Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Proteolytic processing and cell biological functions of the amyloid precursor protein
B. De Strooper, W. Annaert
Journal of Cell Science 2000 113: 1857-1870;
B. De Strooper
Center for Human Genetics, Flanders interuniversitary institute for Biotechnology and K. U. Leuven, Belgium. bart.destrooper@med.kuleuven.ac.be.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bart.destrooper@med.kuleuven.ac.be
W. Annaert
Center for Human Genetics, Flanders interuniversitary institute for Biotechnology and K. U. Leuven, Belgium. bart.destrooper@med.kuleuven.ac.be.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bart.destrooper@med.kuleuven.ac.be
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Recent research has identified some key players involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid beta-peptide, the principal component of the amyloid plaques in Alzheimer patients. Interesting parallels exists with the proteolysis of other proteins involved in cell differentiation, cholesterol homeostasis and stress responses. Since the cytoplasmic domain of APP is anchored to a complex protein network that might function in axonal elongation, dendritic arborisation and neuronal cell migration, the proteolysis of APP might be critically involved in intracellular signalling events.

  • © 2000 by Company of Biologists

REFERENCES

    1. Ancolio, K.,
    2. Dumanchin, C.,
    3. Barelli, H.,
    4. Warter, J. M.,
    5. Brice, A.,
    6. Campion, D.,
    7. Frebourg, T. and
    8. Checler, F.
    (1999). Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc. Nat. Acad. Sci. USA 96, 4119–4124
    OpenUrlAbstract/FREE Full Text
    1. Annaert, W. and
    2. De Strooper, B.
    (1999). Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 22, 439–443
    OpenUrlCrossRefPubMedWeb of Science
    1. Annaert, W. G.,
    2. Levesque, L.,
    3. Craessaerts, K.,
    4. Dierinck, I.,
    5. Snellings, G.,
    6. Westaway, D.,
    7. George-Hyslop, P. S.,
    8. Cordell, B.,
    9. Fraser, P. and
    10. De Strooper, B.
    (1999). Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons. J. Cell Biol 147, 277–294
    OpenUrlAbstract/FREE Full Text
    1. Artavanis-Tsakonas, S.,
    2. Rand, M. D. and
    3. Lake, R. J.
    (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–776
    OpenUrlAbstract/FREE Full Text
    1. Barinaga, M.
    (1998). Is apoptosis key in Alzheimer's disease?. Science 281, 1303–1304
    OpenUrlFREE Full Text
    1. Black, R. A.,
    2. Rauch, C. T.,
    3. Kozlosky, C. J.,
    4. Peschon, J. J.,
    5. Slack, J. L.,
    6. Wolfson, M. F.,
    7. Castner, B. J.,
    8. Stocking, K. L.,
    9. Reddy, P.,
    10. Srinivasan, S.,
    11. et al.
    (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729–733
    OpenUrlCrossRefPubMedWeb of Science
    1. Blaikie, P.,
    2. Immanuel, D.,
    3. Wu, J.,
    4. Li, N.,
    5. Yajnik, V. and
    6. Margolis, B.
    (1994). A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem 269, 32031–32034
    OpenUrlAbstract/FREE Full Text
    1. Borchelt, D. R.,
    2. Thinakaran, G.,
    3. Eckman, C. B.,
    4. Lee, M. K.,
    5. Davenport, F.,
    6. Ratovitsky, T.,
    7. Prada, C. M.,
    8. Kim, G.,
    9. Seekins, S.,
    10. Yager, D.,
    11. et al.
    (1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17, 1005–1013
    OpenUrlCrossRefPubMedWeb of Science
    1. Borg, J. P.,
    2. Ooi, J.,
    3. Levy, E. and
    4. Margolis, B.
    (1996). The phosphotyrosine interaction domains of X11 and Fe65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell Biol 16, 6229–6241
    OpenUrlAbstract/FREE Full Text
    1. Borg, J. P.,
    2. Straight, S. W.,
    3. Kaech, S. M.,
    4. de Taddeo-Borg, M.,
    5. Kroon, D. E.,
    6. Karnak, D.,
    7. Turner, R. S.,
    8. Kim, S. K. and
    9. Margolis, B.
    (1998). Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J. Biol. Chem 273, 31633–31636
    OpenUrlAbstract/FREE Full Text
    1. Borg, J. P.,
    2. Yang, Y.,
    3. De Taddeo-Borg, M.,
    4. Margolis, B. and
    5. Turner, R. S.
    (1998). The X11alpha protein slows cellular amyloid precursor protein processing and reduces Abeta40 and Abeta42 secretion. J. Biol. Chem 273, 14761–14766
    OpenUrlAbstract/FREE Full Text
    1. Borg, J. P.,
    2. Lopez-Figueroa, M. O.,
    3. de Taddeo-Borg, M.,
    4. Kroon, D. E.,
    5. Turner, R. S.,
    6. Watson, S. J. and
    7. Margolis, B.
    (1999). Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci 19, 1307–1316
    OpenUrlAbstract/FREE Full Text
    1. Brockhaus, M.,
    2. Grunberg, J.,
    3. Rohrig, S.,
    4. Loetscher, H.,
    5. Wittenburg, N.,
    6. Baumeister, R.,
    7. Jacobsen, H. and
    8. Haass, C.
    (1998). Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. Neuroreport 9, 1481–1486
    OpenUrlCrossRefPubMedWeb of Science
    1. Brown, M. S. and
    2. Goldstein, J. L.
    (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340
    OpenUrlCrossRefPubMedWeb of Science
    1. Bush, A. I.,
    2. Multhaup, G.,
    3. Moir, R. D.,
    4. Williamson, T. G.,
    5. Small, D. H.,
    6. Rumble, B.,
    7. Pollwein, P.,
    8. Beyreuther, K. and
    9. Masters, C. L.
    (1993). A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer's disease. J. Biol. Chem 268, 16109–16112
    OpenUrlAbstract/FREE Full Text
    1. Butz, S.,
    2. Okamoto, M. and
    3. Sudhof, T. C.
    (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782
    OpenUrlCrossRefPubMedWeb of Science
    1. Buxbaum, J. D.,
    2. Koo, E. H. and
    3. Greengard, P.
    (1993). Protein phosphorylation inhibits production of Alzheimer amyloid beta/A4 peptide. Proc. Nat. Acad. Sci. USA 90, 9195–9198
    OpenUrlAbstract/FREE Full Text
    1. Buxbaum, J. D.,
    2. Liu, K. N.,
    3. Luo, Y.,
    4. Slack, J. L.,
    5. Stocking, K. L.,
    6. Peschon, J. J.,
    7. Johnson, R. S.,
    8. Castner, B. J.,
    9. Cerretti, D. P. and
    10. Black, R. A.
    (1998). Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem 273, 27765–27767
    OpenUrlAbstract/FREE Full Text
    1. Cai, X. D.,
    2. Golde, T. E. and
    3. Younkin, S. G.
    (1993). Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259, 514–516
    OpenUrlAbstract/FREE Full Text
    1. Caporaso, G. L.,
    2. Gandy, S. E.,
    3. Buxbaum, J. D. and
    4. Greengard, P.
    (1992). Chloroquine inhibits intracellular degradation but not secretion of Alzheimer beta/A4 amyloid precursor protein. Proc. Nat. Acad. Sci. USA 89, 2252–2256
    OpenUrlAbstract/FREE Full Text
    1. Chan, Y. M. and
    2. Jan, Y. N.
    (1999). Presenilins, processing of beta-amyloid precursor protein, and notch signaling. Neuron 23, 201–204
    OpenUrlCrossRefPubMedWeb of Science
    1. Chartier-Harlin, M. C.,
    2. Crawford, F.,
    3. Houlden, H.,
    4. Warren, A.,
    5. Hughes, D.,
    6. Fidani, L.,
    7. Goate, A.,
    8. Rossor, M.,
    9. Roques, P.,
    10. Hardy, J.,
    11. et al.
    (1991). Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846
    OpenUrlCrossRefPubMedWeb of Science
    1. Chow, N.,
    2. Korenberg, J. R.,
    3. Chen, X. N. and
    4. Neve, R. L.
    (1996). APP-BP1, a novel protein that binds to the carboxyl-terminal region of the amyloid precursor protein. J. Biol. Chem 271, 11339–11346
    OpenUrlAbstract/FREE Full Text
    1. Chyung, A. S. C.,
    2. Greenberg, B. D.,
    3. Cook, D. G.,
    4. Doms, R. W. and
    5. Lee, V. M.
    (1997). Novel beta-secretase cleavage of beta-amyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells. J. Cell Biol 138, 671–680
    OpenUrlAbstract/FREE Full Text
    1. Citron, M.,
    2. Oltersdorf, T.,
    3. Haass, C.,
    4. McConlogue, L.,
    5. Hung, A. Y.,
    6. Seubert, P.,
    7. Vigo-Pelfrey, C.,
    8. Lieberburg, I. and
    9. Selkoe, D. J.
    (1992). Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 360, 672–674
