Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor
G. Skretting, M.L. Torgersen, B. van Deurs, K. Sandvig
Journal of Cell Science 1999 112: 3899-3909;
G. Skretting
Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.L. Torgersen
Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. van Deurs
Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Sandvig
Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We have here used diphtheria toxin as a tool to investigate the type of endocytosis used by a glycosylphosphatidylinositol-linked molecule, a glycosylphosphatidylinositol-linked version of the diphtheria toxin receptor that is able to mediate intoxication. The receptor is expressed in HeLa cells where clathrin-dependent endocytosis can be blocked by overexpression of mutant dynamin. Diphtheria toxin intoxicates cells by first binding to cell-surface receptors, then the toxin is endocytosed, and upon exposure to low endosomal pH, the toxin enters the cytosol where it inhibits protein synthesis. Inhibition of protein synthesis by the toxin can therefore be used to probe the entry of the glycosylphosphatidylinositol-linked receptor into an acidic compartment. Furthermore, degradation of the toxin can be used as an indicator of entry into the endosomal/lysosomal compartment. The data show that although expression of mutant dynamin inhibits intoxication mediated via the wild-type receptors, mutant dynamin does not affect intoxication or endocytosis and degradation of diphtheria toxin bound to the glycosylphosphatidylinositol-linked receptor. Confocal microscopy demonstrated that diphtheria toxin is transported to vesicles containing EEA1, a marker for early endosomes. Biochemical and ultrastructural studies of the HeLa cells used reveal that they have very low levels of caveolin-1 and that they contain very few if any caveolae at the cell surface. Furthermore, the endocytic uptake of diphtheria toxin bound to the glycosylphosphatidylinositol-linked receptor was not reduced by methyl-beta-cyclodextrin or by nystatin which both disrupt caveolar structure and functions. Thus, uptake of a glycosylphosphatidylinositol-linked protein, in this case the diphtheria toxin receptor, into the endosomal/lysosomal system can occur independently of both caveolae and clathrin-coated vesicles.

