 315–321
    OpenUrlCrossRefPubMedWeb of Science
    1. Peter, M.,
    2. Nakagawa, J.,
    3. Doree, M.,
    4. Labbe, J. C. and
    5. Nigg, E. A.
    (1990). In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591–602
    OpenUrlCrossRefPubMedWeb of Science
    1. Poon, R. Y.,
    2. Yamashita, K.,
    3. Adamczewski, J. P.,
    4. Hunt, T. and
    5. Shuttleworth, J.
    (1993). The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J 12, 3123–3132
    OpenUrlPubMedWeb of Science
    1. Reich, A.,
    2. Yanai, A.,
    3. Mesilaty-Gross, S.,
    4. Chen-Moses, A.,
    5. Wides, R. and
    6. Motro, B.
    (1999). Cloning mapping, and expression of ial, a novel Drosophila member of the Ipl1/aurora control kinase family. DNA Cell Biol 18, 593–603
    OpenUrlCrossRefPubMed
    1. Rieder, C. L.,
    2. Schultz, A.,
    3. Cole, R. and
    4. Sluder, G.
    (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol 127, 1301–1310
    OpenUrlAbstract/FREE Full Text
    1. Rieder, C. L.,
    2. Cole, R. W.,
    3. Khodjakov, A. and
    4. Sluder, G.
    (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol 130, 941–948
    OpenUrlAbstract/FREE Full Text
    1. Rieder, C. L.,
    2. Khodjakov, A.,
    3. Paliulis, L. V.,
    4. Fortier, T. M.,
    5. Cole, R. W. and
    6. Sluder, G.
    (1997). Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc. Nat. Acad. Sci. USA 94, 5107–5112
    OpenUrlAbstract/FREE Full Text
    1. Roghi, C.,
    2. Giet, R.,
    3. Uzbekov, R.,
    4. Morin, N.,
    5. Chartrain, I.,
    6. Le Guellec, R.,
    7. Anne Couturier, A.,
    8. Doree, M.,
    9. Philippe, M. and
    10. Prigent, C.
    (1998). The Xenopus protein kinase pEG2associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci 111, 557–572
    OpenUrlAbstract/FREE Full Text
    1. Sassoon, I.,
    2. Severin, F. F.,
    3. Andrews, P. D.,
    4. Taba, M.-R.,
    5. Kaplan, K. B.,
    6. Ashford, A. J.,
    7. Stark, M. J. R.,
    8. Sorger, P. K. and
    9. Hyman, A. A.
    (1999). Regulation of saccharomyces cerevisiae kinetochore by type 1 phosphatase Glc7p. Genes Dev 13, 545–555
    OpenUrlAbstract/FREE Full Text
    1. Sawin, K. E.,
    2. LeGuellec, K.,
    3. Philippe, M. and
    4. Mitchison, T. J.
    (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359, 540–543
    OpenUrlCrossRefPubMedWeb of Science
    1. Schlegel, J.,
    2. Stumm, G.,
    3. Scherthan, H.,
    4. Bocker, T.,
    5. Zirngibl, H.,
    6. Ruschoff, J. and
    7. Hofstadter, F.
    (1995). Comparative genomic in situ hybridization of colon carcinomas with replication error. Cancer Res 55, 6002–6005
    OpenUrlAbstract/FREE Full Text
    1. Schumacher, J. M.,
    2. Ashcroft, N.,
    3. Donovan, P. J. and
    4. Golden, A.
    (1998). A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 125, 4391–4402
    OpenUrlAbstract
    1. Schumacher, J. M.,
    2. Golden, A. and
    3. Donovan, P. J.
    (1998). AIR-2: An aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in C. elegans embryos. J. Cell Biol 143, 1635–1646
    OpenUrlAbstract/FREE Full Text
    1. Sen, S.,
    2. Zhou, H. and
    3. White, R. A.
    (1997). A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 14, 2195–3200
    OpenUrlCrossRefPubMedWeb of Science
    1. Shindo, M.,
    2. Nakano, H.,
    3. Kuroyanagi, H.,
    4. Shirasawa, T.,
    5. Mihara, M.,
    6. Gilbert, D. J.,
    7. Jenkins, N. A.,
    8. Copeland, N. G.,
    9. Yagita, H. and
    10. Okumura, K.
    (1998). cDNA cloning, expression, subcellular localization, and chromosomal assignment of mammalian aurora homologues, aurora-related kinase (ARK) 1 and 2. Biochem. Biophys. Res. Commun 244, 285–292
    OpenUrlCrossRefPubMedWeb of Science
    1. Sluder, G.,
    2. Thompson, E. A.,
    3. Miller, F. J.,
    4. Hayes, J. and
    5. Rieder, C. L.
    (1997). The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J. Cell Sci 110, 421–429
    OpenUrlAbstract/FREE Full Text
    1. Stearns, T.
    (1997). Motoring to the finish: kinesin and dynein work together to orient the yeast mitotic spindle. J. Cell Biol 138, 957–960
    OpenUrlFREE Full Text
    1. Tanaka, T.,
    2. Kimura, M.,
    3. Matsunaga, K.,
    4. Fukada, D.,
    5. Mori, H. and
    6. Okano, Y.
    (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59, 2041–2044
    OpenUrlAbstract/FREE Full Text
    1. Tatsuka, M.,
    2. Katayama, H.,
    3. Ota, T.,
    4. Tanaka, T.,
    5. Odashima, S.,
    6. Suzuki, F. and
    7. Terada, Y.
    (1998). Multinuclearity and increased ploidy caused by overexpression of the aurora-and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 58, 4811–4816
    OpenUrlAbstract/FREE Full Text
    1. Terada, Y.,
    2. Tatsuka, M.,
    3. Suzuki, F.,
    4. Yasuda, Y.,
    5. Fujita, S. and
    6. Otsu, M.
    (1998). AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J 17, 667–676