    OpenUrlCrossRefPubMedWeb of Science
    1. Citron, M.,
    2. Vigo-Pelfrey, C.,
    3. Teplow, D. B.,
    4. Miller, C.,
    5. Schenk, D.,
    6. Johnston, J.,
    7. Winblad, B.,
    8. Venizelos, N.,
    9. Lannfelt, L. and
    10. Selkoe, D. J.
    (1994). Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Nat. Acad. Sci. USA 91, 11993–11997
    OpenUrlAbstract/FREE Full Text
    1. Daigle, I. and
    2. Li, C.
    (1993). apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc. Nat. Acad. Sci. USA 90, 12045–12049
    OpenUrlAbstract/FREE Full Text
    1. DeBose-Boyd, R. A.,
    2. Brown, M. S.,
    3. Li, W. P.,
    4. Nohturfft, A.,
    5. Goldstein, J. L. and
    6. Espenshade, P. J.
    (1999). Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99, 703–712
    OpenUrlCrossRefPubMedWeb of Science
    1. De Strooper, B.,
    2. Umans, L.,
    3. Van Leuven, F. and
    4. Van Den Berghe, H.
    (1993). Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. J. Cell Biol 121, 295–304
    OpenUrlAbstract/FREE Full Text
    1. De Strooper, B.,
    2. Craessaerts, K.,
    3. Dewachter, I.,
    4. Moechars, D.,
    5. Greenberg, B.,
    6. Van Leuven, F. and
    7. Van den Berghe, H.
    (1995). Basolateral secretion of amyloid precursor protein in Madin-Darby canine kidney cells is disturbed by alterations of intracellular pH and by introducing a mutation associated with familial Alzheimer's disease. J. Biol. Chem 270, 4058–4065
    OpenUrlAbstract/FREE Full Text
    1. De Strooper, B.,
    2. Craessaerts, K.,
    3. Van Leuven, F. and
    4. Van Den Berghe, H.
    (1995). Exchanging the extracellular domain of amyloid precursor protein for horseradish peroxidase does not interfere with alpha-secretase cleavage of the beta-amyloid region, but randomizes secretion in Madin-Darby canine kidney cells. J. Biol. Chem 270, 30310–30314
    OpenUrlAbstract/FREE Full Text
    1. De Strooper, B.,
    2. Saftig, P.,
    3. Craessaerts, K.,
    4. Vanderstichele, H.,
    5. Guhde, G.,
    6. Annaert, W.,
    7. Von Figura, K. and
    8. Van Leuven, F.
    (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390
    OpenUrlCrossRefPubMedWeb of Science
    1. De Strooper, B.,
    2. Annaert, W.,
    3. Cupers, P.,
    4. Saftig, P.,
    5. Craessaerts, K.,
    6. Mumm, J. S.,
    7. Schroeter, E. H.,
    8. Schrijvers, V.,
    9. Wolfe, M. S.,
    10. Ray, W. J.,
    11. et al.
    (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522
    OpenUrlCrossRefPubMedWeb of Science
    1. Donoviel, D. B.,
    2. Hadjantonakis, A. K.,
    3. Ikeda, M.,
    4. Zheng, H.,
    5. Hyslop, P. S. and
    6. Bernstein, A.
    (1999). Mice lacking both presenilin genes exhibite early embryonic patterning defects. Genes Dev 13, 2801–2810
    OpenUrlAbstract/FREE Full Text
    1. Duff, K.,
    2. Eckman, C.,
    3. Zehr, C.,
    4. Yu, X.,
    5. Prada, C. M.,
    6. Perez-tur, J.,
    7. Hutton, M.,
    8. Buee, L.,
    9. Harigaya, Y.,
    10. Yager, D.,
    11. et al.
    (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713
    OpenUrlCrossRefPubMedWeb of Science
    1. Duilio, A.,
    2. Faraonio, R.,
    3. Minopoli, G.,
    4. Zambrano, N. and
    5. Russo, T.
    (1998). Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's beta-amyloid precursor protein. Biochem. J 330, 513–519
    OpenUrlAbstract/FREE Full Text
    1. Eckman, C. B.,
    2. Mehta, N. D.,
    3. Crook, R.,
    4. Perez-tur, J.,
    5. Prihar, G.,
    6. Pfeiffer, E.,
    7. Graff-Radford, N.,
    8. Hinder, P.,
    9. Yager, D.,
    10. Zenk, B.,
    11. et al.
    (1997). A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum. Mol. Genet 6, 2087–2089
    OpenUrlAbstract/FREE Full Text
    1. Ermekova, K. S.,
    2. Zambrano, N.,
    3. Linn, H.,
    4. Minopoli, G.,
    5. Gertler, F.,
    6. Russo, T. and
    7. Sudol, M.
    (1997). The WW domain of neural protein Fe65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem 272, 32869–32877
    OpenUrlAbstract/FREE Full Text
    1. Ermekova, K. S.,
    2. Chang, A.,
    3. Zambrano, N.,
    4. de Candia, P.,
    5. Russo, T. and
    6. Sudol, M.
    (1998). Proteins implicated in Alzheimer disease. The role of Fe65, a new adapter which binds to beta-amyloid precursor protein. Advan. Exp. Med. Biol 446, 161–180
    OpenUrlCrossRefPubMed
    1. Esch, F. S.,
    2. Keim, P. S.,
    3. Beattie, E. C.,
    4. Blacher, R. W.,
    5. Culwell, A. R.,
    6. Oltersdorf, T.,
    7. McClure, D. and
    8. Ward, P. J.
    (1990). Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248, 1122–1124
    OpenUrlAbstract/FREE Full Text
    1. Estus, S.,
    2. Golde, T. E.,
    3. Kunishita, T.,
    4. Blades, D.,
    5. Lowery, D.,
    6. Eisen, M.,
    7. Usiak, M.,
    8. Qu, X. M.,
    9. Tabira, T.,
    10. Greenberg, B. D.,
    11. et al.
    (1992). Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor. Science 255, 726–728
    OpenUrlAbstract/FREE Full Text
    1. Fiore, F.,
    2. Zambrano, N.,
    3. Minopoli, G.,
    4. Donini, V.,
    5. Duilio, A. and
    6. Russo, T.
    (1995). The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. J. Biol. Chem 270, 30853–30856
    OpenUrlAbstract/FREE Full Text
    1. Frears, E. R.,
    2. Stephens, D. J.,
    3. Walters, C. E.,
    4. Davies, H. and
    5. Austen, B. M.
    (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10, 1699–1705
    OpenUrlCrossRefPubMedWeb of Science
    1. Georgakopoulos, A.,
    2. Marambaud, P.,
    3. Efthimiopoulos, S.,
    4. Shioi, J.,
    5. Cui, W.,
    6. Li, H. C.,
    7. Schutte, M.,
    8. Gordon, R.,
    9. Holstein, G. R.,
    10. Martinelli, G.,
    11. et al.
    (1999). Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Mol. Cell 4, 893–902
    OpenUrlCrossRefPubMedWeb of Science
    1. Gertler, F. B.,
    2. Comer, A. R.,
    3. Juang, J. L.,
    4. Ahern, S. M.,
    5. Clark, M. J.,
    6. Liebl, E. C. and
    7. Hoffmann, F. M.
    (1995). enabled, a dosage-sensitive suppressor of mutations in the Drosophila abl tyrosine kinase, encodes an abl substrate with Sh3 domain-binding properties. Genes Dev 9, 521–533
    OpenUrlAbstract/FREE Full Text
    1. Gervais, F. G.,
    2. Xu, D.,
    3. Robertson, G. S.,
    4. Vaillancourt, J. P.,
    5. Zhu, Y.,
    6. Huang, J.,
    7. LeBlanc, A.,
    8. Smith, D.,
    9. Rigby, M.,
    10. Shearman, M. S.,
    11. et al.
    (1999). Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97, 395–406
    OpenUrlCrossRefPubMedWeb of Science
    1. Giambarella, U.,
    2. Yamatsuji, T.,
    3. Okamoto, T.,
    4. Matsui, T.,
    5. Ikezu, T.,
    6. Murayama, Y.,
    7. Levine, M. A.,
    8. Katz, A.,
    9. Gautam, N. and
    10. Nishimoto, I.
    (1997). G protein betagamma complex-mediated apoptosis by familial Alzheimer's disease mutant of APP. EMBO J 16, 4897–4907
    OpenUrlAbstract
    1. Glenner, G. G. and
    2. Wong, C. W.
    (1984). Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun 120, 885–890
    OpenUrlCrossRefPubMedWeb of Science
    1. Goate, A.,
    2. Chartier-Harlin, M. C.,
    3. Mullan, M.,
    4. Brown, J.,
    5. Crawford, F.,
    6. Fidani, L.,
    7. Giuffra, L.,
    8. Haynes, A.,
    9. Irving, N.,
    10. James, L.,
    11. et al.
    (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706
    OpenUrlCrossRefPubMedWeb of Science
    1. Golde, T. E.,
    2. Estus, S.,
    3. Younkin, L. H.,
    4. Selkoe, D. J. and
    5. Younkin, S. G.
    (1992). Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730
    OpenUrlAbstract/FREE Full Text
    1. Guenette, S. Y.,
    2. Chen, J.,
    3. Jondro, P. D. and
    4. Tanzi, R. E.
    (1996). Association of a novel human Fe65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein. Proc. Nat. Acad. Sci. USA 93, 10832–10837
    OpenUrlAbstract/FREE Full Text
    1. Haass, C.,
    2. Koo, E. H.,
    3. Mellon, A.,
    4. Hung, A. Y. and