  • © 1999 by Company of Biologists

REFERENCES

    1. Airas, L.,
    2. Niemela, J.,
    3. Salmi, M.,
    4. Puurunen, T.,
    5. Smith, D. J. and
    6. Jalkanen, S.
    (1997). Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J. Cell Biol 136, 421–431
    OpenUrlAbstract/FREE Full Text
    1. Almond, B. D. and
    2. Eidels, L.
    (1994). The cytoplasmic domain of the diphtheria toxin receptor (HB-EGF precursor) is not required for receptor-mediated endocytosis. J. Biol. Chem 269, 26635–26641
    OpenUrlAbstract/FREE Full Text
    1. Bowman, E. J.,
    2. Siebers, A. and
    3. Altendorf, K.
    (1988). Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Nat. Acad. Sci. USA 85, 7972–7976
    OpenUrlAbstract/FREE Full Text
    1. Brown, J. G.,
    2. Almond, B. D.,
    3. Naglich, J. G. and
    4. Eidels, L.
    (1993). Hypersensitivity to diphtheria toxin by mouse cells expressing both diphtheria toxin receptor and CD9 antigen. Proc. Nat. Acad. Sci. USA 90, 8184–8188
    OpenUrlAbstract/FREE Full Text
    1. Carter, R. E. and
    2. Sorkin, A.
    (1998). Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J. Biol. Chem 273, 35000–35007
    OpenUrlAbstract/FREE Full Text
    1. Choe, S.,
    2. Bennett, M. J.,
    3. Fujii, G.,
    4. Curmi, P. M.,
    5. Kantardjieff, K. A.,
    6. Collier, R. J. and
    7. Eisenberg, D.
    (1992). The crystal structure of diphtheria toxin. Nature 357, 216–222
    OpenUrlCrossRefPubMedWeb of Science
    1. Clague, M. J.,
    2. Urbe, S.,
    3. Aniento, F. and
    4. Gruenberg, J.
    (1994). Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol. Chem 269, 21–24
    OpenUrlAbstract/FREE Full Text
    1. Collier, R. J.
    (1975). Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39, 54–85
    OpenUrlFREE Full Text
    1. Damke, H.,
    2. Baba, T.,
    3. Warnock, D. E. and
    4. Schmid, S. L.
    (1994). Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol 127, 915–934
    OpenUrlAbstract/FREE Full Text
    1. Deckert, M.,
    2. Ticchioni, M. and
    3. Bernard, A.
    (1996). Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J. Cell Biol 133, 791–799
    OpenUrlAbstract/FREE Full Text
    1. Draper, R. K. and
    2. Simon, M. I.
    (1980). The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J. Cell Biol 87, 849–854
    OpenUrlAbstract/FREE Full Text
    1. Fraker, P. J. and
    2. Speck, J. C. Jr..
    (1978). Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a, 6a-diphrenylglycoluril. Biochem. Biophys. Res. Commun 80, 849–857
    OpenUrlCrossRefPubMedWeb of Science
    1. Greenfield, L.,
    2. Bjorn, M. J.,
    3. Horn, G.,
    4. Fong, D.,
    5. Buck, G. A.,
    6. Collier, R. J. and
    7. Kaplan, D. A.
    (1983). Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc. Nat. Acad. Sci. USA 80, 6853–6857
    OpenUrlAbstract/FREE Full Text
    1. Hansen, S. H.,
    2. Sandvig, K. and
    3. van Deurs, B.
    (1993). Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J. Cell Biol 123, 89–97
    OpenUrlAbstract/FREE Full Text
    1. Henley, J. R.,
    2. Krueger, E. W.,
    3. Oswald, B. J. and
    4. McNiven, M. A.
    (1998). Dynamin-mediated internalization of caveolae. J. Cell Biol 141, 85–99
    OpenUrlAbstract/FREE Full Text
    1. Iwamoto, R.,
    2. Higashiyama, S.,
    3. Mitamura, T.,
    4. Taniguchi, N.,
    5. Klagsbrun, M. and
    6. Mekada, E.
    (1994). Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 13, 2322–2330
    OpenUrlPubMedWeb of Science
    1. Keller, G. A.,
    2. Siegel, M. W. and
    3. Caras, I. W.
    (1992). Endocytosis of glycophospholipid-anchored and transmembrane forms of CD4 by different endocytic pathways. EMBO J 11, 863–874
    OpenUrlPubMedWeb of Science
    1. Keller, P. and
    2. Simons, K.
    (1998). Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol 140, 1357–1367
    OpenUrlAbstract/FREE Full Text
    1. Kemble, G. W.,
    2. Henis, Y. I. and
    3. White, J. M.
    (1993). GPI-and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity. J. Cell Biol 122, 1253–1265
    OpenUrlAbstract/FREE Full Text
    1. Klein, U.,
    2. Gimpl, G. and
    3. Fahrenholz, F.
    (1995). Alteration of the myometrial plasma membrane cholesterol content with-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784–13793
    OpenUrlCrossRefPubMed
    1. Lai, W. H.,
    2. Cameron, P. H.,
    3. Wada, I.,
    4. Doherty, J. J. 2.,
    5. Kay, D. G.,
    6. Posner, B. I. and
    7. Bergeron, J. J.
    (1989). Ligand-mediated internalization, recycling and downregulation of the epidermal growth factor receptor in vivo. J. Cell Biol 109, 2741–2749
    OpenUrlAbstract/FREE Full Text
    1. Lamaze, C.,
    2. Fujimoto, L. M.,
    3. Yin, H. L. and
    4. Schmid, S. L.
    (1997). The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem 272, 20332–20335
    OpenUrlAbstract/FREE Full Text
    1. Lanzrein, M.,
    2. Sand, O. and
    3. Olsnes, S.
    (1996). GPI-anchored diphtheria toxin receptor allows membrane translocation of the toxin without detectable ion channel activity. EMBO J 15, 725–734
    OpenUrlPubMed
    1. Li, H.,
    2. Kuo, A.,
    3. Kochan, J.,
    4. Strickland, D.,
    5. Kariko, K.,
    6. Barnathan, E. S. and
