Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?
A. Petrone, J. Sap
Journal of Cell Science 2000 113: 2345-2354;
A. Petrone
Department of Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jan.sap@med.nyu.edu
J. Sap
Department of Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jan.sap@med.nyu.edu
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signaling pathways involving SRC family kinases, which result from their ability to control phosphorylation of both activating and inhibitory sites in these kinases and possibly also their substrates. Similarly, integrin signaling illustrates how phosphorylation of a single protein, or the activity of a pathway, can be controlled by multiple tyrosine phosphatases, attesting to the intricate integration of these enzymes in cellular regulation. Lastly, we are starting to appreciate the roles of intracellular topology, tyrosine phosphorylation and oligomerization among the many mechanisms regulating tyrosine phosphatase activity.

  • © 2000 by Company of Biologists

REFERENCES

    1. Aicher, B.,
    2. Lerch, M. M.,
    3. Muller, T.,
    4. Schilling, J. and
    5. Ullrich, A.
    (1997). Cellular redistribution of protein tyrosine phosphatases LAR and PTPsigma by inducible proteolytic processing. J. Cell Biol 138, 681–696
    OpenUrlAbstract/FREE Full Text
    1. Angers-Loustau, A.,
    2. Cote, J.-F.,
    3. Charest, A.,
    4. Dowbenko, D.,
    5. Spencer, S.,
    6. Lasky, L. A. and
    7. Tremblay, M. L.
    (1999). Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J. Cell Biol 144, 1019–1031
    OpenUrlAbstract/FREE Full Text
    1. Angers-Loustau, A.,
    2. Cote, J. F. and
    3. Tremblay, M. L.
    (1999). Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem. Cell Biol 77, 493–505
    OpenUrlCrossRefPubMedWeb of Science
    1. Arregui, C. O.,
    2. Balsamo, J. and
    3. Lilien, J.
    (2000). Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem. Res 25, 95–105
    OpenUrlCrossRefPubMedWeb of Science
    1. Ashwell, J. D. and
    2. D'Oro, U.
    (1999). CD45 and Src-family kinases: and now for something completely different. Immunol. Today 20, 412–416
    OpenUrlCrossRefPubMedWeb of Science
    1. Autero, M.,
    2. Saharinen, J.,
    3. Pessa-Morikawa, T.,
    4. Soula-Rothhut, M.,
    5. Oetken, C.,
    6. Gassmann, M.,
    7. Bergman, M.,
    8. Alitalo, K.,
    9. Burn, P.,
    10. Gahmberg, C. G.,
    11. et al.
    (1994). Tyrosine phosphorylation of CD45 phosphotyrosine phosphatase by p50csk kinase creates a binding site for p56lck tyrosine kinase and activates the phosphatase. Mol. Cell. Biol 14, 1308–1321
    OpenUrlAbstract/FREE Full Text
    1. Balsamo, J.,
    2. Leung, T.,
    3. Ernst, H.,
    4. Zanin, M. K.,
    5. Hoffman, S. and
    6. Lilien, J.
    (1996). Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J. Cell Biol 134, 801–813
    OpenUrlAbstract/FREE Full Text
    1. Barford, D.,
    2. Das, A. K. and
    3. Egloff, M. P.
    (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct 27, 133–164
    OpenUrlCrossRefPubMedWeb of Science
    1. Barrett, W. C.,
    2. DeGnore, J. P.,
    3. Keng, Y. F.,
    4. Zhang, Z. Y.,
    5. Yim, M. B. and
    6. Chock, P. B.
    (1999). Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem 274, 34543–34546
    OpenUrlAbstract/FREE Full Text
    1. Bhandari, V.,
    2. Lim, K. L. and
    3. Pallen, C. J.
    (1998). Physical and functional interactions between receptor-like protein-tyrosine phosphatase alpha and p59fyn. J. Biol. Chem 273, 8691–8698
    OpenUrlAbstract/FREE Full Text
    1. Biffen, M.,
    2. McMichael-Phillips, D.,
    3. Larson, T.,
    4. Venkitaraman, A. and
    5. Alexander, D.
    (1994). The CD45 tyrosine phosphatase regulates specific pools of antigen receptor-associated p59fyn and CD4-associated p56lck tyrosine kinases in human T-cells. EMBO J 13, 1920–1929
    OpenUrlPubMed
    1. Bilwes, A. M.,
    2. den Hertog, J.,
    3. Hunter, T. and
    4. Noel, J. P.