    5. Selkoe, D. J.
    (1992). Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–503
    OpenUrlCrossRefPubMedWeb of Science
    1. Haass, C.,
    2. Schlossmacher, M. G.,
    3. Hung, A. Y.,
    4. Vigo-Pelfrey, C.,
    5. Mellon, A.,
    6. Ostaszewski, B. L.,
    7. Lieberburg, I.,
    8. Koo, E. H.,
    9. Schenk, D.,
    10. Teplow, D. B.,
    11. et al.
    (1992). Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325
    OpenUrlCrossRefPubMedWeb of Science
    1. Haass, C.,
    2. Hung, A. Y.,
    3. Selkoe, D. J. and
    4. Teplow, D. B.
    (1994). Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J. Biol. Chem 269, 17741–17748
    OpenUrlAbstract/FREE Full Text
    1. Haass, C.,
    2. Koo, E. H.,
    3. Capell, A.,
    4. Teplow, D. B. and
    5. Selkoe, D. J.
    (1995). Polarized sorting of beta-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J. Cell Biol 128, 537–547
    OpenUrlAbstract/FREE Full Text
    1. Haass, C.
    (1999). Apoptosis. Dead end for neurodegeneration?. Nature 399, 204–205
    OpenUrlPubMed
    1. Haass, C. and
    2. De Strooper, B.
    (1999). The presenilins in Alzheimer's disease—proteolysis holds the key. Science 286, 916–919
    OpenUrlAbstract/FREE Full Text
    1. Hardy, J.
    (1996). New insights into the genetics of Alzheimer's disease. Ann. Med 28, 255–258
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartmann, D.,
    2. Strooper, B. D. and
    3. Saftig, P.
    (1999). Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr. Biol 9, 719–727
    OpenUrlCrossRefPubMedWeb of Science
    1. Hendriks, L.,
    2. van Duijn, C. M.,
    3. Cras, P.,
    4. Cruts, M.,
    5. Van Hul, W.,
    6. van Harskamp, F.,
    7. Warren, A.,
    8. McInnis, M. G.,
    9. Antonarakis, S. E.,
    10. Martin, J. J.,
    11. et al.
    (1992). Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nature Genet 1, 218–221
    OpenUrlCrossRefPubMedWeb of Science
    1. Herreman, A.,
    2. Hartmann, D.,
    3. Annaert, W.,
    4. Saftig, P.,
    5. Craessaerts, K.,
    6. Serneels, L.,
    7. Umans, L.,
    8. Schrijvers, V.,
    9. Checler, F.,
    10. Vanderstichele, H.,
    11. et al.
    (1999). Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Nat. Acad. Sci. USA 96, 11872–11877
    OpenUrlAbstract/FREE Full Text
    1. Hiesberger, T.,
    2. Trommsdorff, M.,
    3. Howell, B. W.,
    4. Goffinet, A.,
    5. Mumby, M. C.,
    6. Cooper, J. A. and
    7. Herz, J.
    (1999). Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489
    OpenUrlCrossRefPubMedWeb of Science
    1. Homayouni, R.,
    2. Rice, D. S.,
    3. Sheldon, M. and
    4. Curran, T.
    (1999). Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci 19, 7507–7515
    OpenUrlAbstract/FREE Full Text
    1. Howell, B. W.,
    2. Hawkes, R.,
    3. Soriano, P. and
    4. Cooper, J. A.
    (1997). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737
    OpenUrlCrossRefPubMedWeb of Science
    1. Hung, A. Y. and
    2. Selkoe, D. J.
    (1994). Selective ectodomain phosphorylation and regulated cleavage of beta-amyloid precursor protein. EMBO J 13, 534–542
    OpenUrlPubMedWeb of Science
    1. Hussain, I.,
    2. Powell, D.,
    3. Howlett, D. R.,
    4. Tew, D. G.,
    5. Meek, T. D.,
    6. Chapman, C.,
    7. Gloger, I. S.,
    8. Murphy, K. E.,
    9. Southan, C. D.,
    10. Ryan, D. M.,
    11. et al.
    (1999). Identification of a Novel Aspartic Protease (Asp 2) as beta-secretase. Mol. Cell Neurosci 14, 419–427
    OpenUrlCrossRefPubMedWeb of Science
    1. Hutton, M.,
    2. Lendon, C. L.,
    3. Rizzu, P.,
    4. Baker, M.,
    5. Froelich, S.,
    6. Houlden, H.,
    7. Pickering-Brown, S.,
    8. Chakraverty, S.,
    9. Isaacs, A.,
    10. Grover, A.,
    11. et al.
    (1998). Association of missense and 5-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705
    OpenUrlCrossRefPubMedWeb of Science
    1. Kang, J.,
    2. Lemaire, H. G.,
    3. Unterbeck, A.,
    4. Salbaum, J. M.,
    5. Masters, C. L.,
    6. Grzeschik, K. H.,
    7. Multhaup, G.,
    8. Beyreuther, K. and
    9. Muller-Hill, B.
    (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736
    OpenUrlCrossRefPubMedWeb of Science
    1. Kitaguchi, N.,
    2. Takahashi, Y.,
    3. Tokushima, Y.,
    4. Shiojiri, S. and
    5. Ito, H.
    (1988). Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity. Nature 331, 530–532
    OpenUrlCrossRefPubMed
    1. Knauer, M. F.,
    2. Orlando, R. A. and
    3. Glabe, C. G.
    (1996). Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res 740, 6–14
    OpenUrlCrossRefPubMedWeb of Science
    1. Knops, J.,
    2. Lieberburg, I. and
    3. Sinha, S.
    (1992). Evidence for a nonsecretory, acidic degradation pathway for amyloid precursor protein in 293 cells. Identification of a novel, 22-kDa, beta-peptide-containing intermediate. J. Biol. Chem 267, 16022–16024
    OpenUrlAbstract/FREE Full Text
    1. Koike, H.,
    2. Tomioka, S.,
    3. Sorimachi, H.,
    4. Saido, T. C.,
    5. Maruyama, K.,
    6. Okuyama, A.,
    7. Fujisawa-Sehara, A.,
    8. Ohno, S.,
    9. Suzuki, K. and
    10. Ishiura, S.
    (1999). Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem. J 343, 371–375
    OpenUrlAbstract/FREE Full Text
    1. Koo, E. H. and
    2. Squazzo, S. L.
    (1994). Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem 269, 17386–17389
    OpenUrlAbstract/FREE Full Text
    1. Koo, E. H.,
    2. Squazzo, S. L.,
    3. Selkoe, D. J. and
    4. Koo, C. H.
    (1996). Trafficking of cell-surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. J. Cell Sci 109, 991–998
    OpenUrlAbstract/FREE Full Text
    1. Kounnas, M. Z.,
    2. Moir, R. D.,
    3. Rebeck, G. W.,
    4. Bush, A. I.,
    5. Argraves, W. S.,
    6. Tanzi, R. E.,
    7. Hyman, B. T. and
    8. Strickland, D. K.
    (1995). LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 82, 331–340
    OpenUrlCrossRefPubMedWeb of Science
    1. Krieger, M. and
    2. Herz, J.
    (1994). Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem 63, 601–637
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuentzel, S. L.,
    2. Ali, S. M.,
    3. Altman, R. A.,
    4. Greenberg, B. D. and
    5. Raub, T. J.
    (1993). The Alzheimer beta-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem. J 295, 367–378
    OpenUrlAbstract/FREE Full Text
    1. Lai, A.,
    2. Sisodia, S. S. and
    3. Trowbridge, I. S.
    (1995). Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J. Biol. Chem 270, 3565–3573
    OpenUrlAbstract/FREE Full Text
    1. Lammich, S.,
    2. Kojro, E.,
    3. Postina, R.,
    4. Gilbert, S.,
    5. Pfeiffer, R.,
    6. Jasionowski, M.,
    7. Haass, C. and
    8. Fahrenholz, F.
    (1999). Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Nat. Acad. Sci. USA 96, 3922–3927
    OpenUrlAbstract/FREE Full Text
    1. Lanier, L. M.,
    2. Gates, M. A.,
    3. Witke, W.,
    4. Menzies, A. S.,
    5. Wehman, A. M.,
    6. Macklis, J. D.,
    7. Kwiatkowski, D.,
    8. Soriano, P. and
    9. Gertler, F. B.
    (1999). Menais required for neurulation and Commissure formation. Neuron 22, 313–5
    OpenUrlCrossRefPubMedWeb of Science
    1. Lansbury, P. T. Jr..
    (1997). Structural neurology: are seeds at the root of neuronal degeneration?. Neuron 19, 1151–1154
    OpenUrlCrossRefPubMedWeb of Science
    1. LeBlanc, A.
    (1995). Increased production of 4 kDa amyloid beta peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis. J. Neurosci 15, 7837–7846
    OpenUrlAbstract
    1. LeBlanc, A. C.,
    2. Koutroumanis, M. and
    3. Goodyer, C. G.
    (1998). Protein kinase C activation increases release of secreted amyloid precursor protein without decreasing Abeta production in human primary neuron cultures. J. Neurosci 18, 2907–2913
    OpenUrlAbstract/FREE Full Text
    1. Lee, V. M. and
    2. Trojanowski, J. Q.