    7. Cines, D. B.
    (1994). Endocytosis of urokinase-plasminogen activator inhibitor type 1 complexes bound to a chimeric transmembrane urokinase receptor. J. Biol. Chem 269, 8153–8158
    OpenUrlAbstract/FREE Full Text
    1. Lisanti, M. P.,
    2. Field, M. C.,
    3. Caras, I. W.,
    4. Menon, A. K. and
    5. Rodriguez-Boulan, E.
    (1991). Mannosamine, a novel inhibitor of glycosylphosphatidylinositol incorporation into proteins. EMBO J 10, 1969–1977
    OpenUrlPubMedWeb of Science
    1. Llorente, A.,
    2. Rapak, A.,
    3. Schmid, S. L.,
    4. van Deurs, B. and
    5. Sandvig, K.
    (1998). Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J. Cell Biol 140, 553–563
    OpenUrlAbstract/FREE Full Text
    1. Lyall, R. M.,
    2. Pastan, I. and
    3. Willingham, M. C.
    (1985). EGF induces receptor down-regulation with no receptor recycling in KB cells. J. Cell Physiol 122, 166–170
    OpenUrlCrossRefPubMed
    1. Makiya, R.,
    2. Thornell, L. E. and
    3. Stigbrand, T.
    (1992). Placental alkaline phosphatase, a GPI-anchored protein, is clustered in clathrin-coated vesicles. Biochem. Biophys. Res. Commun 183, 803–808
    OpenUrlCrossRefPubMed
    1. Mayor, S.,
    2. Rothberg, K. G. and
    3. Maxfield, F. R.
    (1994). Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951
    OpenUrlAbstract/FREE Full Text
    1. Middlebrook, J. L.,
    2. Dorland, R. B. and
    3. Leppla, S. H.
    (1978). Association of diphtheria toxin with Vero cells. Demonstration of a receptor. J. Biol. Chem 253, 7325–7330
    OpenUrlAbstract/FREE Full Text
    1. Mineo, C. and
    2. Anderson, R. G.
    (1996). A vacuolar-type proton ATPase mediates acidification of plasmalemmal vesicles during potocytosis. Exp. Cell Res 224, 237–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Morris, R. E.,
    2. Gerstein, A. S.,
    3. Bonventre, P. F. and
    4. Saelinger, C. B.
    (1985). Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect. Immun 50, 721–727
    OpenUrlAbstract/FREE Full Text
    1. Moskaug, J. O.,
    2. Sandvig, K. and
    3. Olsnes, S.
    (1988). Low pH-induced release of diphtheria toxin A-fragment in Vero cells. Biochemical evidence for transfer to the cytosol. J. Biol. Chem 263, 2518–2525
    OpenUrlAbstract/FREE Full Text
    1. Moya, M.,
    2. Dautry-Varsat, A.,
    3. Goud, B.,
    4. Louvard, D. and
    5. Boquet, P.
    (1985). Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of Diphtheria toxin but not that of ricin toxin. J. Cell Biol 101, 548–559
    OpenUrlAbstract/FREE Full Text
    1. Mu, F. T.,
    2. Callaghan, J. M.,
    3. Steele-Mortimer, O.,
    4. Stenmark, H.,
    5. Parton, R. G.,
    6. Campell, P. L.,
    7. McCluskey, J.,
    8. Yeo, J. P.,
    9. Tock, E. P. and
    10. Toh, B. H.
    (1995). EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine ‘fingers’ and contains a calmodulin-binding IQ motif. J. Biol. Chem 270, 13503–13511
    OpenUrlAbstract/FREE Full Text
    1. Naglich, J. G.,
    2. Metherall, J. E.,
    3. Russell, D. W. and
    4. Eidels, L.
    (1992). Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061
    OpenUrlCrossRefPubMedWeb of Science
    1. Nosjean, O.,
    2. Briolay, A. and
    3. Roux, B.
    (1997). Mammalian GPI proteins: sorting, membrane residence and functions. Biochim. Biophys. Acta 1331, 153–186
    OpenUrlPubMed
    1. Oh, P.,
    2. McIntosh, D. P. and
    3. Schnitzer, J. E.
    (1998). Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol 141, 101–114
    OpenUrlAbstract/FREE Full Text
    1. Ohtani, Y.,
    2. Irie, T.,
    3. Uekama, K.,
    4. Fukunaga, K. and
    5. Pitha, J.
    (1989). Differential effects of-, -and-cyclodextrins on human erythrocytes. Eur. J. Biochem 186, 17–22
    OpenUrlCrossRefPubMedWeb of Science
    1. Orlandi, P. A. and
    2. Fishman, P. H.
    (1998). Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol 141, 905–915
    OpenUrlAbstract/FREE Full Text
    1. Parton, R. G.
    (1994). Ultrastructural localization of gangliosides; GM1is concentrated in caveolae. J. Histochem. Cytochem 42, 155–166
    OpenUrlAbstract/FREE Full Text
    1. Parton, R. G.,
    2. Joggerst, B. and
    3. Simons, K.
    (1994). Regulated internalization of caveolae. J. Cell Biol 127, 1199–1215
    OpenUrlAbstract/FREE Full Text
    1. Parton, R. G.
    (1996). Caveolae and caveolins. Curr. Opin. Cell Biol 8, 542–548
    OpenUrlCrossRefPubMedWeb of Science
    1. Poussin, C.,
    2. Foti, M.,
    3. Carpentier, J. L. and
    4. Pugin, J.
    (1998). CD14-dependent endotoxin internalization via a macropinocytic pathway. J. Biol. Chem 273, 20285–20291
    OpenUrlAbstract/FREE Full Text
    1. Rijnboutt, S.,
    2. Jansen, G.,
    3. Posthuma, G.,
    4. Hynes, J. B.,
    5. Schornagel, J. H. and
    6. Strous, G. J.
    (1996). Endocytosis of GPI-linked membrane folate receptor-alpha. J. Cell Biol 132, 35–47
    OpenUrlAbstract/FREE Full Text
    1. Rodal, S. K.,
    2. Skretting, G.,
    3. Garred, O.,
    4. Vilhardt, F.,
    5. van Deurs, B. and
    6. Sandvig, K.
    (1999). Extraction of cholestrol with methyl--cyclodextrin perturbs the formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 961–974
    OpenUrlAbstract/FREE Full Text