    OpenUrlAbstract
    1. Tournebize, R.,
    2. Søren, S. L.,
    3. Andersen, S. S. L.,
    4. Verde, F.,
    5. Doree, M.,
    6. Karsenti, E. and
    7. Hyman, A. A.
    (1997). Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J 16, 5537–5549
    OpenUrlAbstract
    1. Tseng, T. C.,
    2. Chen, S. H.,
    3. Hsu, Y. P. and
    4. Tang, T. K.
    (1998). Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators. DNA Cell Biol 17, 823–833
    OpenUrlCrossRefPubMedWeb of Science
    1. Vandre, D. D. and
    2. Borisy, G. G.
    (1989). Anaphase onset and dephosphorylation of mitotic phosphoproteins occur concomitantly. J. Cell Sci 94, 245–258
    OpenUrlAbstract/FREE Full Text
    1. Verde, F.,
    2. Labbe, J. C.,
    3. Doree, M. and
    4. Karsenti, E.
    (1990). Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343, 233–238
    OpenUrlCrossRefPubMedWeb of Science
    1. Walczak, C. E.,
    2. Verma, S. and
    3. Mitchison, T. J.
    (1997). XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol 136, 859–870
    OpenUrlAbstract/FREE Full Text
    1. Walczak, C. E.,
    2. Vernos, I.,
    3. Mitchison, T. J.,
    4. Karsenti, E. and
    5. Heald, R.
    (1998). A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol 8, 903–913
    OpenUrlCrossRefPubMedWeb of Science
    1. Weber, R. G.,
    2. Bridger, J. M.,
    3. Benner, A.,
    4. Weisenberger, D.,
    5. Ehemann, V.,
    6. Reifenberger, G. and
    7. Lichter, P.
    (1998). Centrosome amplification as a possible mechanism for numerical chromosome aberrations in cerebral primitive neuroectodermal tumors with TP53 mutations. Cytogenet. Cell. Genet 83, 266–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Winey, M.
    (1996). Keeping the centrosome cycle on track. Genome stability. Curr. Biol 6, 962–964
    OpenUrlCrossRefPubMedWeb of Science
    1. Wittmann, T.,
    2. Boleti, H.,
    3. Antony, C.,
    4. Karsenti, E. and
    5. Vernos, I.
    (1998). Localization of the kinesin-like protein xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol 143, 673–685
    OpenUrlAbstract/FREE Full Text
    1. Xu, X.,
    2. Weaver, Z.,
    3. Linke, S. P.,
    4. Li, C.,
    5. Gotay, J.,
    6. Wang, X. W.,
    7. Harris, C. C.,
    8. Ried, T. and
    9. Deng, C. X.
    (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395
    OpenUrlCrossRefPubMedWeb of Science
    1. Yanai, A.,
    2. Arama, E.,
    3. Kilfin, G. and
    4. Motro, B.
    (1997). ayk1, a novel mammalian gene related to Drosophila aurora centrosome separation kinase, is specifically expressed during meiosis. Oncogene 14, 2943–2950
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang, J.,
    2. Zhang, F.,
    3. Ebert, D.,
    4. Cobb, M. H. and
    5. Goldsmith, E. J.
    (1995). Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3, 299–307
    OpenUrlCrossRefPubMed
    1. Zhai, Y.,
    2. Kronebush, P. J.,
    3. Simon, P. M. and
    4. Borisy, G. G.
    (1998). Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol 135, 201–214
    OpenUrl
    1. Zhou, H.,
    2. Kuang, J.,
    3. Zhong, L.,
    4. Kuo, W. L.,
    5. Gray, J. W.,
    6. Sahin, A.,
    7. Brinkley, B. R. and
    8. Sen, S.
    (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet 20, 189–193
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases
R. Giet, C. Prigent
Journal of Cell Science 1999 112: 3591-3601;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases
R. Giet, C. Prigent
Journal of Cell Science 1999 112: 3591-3601;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • A nuclear tale of two yeasts
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Introducing FocalPlane’s new Community Manager, Esperanza Agullo-Pascual

We are pleased to welcome Esperanza to the Journal of Cell Science team. The new Community Manager for FocalPlane, Esperanza is joining us from the Microscopy Core at Mount Sinai School of Medicine. Find out more about Esperanza in her introductory post over on FocalPlane.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

"Alongside pre-printing for early documentation of work, such mechanisms are particularly helpful for early-career researchers like me.”

Dr Chris MacDonald (University of York) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Cell scientist to watch: Romain Levayer

In an interview, Romain Levayer talks about starting his own lab, his love for preprints and his experience of balancing parenting with his research goals.


Live lactating mammary tissue

In a stunning video, Stewart et al. demonstrate warping of the alveolar unit due to basal cell-generated force as part of their recent work investigating roles for mechanically activated ion channels in lactation and involution.

Visit our YouTube channel to watch more videos from JCS, our sister journals and the Company.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992