    (1999). Neurodegenerative tauopathies: human disease and transgenic mouse models. Neuron 24, 507–510
    OpenUrlCrossRefPubMedWeb of Science
    1. Leimer, U.,
    2. Lun, K.,
    3. Romig, H.,
    4. Walter, J.,
    5. Grunberg, J.,
    6. Brand, M. and
    7. Haass, C.
    (1999). Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 38, 13602–13609
    OpenUrlCrossRefPubMed
    1. Levitan, D. and
    2. Greenwald, I.
    (1995). Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354
    OpenUrlCrossRefPubMedWeb of Science
    1. Levy-Lahad, E.,
    2. Wasco, W.,
    3. Poorkaj, P.,
    4. Romano, D. M.,
    5. Oshima, J.,
    6. Pettingell, W. H.,
    7. Yu, C. E.,
    8. Jondro, P. D.,
    9. Schmidt, S. D.,
    10. Wang, K.,
    11. et al.
    (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977
    OpenUrlAbstract/FREE Full Text
    1. Lo, A. C.,
    2. Thinakaran, G.,
    3. Slunt, H. H. and
    4. Sisodia, S. S.
    (1995). Metabolism of the amyloid precursor-like protein 2 in MDCK cells. Polarized trafficking occurs independent of the chondroitin sulfate glycosaminoglycan chain. J. Biol. Chem 270, 12641–12645
    OpenUrlAbstract/FREE Full Text
    1. Luo, L.,
    2. Tully, T. and
    3. White, K.
    (1992). Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron 9, 595–605
    OpenUrlCrossRefPubMedWeb of Science
    1. Lyckman, A. W.,
    2. Confaloni, A. M.,
    3. Thinakaran, G.,
    4. Sisodia, S. S. and
    5. Moya, K. L.
    (1998). Post-translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system. J. Biol. Chem 273, 11100–11106
    OpenUrlAbstract/FREE Full Text
    1. Magara, F.,
    2. Muller, U.,
    3. Li, Z. W.,
    4. Lipp, H. P.,
    5. Weissmann, C.,
    6. Stagljar, M. and
    7. Wolfer, D. P.
    (1999). Genetic background changes the pattern of forebrain commissure defects in transgenic mice underexpressing the beta-amyloid-precursor protein. Proc. Nat. Acad. Sci. USA 96, 4656–4661
    OpenUrlAbstract/FREE Full Text
    1. Martin, B. L.,
    2. Schrader-Fischer, G.,
    3. Busciglio, J.,
    4. Duke, M.,
    5. Paganetti, P. and
    6. Yankner, B. A.
    (1995). Intracellular accumulation of beta-amyloid in cells expressing the Swedish mutant amyloid precursor protein. J. Biol. Chem 270, 26727–26730
    OpenUrlAbstract/FREE Full Text
    1. Masters, C. L.,
    2. Simms, G.,
    3. Weinman, N. A.,
    4. Multhaup, G.,
    5. McDonald, B. L. and
    6. Beyreuther, K.
    (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Nat. Acad. Sci. USA 82, 4245–4249
    OpenUrlAbstract/FREE Full Text
    1. Mattson, M. P.,
    2. Guo, Q.,
    3. Furukawa, K. and
    4. Pedersen, W. A.
    (1998). Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease. J. Neurochem 70, 1–14
    OpenUrlPubMedWeb of Science
    1. Maximov, A.,
    2. Sudhof, T. C. and
    3. Bezprozvanny, I.
    (1999). Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem 274, 24453–24456
    OpenUrlAbstract/FREE Full Text
    1. McLoughlin, D. M. and
    2. Miller, C. C.
    (1996). The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts withphosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett 397, 197–200
    OpenUrlCrossRefPubMedWeb of Science
    1. McLoughlin, D. M.,
    2. Irving, N. G.,
    3. Brownlees, J.,
    4. Brion, J. P.,
    5. Leroy, K. and
    6. Miller, C. C.
    (1999). Mint2/X11-like colocalizes with the Alzheimer's disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer's disease. Eur. J. Neurosci 11, 1988–1994
    OpenUrlCrossRefPubMedWeb of Science
    1. Mills, J. and
    2. Reiner, P. B.
    (1999). Regulation of amyloid precursor protein cleavage. J. Neurochem 72, 443–460
    OpenUrlCrossRefPubMedWeb of Science
    1. Moss, M. L.,
    2. Jin, S. L.,
    3. Milla, M. E.,
    4. Bickett, D. M.,
    5. Burkhart, W.,
    6. Carter, H. L.,
    7. Chen, W. J.,
    8. Clay, W. C.,
    9. Didsbury, J. R.,
    10. Hassler, D.,
    11. et al.
    (1997). Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385, 733–736
    OpenUrlCrossRefPubMedWeb of Science
    1. Mullan, M.,
    2. Crawford, F.,
    3. Axelman, K.,
    4. Houlden, H.,
    5. Lilius, L.,
    6. Winblad, B. and
    7. Lannfelt, L.
    (1992). A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N terminus of beta-amyloid. Nature Genet 1, 345–347
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller, U.,
    2. Cristina, N.,
    3. Li, Z. W.,
    4. Wolfer, D. P.,
    5. Lipp, H. P.,
    6. Rulicke, T.,
    7. Brandner, S.,
    8. Aguzzi, A. and
    9. Weissmann, C.
    (1994). Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79, 755–765
    OpenUrlCrossRefPubMedWeb of Science
    1. Multhaup, G.,
    2. Schlicksupp, A.,
    3. Hesse, L.,
    4. Beher, D.,
    5. Ruppert, T.,
    6. Masters, C. L. and
    7. Beyreuther, K.
    (1996). The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science 271, 1406–1409
    OpenUrlAbstract
    1. Murphy, M. P.,
    2. Hickman, L. J.,
    3. Eckman, C. B.,
    4. Uljon, S. N.,
    5. Wang, R. and
    6. Golde, T. E.
    (1999). gamma-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid beta peptides of varying length. J. Biol. Chem 274, 11914–11923
    OpenUrlAbstract/FREE Full Text
    1. Murrell, J.,
    2. Farlow, M.,
    3. Ghetti, B. and
    4. Benson, M. D.
    (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99
    OpenUrlAbstract/FREE Full Text
    1. Naruse, S.,
    2. Thinakaran, G.,
    3. Luo, J. J.,
    4. Kusiak, J. W.,
    5. Tomita, T.,
    6. Iwatsubo, T.,
    7. Qian, X.,
    8. Ginty, D. D.,
    9. Price, D. L.,
    10. Borchelt, D. R.,
    11. et al.
    (1998). Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221
    OpenUrlCrossRefPubMedWeb of Science
    1. Naslund, J.,
    2. Schierhorn, A.,
    3. Hellman, U.,
    4. Lannfelt, L.,
    5. Roses, A. D.,
    6. Tjernberg, L. O.,
    7. Silberring, J.,
    8. Gandy, S. E.,
    9. Winblad, B.,
    10. Greengard, P.,
    11. et al.
    (1994). Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc. Nat. Acad. Sci. USA 91, 8378–8382
    OpenUrlAbstract/FREE Full Text
    1. Ninomiya, H.,
    2. Roch, J. M.,
    3. Sundsmo, M. P.,
    4. Otero, D. A. and
    5. Saitoh, T.
    (1993). Amino acid sequence RERMS represents the active domain of amyloid beta/A4 protein precursor that promotes fibroblast growth. J. Cell Biol 121, 879–886
    OpenUrlAbstract/FREE Full Text
    1. Nishimoto, I.,
    2. Okamoto, T.,
    3. Matsuura, Y.,
    4. Takahashi, S.,
    5. Okamoto, T.,
    6. Murayama, Y. and
    7. Ogata, E.
    (1993). Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). Nature 362, 75–79
    OpenUrlCrossRefPubMed
    1. Nitsch, R. M.,
    2. Slack, B. E.,
    3. Wurtman, R. J. and
    4. Growdon, J. H.
    (1992). Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304–307
    OpenUrlAbstract/FREE Full Text
    1. Nitsch, R. M.,
    2. Deng, M.,
    3. Growdon, J. H. and
    4. Wurtman, R. J.
    (1996). Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J. Biol. Chem 271, 4188–4194
    OpenUrlAbstract/FREE Full Text
    1. Niwa, M.,
    2. Sidrauski, C.,
    3. Kaufman, R. J. and
    4. Walter, P.
    (1999). A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99, 691–702
    OpenUrlCrossRefPubMedWeb of Science
    1. Nohturfft, A.,
    2. DeBose-Boyd, R. A.,
    3. Scheek, S.,
    4. Goldstein, J. L. and
    5. Brown, M. S.
    (1999). Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc. Nat. Acad. Sci. USA 96, 11235–11240
    OpenUrlAbstract/FREE Full Text
    1. Okado, H. and
    2. Okamoto, H.
    (1992). A Xenopus homologue of the human beta-amyloid precursor protein: developmental regulation of its gene expression. Biochem. Biophys. Res. Commun 189, 1561–1568
    OpenUrlCrossRefPubMedWeb of Science
    1. Okamoto, T.,
    2. Takeda, S.,
    3. Murayama, Y.,
    4. Ogata, E. and
    5. Nishimoto, I.
    (1995). Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J. Biol. Chem 270, 4205–4208