    1. Ronnberg, B. J. and
    2. Middlebrook, J. L.
    (1989). Cellular regulation of diphtheria toxin cell surface receptors. Toxicon 27, 1377–1388
    OpenUrlPubMed
    1. Rothberg, K. G.,
    2. Heuser, J. E.,
    3. Donzell, W. C.,
    4. Ying, Y. S.,
    5. Glenny, J. R. and
    6. Anderson, R. G.
    (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682
    OpenUrlCrossRefPubMedWeb of Science
    1. Sandvig, K. and
    2. Olsnes, S.
    (1980). Diphtheria toxin entry into cells is facilitated by low pH. J. Cell Biol 87, 828–832
    OpenUrlAbstract/FREE Full Text
    1. Sandvig, K. and
    2. van Deurs, B.
    (1990). Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis. J. Biol. Chem 265, 6382–6388
    OpenUrlAbstract/FREE Full Text
    1. Schnitzer, J. E.,
    2. McIntosh, D. P.,
    3. Dvorak, A. M.,
    4. Liu, J. and
    5. Oh, P.
    (1995). Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439
    OpenUrlAbstract/FREE Full Text
    1. Schnitzer, J. E.,
    2. Oh, P. and
    3. McIntosh, D. P.
    (1996). Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274, 239–242
    OpenUrlAbstract/FREE Full Text
    1. Shyng, S. L.,
    2. Heuser, J. E. and
    3. Harris, D. A.
    (1994). A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol 125, 1239–1250
    OpenUrlAbstract/FREE Full Text
    1. Smythe, E.,
    2. Redelmeier, T. E. and
    3. Schmid, S. L.
    (1992). Receptor-mediated endocytosis in semiintact cells. Meth. Enzymol 219, 223–234
    OpenUrlCrossRefPubMedWeb of Science
    1. Simpson, J. C.,
    2. Smith, D. C.,
    3. Roberts, L. M. and
    4. Lord, J. M.
    (1998). Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin. Exp. Cell Res 239, 293–300
    OpenUrlCrossRefPubMedWeb of Science
    1. Stahl, A. and
    2. Mueller, B. M.
    (1995). The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J. Cell Biol 129, 335–344
    OpenUrlAbstract/FREE Full Text
    1. Subtil, A. and
    2. Dautry-Varsat, A.
    (1997). Microtubule depolymerization inhibits clathrin coated-pit internalization in non-adherent cell lines while interleukin 2 endocytosis is not affected. J. Cell Sci 110, 2441–2447
    OpenUrlAbstract/FREE Full Text
    1. Teslenko, L. V.,
    2. Kornilova, E. S.,
    3. Sorkin, A. D. and
    4. Nikolsky, N. N.
    (1987). Recycling of epidermal growth factor in A431 cells. FEBS Lett 221, 105–109
    OpenUrlCrossRefPubMed
    1. van den Bosch, R. A.,
    2. du Maine, A. P.,
    3. Geuze, H. J.,
    4. van der Ende, A. and
    5. Strous, G. J.
    (1988). Recycling of 5′-nuceotidase in a rat hepatoma cell line. EMBO J 7, 3345–3351
    OpenUrlPubMedWeb of Science
    1. van Deurs, B.,
    2. Holm, P. K.,
    3. Kayser, L.,
    4. Sandvig, K. and
    5. Hansen, S. H.
    (1993). Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur. J. Cell Biol 61, 208–224
    OpenUrlPubMedWeb of Science
    1. van Deurs, B.,
    2. Holm, P. K.,
    3. Kayser, L. and
    4. Sandvig, K.
    (1995). Delivery to lysosomes in the human carcinoma cell line HEp-2 involves an actin filament-facilitated fusion between mature endosomes and preexisting lysosomes. Eur. J. Cell Biol 66, 309–323
    OpenUrlPubMedWeb of Science
    1. van Deurs, B.,
    2. Holm, P. K. and
    3. Sandvig, K.
    (1996). Inhibition of the vacuolar H+ase with bafilomycin reduces delivery of internalized molecules from mature multivesicular endosomes to lysosomes in HEp-2 cells. Eur. J. Cell Biol 69, 343–350
    OpenUrlPubMedWeb of Science
    1. van Weert, A. W. M.,
    2. Dunn, K. A.,
    3. Geuze, H. J.,
    4. Maxfield, F. R. and
    5. Stoorvogel, W.
    (1995). Transport from late endosomes to lysosomes, but not sorting of integral proteins in endosomes, depends on the vacuolar proton pump. J. Cell Biol 130, 821–834
    OpenUrlAbstract/FREE Full Text
    1. Vickery, R. G. and
    2. von Zastrow, M.
    (1999). Distinct dynamin-dependent and-independent mechanisms target structurally homologous dopamine receptors to different endocytic membranes. J. Cell Biol 144, 31–43
    OpenUrlAbstract/FREE Full Text
    1. Vieira, A. V.,
    2. Lamaze, C. and
    3. Schmid, S. L.
    (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089
    OpenUrlAbstract/FREE Full Text
    1. Vilhardt, F.,
    2. Nielsen, M.,
    3. Sandvig, K. and
    4. van Deurs, B.
    (1999). Urokinase-type plasminogen activator receptor is internalized by different mechanisms in polarized and non-polarized Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell 10, 179–195
    OpenUrlAbstract/FREE Full Text
    1. Vogel, U.,
    2. Sandvig, K. and
    3. van Deurs, B.
    (1998). Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J. Cell Sci 111, 825–832
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
Share
Journal Article
Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor
G. Skretting, M.L. Torgersen, B. van Deurs, K. Sandvig
Journal of Cell Science 1999 112: 3899-3909;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor
G. Skretting, M.L. Torgersen, B. van Deurs, K. Sandvig
Journal of Cell Science 1999 112: 3899-3909;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane
  • A nuclear tale of two yeasts
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