    OpenUrlAbstract/FREE Full Text
    1. Okamoto, T.,
    2. Takeda, S.,
    3. Giambarella, U.,
    4. Murayama, Y.,
    5. Matsui, T.,
    6. Katada, T.,
    7. Matsuura, Y. and
    8. Nishimoto, I.
    (1996). Intrinsic signaling function of APP as a novel target of three V642 mutations linked to familial Alzheimer's disease. EMBO J 15, 3769–3777
    OpenUrlCrossRefPubMedWeb of Science
    1. Oltersdorf, T.,
    2. Ward, P. J.,
    3. Henriksson, T.,
    4. Beattie, E. C.,
    5. Neve, R.,
    6. Lieberburg, I. and
    7. Fritz, L. C.
    (1990). The Alzheimer amyloid precursor protein. Identification of a stable intermediate in the biosynthetic/degradative pathway. J. Biol. Chem 265, 4492–4497
    OpenUrlAbstract/FREE Full Text
    1. Paliga, K.,
    2. Peraus, G.,
    3. Kreger, S.,
    4. Durrwang, U.,
    5. Hesse, L.,
    6. Multhaup, G.,
    7. Masters, C. L.,
    8. Beyreuther, K. and
    9. Weidemann, A.
    (1997). Human amyloid precursor-like protein 1—cDNA cloning, ectopic expression in COS-7 cells and identification of soluble forms in the cerebrospinal fluid. Eur. J. Biochem 250, 354–363
    OpenUrlPubMedWeb of Science
    1. Pangalos, M. N.,
    2. Efthimiopoulos, S.,
    3. Shioi, J. and
    4. Robakis, N. K.
    (1995). The chondroitin sulfate attachment site of appican is formed by splicing out exon 15 of the amyloid precursor gene. J. Biol. Chem 270, 10388–10391
    OpenUrlAbstract/FREE Full Text
    1. Paradis, E.,
    2. Douillard, H.,
    3. Koutroumanis, M.,
    4. Goodyer, C. and
    5. LeBlanc, A.
    (1996). Amyloid beta peptide of Alzheimer's disease downregulates Bcl-2 and upregulates bax expression in human neurons. J. Neurosci 16, 7533–7539
    OpenUrlAbstract/FREE Full Text
    1. Pellegrini, L.,
    2. Passer, B. J.,
    3. Tabaton, M.,
    4. Ganjei, J. K. and
    5. D'Adamio, L.
    (1999). Alternative, non-secretase processing of Alzheimer's beta-amyloid precursor protein during apoptosis by caspase-6 and-8. J. Biol. Chem 274, 21011–21016
    OpenUrlAbstract/FREE Full Text
    1. Perez, R. G.,
    2. Squazzo, S. L. and
    3. Koo, E. H.
    (1996). Enhanced release of amyloid beta-protein from codon 670/671 ‘Swedish’ mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. J. Biol. Chem 271, 9100–9107
    OpenUrlAbstract/FREE Full Text
    1. Perez, R. G.,
    2. Zheng, H.,
    3. Van der Ploeg, L. H. and
    4. Koo, E. H.
    (1997). The beta-amyloid precursor protein of Alzheimer's disease enhances neuron viability and modulates neuronal polarity. J. Neurosci 17, 9407–9414
    OpenUrlAbstract/FREE Full Text
    1. Perez, R. G.,
    2. Soriano, S.,
    3. Hayes, J. D.,
    4. Ostaszewski, B.,
    5. Xia, W.,
    6. Selkoe, D. J.,
    7. Chen, X.,
    8. Stokin, G. B. and
    9. Koo, E. H.
    (1999). Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including abeta42. J. Biol. Chem 274, 18851–18856
    OpenUrlAbstract/FREE Full Text
    1. Peschon, J. J.,
    2. Slack, J. L.,
    3. Reddy, P.,
    4. Stocking, K. L.,
    5. Sunnarborg, S. W.,
    6. Lee, D. C.,
    7. Russell, W. E.,
    8. Castner, B. J.,
    9. Johnson, R. S.,
    10. Fitzner, J. N.,
    11. et al.
    (1998). An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284
    OpenUrlAbstract/FREE Full Text
    1. Pike, C. J.,
    2. Burdick, D.,
    3. Walencewicz, A. J.,
    4. Glabe, C. G. and
    5. Cotman, C. W.
    (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci 13, 1676–1687
    OpenUrlAbstract
    1. Ponte, P.,
    2. Gonzalez-DeWhitt, P.,
    3. Schilling, J.,
    4. Miller, J.,
    5. Hsu, D.,
    6. Greenberg, B.,
    7. Davis, K.,
    8. Wallace, W.,
    9. Lieberburg, I. and
    10. Fuller, F.
    (1988). A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525–527
    OpenUrlCrossRefPubMed
    1. Price, D. L. and
    2. Sisodia, S. S.
    (1998). Mutant genes in familial Alzheimer's disease and transgenic models. Annu. Rev. Neurosci 21, 479–505
    OpenUrlCrossRefPubMedWeb of Science
    1. Rawson, R. B.,
    2. Zelenski, N. G.,
    3. Nijhawan, D.,
    4. Ye, J.,
    5. Sakai, J.,
    6. Hasan, M. T.,
    7. Chang, T. Y.,
    8. Brown, M. S. and
    9. Goldstein, J. L.
    (1997). Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57
    OpenUrlCrossRefPubMedWeb of Science
    1. Ray, W. J.,
    2. Yao, M.,
    3. Mumm, J.,
    4. Schroeter, E. H.,
    5. Saftig, P.,
    6. Wolfe, M.,
    7. Selkoe, D. J.,
    8. Kopan, R. and
    9. Goate, A. M.
    (1999). Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of notch. J. Biol. Chem 274, 36801–36807
    OpenUrlAbstract/FREE Full Text
    1. Rogaev, E. I.,
    2. Sherrington, R.,
    3. Rogaeva, E. A.,
    4. Levesque, G.,
    5. Ikeda, M.,
    6. Liang, Y.,
    7. Chi, H.,
    8. Lin, C.,
    9. Holman, K.,
    10. Tsuda, T.,
    11. et al.
    (1995). Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778
    OpenUrlCrossRefPubMedWeb of Science
    1. Ross, S. L.,
    2. Martin, F.,
    3. Simonet, L.,
    4. Jacobsen, F.,
    5. Deshpande, R.,
    6. Vassar, R.,
    7. Bennett, B.,
    8. Luo, Y.,
    9. Wooden, S.,
    10. Hu, S.,
    11. et al.
    (1998). Amyloid precursor protein processing in sterol regulatory element-binding protein site 2 protease-deficient Chinese hamster ovary cells. J. Biol. Chem 273, 15309–15312
    OpenUrlAbstract/FREE Full Text
    1. Rossjohn, J.,
    2. Cappai, R.,
    3. Feil, S. C.,
    4. Henry, A.,
    5. McKinstry, W. J.,
    6. Galatis, D.,
    7. Hesse, L.,
    8. Multhaup, G.,
    9. Beyreuther, K.,
    10. Masters, C. L.,
    11. et al.
    (1999). Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nature Struct. Biol 6, 327–331
    OpenUrlCrossRefPubMedWeb of Science
    1. Russo, T.,
    2. Faraonio, R.,
    3. Minopoli, G.,
    4. De Candia, P.,
    5. De Renzis, S. and
    6. Zambrano, N.
    (1998). Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's beta-amyloid precursor protein. FEBS Lett 434, 1–7
    OpenUrlCrossRefPubMedWeb of Science
    1. Sabo, S. L.,
    2. Lanier, L. M.,
    3. Ikin, A. F.,
    4. Khorkova, O.,
    5. Sahasrabudhe, S.,
    6. Greengard, P. and
    7. Buxbaum, J. D.
    (1999). Regulation of beta-amyloid secretion by Fe65, an amyloid protein precursor-binding protein. J. Biol. Chem 274, 7952–7957
    OpenUrlAbstract/FREE Full Text
    1. Sakai, J.,
    2. Rawson, R. B.,
    3. Espenshade, P. J.,
    4. Cheng, D.,
    5. Seegmiller, A. C.,
    6. Goldstein, J. L. and
    7. Brown, M. S.
    (1998). Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2, 505–514
    OpenUrlCrossRefPubMedWeb of Science
    1. Sambamurti, K.,
    2. Shioi, J.,
    3. Anderson, J. P.,
    4. Pappolla, M. A. and
    5. Robakis, N. K.
    (1992). Evidence for intracellular cleavage of the Alzheimer's amyloid precursor in PC12 cells. J. Neurosci. Res 33, 319–329
    OpenUrlCrossRefPubMedWeb of Science
    1. Sandbrink, R.,
    2. Masters, C. L. and
    3. Beyreuther, K.
    (1994). Beta A4-amyloid protein precursor mRNA isoforms without exon 15 are ubiquitously expressed in rat tissues including brain, but not in neurons. J. Biol. Chem 269, 1510–1517
    OpenUrlAbstract/FREE Full Text
    1. Sastre, M.,
    2. Turner, R. S. and
    3. Levy, E.
    (1998). X11 interaction with beta-amyloid precursor protein modulates its cellular stabilization and reduces amyloid beta-protein secretion. J. Biol. Chem 273, 22351–22357
    OpenUrlAbstract/FREE Full Text
    1. Schlondorff, J. and
    2. Blobel, C. P.
    (1999). Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci 112, 3603–3617
    OpenUrlAbstract/FREE Full Text
    1. Schroeter, E. H.,
    2. Kisslinger, J. A. and
    3. Kopan, R.
    (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain [see comments]. Nature 393, 382–386
    OpenUrlCrossRefPubMedWeb of Science
    1. Selkoe, D. J.
    (1999). Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, 23–31
    OpenUrlCrossRefWeb of Science
    1. Seubert, P.,
    2. Vigo-Pelfrey, C.,
    3. Esch, F.,
    4. Lee, M.,
    5. Dovey, H.,
    6. Davis, D.,
    7. Sinha, S.,
    8. Schlossmacher, M.,
    9. Whaley, J.,
    10. Swindlehurst, C.,
    11. et al.
    (1992). Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 359, 325–327
    OpenUrlCrossRefPubMedWeb of Science
    1. Shen, J.,
    2. Bronson, R. T.,
    3. Chen, D. F.,
    4. Xia, W.,
    5. Selkoe, D. J. and
    6. Tonegawa, S.
    (1997). Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639
    OpenUrlCrossRefPubMedWeb of Science
    1. Sherrington, R.,
    2. Rogaev, E. I.,
    3. Liang, Y.,
    4. Rogaeva, E. A.,
    5. Levesque, G.,
    6. Ikeda, M.,
    7. Chi, H.,
    8. Lin, C.,
    9. Li, G.,
    10. Holman, K.,
    11. et al.
    (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760
    OpenUrlCrossRefPubMedWeb of Science
    1. Shioi, J.,
    2. Pangalos, M. N.,
    3. Ripellino, J. A.,
    4. Vassilacopoulou, D.,
    5. Mytilineou, C.,
    6. Margolis, R. U. and
    7. Robakis, N. K.
    (1995). The Alzheimer amyloid precursor proteoglycan (appican) is present in brain and is produced by astrocytes but not by neurons in primary neural cultures. J. Biol. Chem 270, 11839–11844
    OpenUrlAbstract/FREE Full Text
    1. Siman, R.,
    2. Mistretta, S.,
    3. Durkin, J. T.,
    4. Savage, M. J.,
    5. Loh, T.,
    6. Trusko, S. and
    7. Scott, R. W.
    (1993). Processing of the beta-amyloid precursor. Multiple proteases generate and degrade potentially amyloidogenic fragments. J. Biol. Chem 268, 16602–16609
    OpenUrlAbstract/FREE Full Text
    1. Simons, M.,
    2. de Strooper, B.,
    3. Multhaup, G.,
    4. Tienari, P. J.,
    5. Dotti, C. G. and
    6. Beyreuther, K.
    (1996). Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J. Neurosci 16, 899–908
    OpenUrlAbstract/FREE Full Text
    1. Simons, M.,
    2. Keller, P.,
    3. De Strooper, B.,
    4. Beyreuther, K.,
    5. Dotti, C. G. and
    6. Simons, K.
    (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Nat. Acad. Sci. USA 95, 6460–6464
    OpenUrlAbstract/FREE Full Text
    1. Sinha, S.,
    2. Anderson, J. P.,
    3. Barbour, R.,
    4. Basi, G. S.,
    5. Caccavello, R.,
    6. Davis, D.,
    7. Doan, M.,
    8. Dovey, H. F.,
    9. Frigon, N.,
    10. Hong, J.,
    11. et al.
    (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540
    OpenUrlCrossRefPubMedWeb of Science
    1. Sisodia, S. S.
    (1992). Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Nat. Acad. Sci. USA 89, 6075–6079
    OpenUrlAbstract/FREE Full Text
    1. Sisodia, S. S.,
    2. Koo, E. H.,
    3. Beyreuther, K.,
    4. Unterbeck, A. and
    5. Price, D. L.
    (1990). Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–495
    OpenUrlAbstract/FREE Full Text
    1. Slunt, H. H.,
    2. Thinakaran, G.,
    3. Von Koch, C.,
    4. Lo, A. C.,
    5. Tanzi, R. E. and
    6. Sisodia, S. S.
    (1994). Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J. Biol. Chem 269, 2637–2644
    OpenUrlAbstract/FREE Full Text
    1. Song, W.,
    2. Nadeau, P.,
    3. Yuan, M.,
    4. Yang, X.,
    5. Shen, J. and
    6. Yankner, B. A.
    (1999). Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Nat. Acad. Sci. USA 96, 6959–6963
    OpenUrlAbstract/FREE Full Text
    1. Spillantini, M. G.,
    2. Murrell, J. R.,
    3. Goedert, M.,
    4. Farlow, M. R.,
    5. Klug, A. and
    6. Ghetti, B.
    (1998). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Nat. Acad. Sci. USA 95, 7737–7741
    OpenUrlAbstract/FREE Full Text
    1. Sprecher, C. A.,
    2. Grant, F. J.,
    3. Grimm, G.,
    4. PJ, O. H.,
    5. Norris, F.,
    6. Norris, K. and
    7. Foster, D. C.
    (1993). Molecular cloning of the cDNA for a human amyloid precursor protein homolog: evidence for a multigene family. Biochemistry 32, 4481–4486
    OpenUrlCrossRefPubMed
    1. Steiner, H.,
    2. Duff, K.,
    3. Capell, A.,
    4. Romig, H.,
    5. Grim, M. G.,
    6. Lincoln, S.,
    7. Hardy, J.,
    8. Yu, X.,
    9. Picciano, M.,
    10. Fechteler, K.,
    11. et al.
    (1999). A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J. Biol. Chem 274, 28669–28673
    OpenUrlAbstract/FREE Full Text
    1. Stephens, D. J. and
    2. Austen, B. M.
    (1996). Metabolites of the beta-amyloid precursor protein generated by beta-secretase localise to the trans-Golgi network and late endosome in 293 cells. J. Neurosci. Res 46, 211–225
    OpenUrlCrossRefPubMed
    1. Struhl, G. and
    2. Greenwald, I.
    (1999). Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki, N.,
    2. Cheung, T. T.,
    3. Cai, X. D.,
    4. Odaka, A.,
    5. Otvos, L. Jr..,
    6. Eckman, C.,
    7. Golde, T. E. and
    8. Younkin, S. G.
    (1994). An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264, 1336–1340
    OpenUrlAbstract/FREE Full Text
    1. Suzuki, T.,
    2. Oishi, M.,
    3. Marshak, D. R.,
    4. Czernik, A. J.,
    5. Nairn, A. C. and
    6. Greengard, P.
    (1994). Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. EMBO J 13, 1114–1122
    OpenUrlPubMedWeb of Science
    1. Tanahashi, H. and
    2. Tabira, T.
    (1999). X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein. Biochem. Biophys. Res. Commun 255, 663–667
    OpenUrlCrossRefPubMedWeb of Science
    1. Tanzi, R. E.,
    2. McClatchey, A. I.,
    3. Lamperti, E. D.,
    4. Villa-Komaroff, L.,
    5. Gusella, J. F. and
    6. Neve, R. L.
    (1988). Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature 331, 528–530
    OpenUrlCrossRefPubMed
    1. Tanzi, R. E.
    (1999). A genetic dichotomy model for the inheritance of Alzheimer's disease and common age-related disorders. J. Clin. Invest 104, 1175–1179
    OpenUrlCrossRefPubMedWeb of Science
    1. Thinakaran, G. and
    2. Sisodia, S. S.
    (1994). Amyloid precursor-like protein 2 (APLP2) is modified by the addition of chondroitin sulfate glycosaminoglycan at a single site. J. Biol. Chem 269, 22099–22104
    OpenUrlAbstract/FREE Full Text
    1. Thinakaran, G.,
    2. Teplow, D. B.,
    3. Siman, R.,
    4. Greenberg, B. and
    5. Sisodia, S. S.
    (1996). Metabolism of the ‘Swedish’ amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the ‘beta-secretase’ site occurs in the Golgi apparatus. J. Biol. Chem 271, 9390–9397
    OpenUrlAbstract/FREE Full Text
    1. Tomita, S.,
    2. Ozaki, T.,
    3. Taru, H.,
    4. Oguchi, S.,
    5. Takeda, S.,
    6. Yagi, Y.,
    7. Sakiyama, S.,
    8. Kirino, Y. and
    9. Suzuki, T.
    (1999). Interaction of a neuron-specific protein containing PDZ domains with Alzheimer's amyloid precursor protein. J. Biol. Chem 274, 2243–2254
    OpenUrlAbstract/FREE Full Text
    1. Traub, L. M. and
    2. Kornfeld, S.
    (1997). The trans-Golgi network: a late secretory sorting station. Curr. Opin. Cell Biol 9, 527–533
    OpenUrlCrossRefPubMedWeb of Science
    1. Trommsdorff, M.,
    2. Borg, J. P.,
    3. Margolis, B. and
    4. Herz, J.
    (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem 273, 33556–33560
    OpenUrlAbstract/FREE Full Text
    1. Van Nostrand, W. E.,
    2. Schmaier, A. H.,
    3. Farrow, J. S. and
    4. Cunningham, D. D.
    (1990). Protease nexin-II (amyloid beta-protein precursor): a platelet alpha-granule protein. Science 248, 745–748
    OpenUrlAbstract/FREE Full Text
    1. Vassar, R.,
    2. Bennett, B. D.,
    3. Babu-Khan, S.,
    4. Kahn, S.,
    5. Mendiaz, E. A.,
    6. Denis, P.,
    7. Teplow, D. B.,
    8. Ross, S.,
    9. Amarante, P.,
    10. Loeloff, R.,
    11. et al.
    (1999). Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741
    OpenUrlAbstract/FREE Full Text
    1. Vito, P.,
    2. Lacana, E. and
    3. L, D. A.
    (1996). Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science 271, 521–525
    OpenUrlAbstract
    1. von Koch, C. S.,
    2. Zheng, H.,
    3. Chen, H.,
    4. Trumbauer, M.,