ASCBǀEMBO 2019 Special Collection

We're at ASCB - visit booth 1000 to meet the JCS team!
Enjoy a collection of articles published in Journal of Cell Science by a range of speakers at the ASCBǀEMBO 2019 Meeting. Featuring articles from the labs of JCS Editorial Advisory Board members, all articles in the collection are free to access.


Early-bird meeting deadline - 20 December

Wotton House

Don’t miss the early-bird application deadline for the 2020 JCS meeting on Host-Pathogen interface! Taking place 17-20 May 2020 at Wotton House, Surrey, UK, the meeting will bring together experts working at the interface between cell biology and pathogens. Places are limited, so apply to attend now.


Cell Scientist to Watch – Elizabeth Hinde

Elizabeth with her daughter and father.

From physics and chemistry to art and back again, Elizabeth Hinde is currently based at the University of Melbourne. Her research focuses on fluorescence microscopy methods to quantify live-cell nuclear organisation and the role chromatin dynamics play in maintaining genome function. Read the full interview to find out more. 


Have you heard about our Travelling Fellowships?

Huw and colleagues from the lab in Beijing

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Huw’s experience in Beijing, where he spent time with the world leaders in the development of super-resolution microscopy, the Li lab at the Chinese Academy of Sciences.


Articles of interest in our sister journals

Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae
Chang-Ru Tsai, Michael J. Galko
Development

Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis
Elizabeth Vargas, Karen P. McNally, Daniel B. Cortes, Michelle T. Panzica, Brennan M. Danlasky, Qianyan Li, Amy Shaub Maddox, Francis J. McNally
Development

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Journal of Cell Science
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992