    5. Thinakaran, G.,
    6. van der Ploeg, L. H.,
    7. Price, D. L. and
    8. Sisodia, S. S.
    (1997). Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol. Aging 18, 661–669
    OpenUrlCrossRefPubMedWeb of Science
    1. Walter, J.,
    2. Capell, A.,
    3. Hung, A. Y.,
    4. Langen, H.,
    5. Schnolzer, M.,
    6. Thinakaran, G.,
    7. Sisodia, S. S.,
    8. Selkoe, D. J. and
    9. Haass, C.
    (1997). Ectodomain phosphorylation of beta-amyloid precursor protein at two distinct cellular locations. J. Biol. Chem 272, 1896–1903
    OpenUrlAbstract/FREE Full Text
    1. Wasco, W.,
    2. Bupp, K.,
    3. Magendantz, M.,
    4. Gusella, J. F.,
    5. Tanzi, R. E. and
    6. Solomon, F.
    (1992). Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc. Nat. Acad. Sci. USA 89, 10758–10762
    OpenUrlAbstract/FREE Full Text
    1. Wasco, W.,
    2. Gurubhagavatula, S.,
    3. Paradis, M. D.,
    4. Romano, D. M.,
    5. Sisodia, S. S.,
    6. Hyman, B. T.,
    7. Neve, R. L. and
    8. Tanzi, R. E.
    (1993). Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor. Nature Genet 5, 95–100
    OpenUrlCrossRefPubMedWeb of Science
    1. Weidemann, A.,
    2. Konig, G.,
    3. Bunke, D.,
    4. Fischer, P.,
    5. Salbaum, J. M.,
    6. Masters, C. L. and
    7. Beyreuther, K.
    (1989). Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115–126
    OpenUrlCrossRefPubMedWeb of Science
    1. Weidemann, A.,
    2. Paliga, K. U, D. r.,
    3. Reinhard, F. B.,
    4. Schuckert, O.,
    5. Evin, G. and
    6. Masters, C. L.
    (1999). Proteolytic processing of the Alzheimer'sdisease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J. Biol. Chem 274, 5823–5829
    OpenUrlAbstract/FREE Full Text
    1. Werb, Z. and
    2. Yan, Y.
    (1998). A cellular striptease act. Science 282, 1279–1280
    OpenUrlFREE Full Text
    1. Williamson, T. G.,
    2. Mok, S. S.,
    3. Henry, A.,
    4. Cappai, R.,
    5. Lander, A. D.,
    6. Nurcombe, V.,
    7. Beyreuther, K.,
    8. Masters, C. L. and
    9. Small, D. H.
    (1996). Secreted glypican binds to the amyloid precursor protein of Alzheimer's disease (APP) and inhibits APP-induced neurite outgrowth. J. Biol. Chem 271, 31215–31221
    OpenUrlAbstract/FREE Full Text
    1. Wolfe, M. S.,
    2. De Los Angeles, J.,
    3. Miller, D. D.,
    4. Xia, W. and
    5. Selkoe, D. J.
    (1999). Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer's disease. Biochemistry 38, 11223–11230
    OpenUrlCrossRefPubMed
    1. Wolfe, M. S.,
    2. Xia, W.,
    3. Moore, C. L.,
    4. Leatherwood, D. D.,
    5. Ostaszewski, B.,
    6. Rahmati, T.,
    7. Donkor, I. O. and
    8. Selkoe, D. J.
    (1999). Peptidomimetic probes and molecular modeling suggest that Alzheimer's gamma-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38, 4720–4727
    OpenUrlCrossRefPubMed
    1. Wolfe, M. S.,
    2. Xia, W.,
    3. Ostaszewski, B. L.,
    4. Diehl, T. S.,
    5. Kimberly, W. T. and
    6. Selkoe, D. J.
    (1999). Two transmembrane aspartates in presenilin-1 required for presenelin endoproteolysis and gamma-secretase activity. Nature 398, 513–517
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolozin, B.,
    2. Iwasaki, K.,
    3. Vito, P.,
    4. Ganjei, J. K.,
    5. Lacana, E.,
    6. Sunderland, T.,
    7. Zhao, B.,
    8. Kusiak, J. W. and
    9. Wasco, W. L, D. A.
    (1996). Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274, 1710–1713
    OpenUrlAbstract/FREE Full Text
    1. Wong, P. C.,
    2. Zheng, H.,
    3. Chen, H.,
    4. Becher, M. W.,
    5. Sirinathsinghji, D. J.,
    6. Trumbauer, M. E.,
    7. Chen, H. Y.,
    8. Price, D. L.,
    9. Van der Ploeg, L. H. and
    10. Sisodia, S. S.
    (1997). Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387, 288–292
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu, X.,
    2. Yang, D.,
    3. Wyss-Coray, T.,
    4. Yan, J.,
    5. Gan, L.,
    6. Sun, Y. and
    7. Mucke, L.
    (1999). Wild-type but not Alzheimer-mutant amyloid precursor protein confers resistance against p53-mediated apoptosis. Proc. Nat. Acad. Sci. USA 96, 7547–7552
    OpenUrlAbstract/FREE Full Text
    1. Yamatsuji, T.,
    2. Matsui, T.,
    3. Okamoto, T.,
    4. Komatsuzaki, K.,
    5. Takeda, S.,
    6. Fukumoto, H.,
    7. Iwatsubo, T.,
    8. Suzuki, N.,
    9. Asami-Odaka, A.,
    10. Ireland, S.,
    11. et al.
    (1996). G protein-mediated neuronal DNA fragmentation induced by familial Alzheimer's disease-associated mutants of APP. Science 272, 1349–1352
    OpenUrlAbstract
    1. Yamatsuji, T.,
    2. Okamoto, T.,
    3. Takeda, S.,
    4. Muryama, Y.,
    5. Tanaka, N. and
    6. Nishimoto, I.
    (1996). Expression of V642 APP mutant causes cellular apoptosis as Alzheimer trait phenotype. EMBO J 15, 498–509
    OpenUrlPubMedWeb of Science
    1. Yamazaki, T.,
    2. Koo, E. H. and
    3. Selkoe, D. J.
    (1996). Trafficking of cell-surface amyloid beta-protein precursor. II. Endocytosis, recycling and lysosomal targeting detected by immunolocalization. J. Cell Sci 109, 999–1008
    OpenUrlAbstract/FREE Full Text
    1. Yan, R.,
    2. Bienkowski, M. J.,
    3. Shuck, M. E.,
    4. Miao, H.,
    5. Tory, M. C.,
    6. Pauley, A. M.,
    7. Brashier, J. R.,
    8. Stratman, N. C.,
    9. Mathews, W. R.,
    10. Buhl, A. E.,
    11. et al.
    (1999). Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature 402, 533–537
    OpenUrlCrossRefPubMedWeb of Science
    1. Yankner, B. A.,
    2. Duffy, L. K. and
    3. Kirschner, D. A.
    (1990). Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250, 279–282
    OpenUrlAbstract/FREE Full Text
    1. Ye, Y.,
    2. Lukinova, N. and
    3. Fortini, M. E.
    (1999). Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529
    OpenUrlCrossRefPubMedWeb of Science
    1. Zambrano, N.,
    2. Buxbaum, J. D.,
    3. Minopoli, G.,
    4. Fiore, F.,
    5. De Candia, P.,
    6. De Renzis, S.,
    7. Faraonio, R.,
    8. Sabo, S.,
    9. Cheetham, J.,
    10. Sudol, M.,
    11. et al.
    (1997). Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer's beta-amyloid precursor proteins. J. Biol. Chem 272, 6399–6405
    OpenUrlAbstract/FREE Full Text
    1. Zambrano, N.,
    2. Minopoli, G.,
    3. de Candia, P. and
    4. Russo, T.
    (1998). The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem 273, 20128–20133
    OpenUrlAbstract/FREE Full Text
    1. Zhang, Z.,
    2. Lee, C. H.,
    3. Mandiyan, V.,
    4. Borg, J. P.,
    5. Margolis, B.,
    6. Schlessinger, J. and
    7. Kuriyan, J.
    (1997). Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. EMBO J 16, 6141–6150
    OpenUrlAbstract
    1. Zheng, H.,
    2. Jiang, M.,
    3. Trumbauer, M. E.,
    4. Sirinathsinghji, D. J.,
    5. Hopkins, R.,
    6. Smith, D. W.,
    7. Heavens, R. P.,
    8. Dawson, G. R.,
    9. Boyce, S.,
    10. Conner, M. W.,
    11. et al.
    (1995). beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531
    OpenUrlCrossRefPubMedWeb of Science
    1. Zheng, P.,
    2. Eastman, J.,
    3. Vande Pol, S. and
    4. Pimplikar, S. W.
    (1998). PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc. Nat. Acad. Sci. USA 95, 14745–14750
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Proteolytic processing and cell biological functions of the amyloid precursor protein
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
Share
Journal Article
Proteolytic processing and cell biological functions of the amyloid precursor protein
B. De Strooper, W. Annaert
Journal of Cell Science 2000 113: 1857-1870;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Proteolytic processing and cell biological functions of the amyloid precursor protein
B. De Strooper, W. Annaert
Journal of Cell Science 2000 113: 1857-1870;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
  • The cytoplasmic fate of mRNA
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

First Person interviews

Photo collage of Chen Yu, Sushmita Chatterjee, Ruiqi Wang and Lotte Vanheer.

Have you seen our First Person interviews with the early-career first authors of our papers? The authors talk about their work in and out of the lab, the journeys that led them to where they are now and the scientists who inspired them along the way. Recently, we caught up with first authors Maitreyi Rathod, Sushmita Chatterjee, Lotte Vanheer, Rachel Furlong, Pamela Adami, Ruiqi Wang and Chen Yu.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


preLights – Meet the preLighters: an interview with Maiko Kitaoka

Maiko Kitaoka

Maiko Kitaoka is a graduate student in the lab of Rebecca Heald at the University of California, Berkeley. Here she studies the cause of chromosome mis-segregation defects in Xenopus hybrids. We caught up with Maiko to discuss her research, science communication, ballet, preprints and more.


Journal Meeting – Cell Dynamics: Host-Pathogen Interface

Registration is now open for the third instalment of the highly successful Cellular Dynamics Meeting Series, and will focus on ‘Host-Pathogen Interface’. The meeting will take place 17-20 May 2020, and further information is available here.


Cell Science at a Glance – Adaptor protein complexes and disease at a glance

A new poster from the Robinson lab summarises what is known about the five adaptor protein complexes and discuss how this helps to explain the clinical features of different genetic disorders.


JCS joins the Review Commons initiative

Journal of Cell Science is pleased to be a part of the new and exciting Review Commons initiative, launched by EMBO and ASAPbio. Streamlining the publishing process, Review Commons enables high-quality peer review to take place before journal submission. Papers submitted to Review Commons will be assessed independently of any journal, focusing solely on the paper’s scientific rigor and merit.


Articles of interest in our sister journals

Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae
Chang-Ru Tsai, Michael J. Galko
Development

Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis
Elizabeth Vargas, Karen P. McNally, Daniel B. Cortes, Michelle T. Panzica, Brennan M. Danlasky, Qianyan Li, Amy Shaub Maddox, Francis J. McNally
Development

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Journal of Cell Science
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992