    (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 382, 555–559
    OpenUrlCrossRefPubMedWeb of Science
    1. Black, D. S. and
    2. Bliska, J. B.
    (1997). Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J 16, 2730–2744
    OpenUrlAbstract
    1. Brady-Kalnay, S. M.,
    2. Flint, A. J. and
    3. Tonks, N. K.
    (1993). Homophilic binding of PTPmu, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J. Cell Biol 122, 961–972
    OpenUrlAbstract/FREE Full Text
    1. Brady-Kalnay, S. M.,
    2. Rimm, D. L. and
    3. Tonks, N. K.
    (1995). Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. J. Cell Biol 130, 977–986
    OpenUrlAbstract/FREE Full Text
    1. Brown, D. A. and
    2. London, E.
    (1998). Function of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol 14, 111–136
    OpenUrlCrossRefPubMedWeb of Science
    1. Brown, M. T. and
    2. Cooper, J. A.
    (1996). Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149
    OpenUrlPubMed
    1. Burden-Gulley, S. M. and
    2. Brady-Kalnay, S. M.
    (1999). PTPmu regulates N-cadherin-dependent neurite outgrowth. J. Cell Biol 144, 1323–1336
    OpenUrlAbstract/FREE Full Text
    1. Byth, K. F.,
    2. Conroy, L. A.,
    3. Howlett, S.,
    4. Smith, A. J.,
    5. May, J.,
    6. Alexander, D. R. and
    7. Holmes, N.
    (1996). CD45-null transgenic mice reveal a positiveregulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+thymocytes, and B cell maturation. J. Exp. Med 183, 1707–1718
    OpenUrlAbstract/FREE Full Text
    1. Chernoff, J.
    (1999). Protein tyrosine phosphatases as negative regulators of mitogenic signaling. J. Cell. Physiol 180, 173–181
    OpenUrlCrossRefPubMedWeb of Science
    1. Cloutier, J. F. and
    2. Veillette, A.
    (1999). Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med 189, 111–121
    OpenUrlAbstract/FREE Full Text
    1. Cyster, J. G.,
    2. Healy, J. I.,
    3. Kishihara, K.,
    4. Mak, T. W.,
    5. Thomas, M. L. and
    6. Goodnow, C. C.
    (1996). Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 381, 325–328
    OpenUrlCrossRefPubMed
    1. D'Oro, U. and
    2. Ashwell, J. D.
    (1999). The CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol 162, 1879–1883
    OpenUrlAbstract/FREE Full Text
    1. Daum, G.,
    2. Regenass, S.,
    3. Sap, J.,
    4. Schlessinger, J. and
    5. Fischer, E. H.
    (1994). Multiple forms of the human tyrosine phosphatase RPTPalpha. Isozymes and differences in glycosylation. J. Biol. Chem 269, 10524–10528
    OpenUrlAbstract/FREE Full Text
    1. DeMali, K. A.,
    2. Balciunaite, E. and
    3. Kazlauskas, A.
    (1999). Integrins enhance platelet-derived growth factor (PDGF)-dependent responses by altering the signal relay enzymes that are recruited to the PDGF beta receptor. J. Biol. Chem 274, 19551–19558
    OpenUrlAbstract/FREE Full Text
    1. den Hertog, J.,
    2. Pals, C. E. G. M.,
    3. Peppelenbosch, M.,
    4. Tertoolen, L. G. J.,
    5. De Laat, S. W. and
    6. Kruijer, W.
    (1993). Receptor protein tyrosine phosphatase alpha activates pp60c-src and is involved in neuronal differentiation. EMBO J 12, 3789–3798
    OpenUrlPubMedWeb of Science
    1. den Hertog, J.,
    2. Tracy, S. and
    3. Hunter, T.
    (1994). Phosphorylation of receptor protein-tyrosine phosphatase alpha on tyrosine 789, a binding site for the SH3-SH2-SH3 adaptor protein Grb-2 in vivo. EMBO J 13, 3020–3032
    OpenUrlPubMedWeb of Science
    1. den Hertog, J.,
    2. Sap, J.,
    3. Pals, C. E. G. M.,
    4. Schlessinger, J. and
    5. Kruijer, W.
    (1995). Stimulation of receptor protein tyrosine phosphatase alpha activity and phosphorylation by phorbol ester. Cell Growth Differ 6, 303–307
    OpenUrlAbstract
    1. den Hertog, J. and
    2. Hunter, T.
    (1996). Tight association of Grb2 with receptor protein-tyrosine phosphataseis mediated by the SH2 and C-terminal SH3 domains. EMBO J 15, 3016–3027
    OpenUrlPubMedWeb of Science
    1. den Hertog
    (1999). Protein-tyrosine phosphatases in development. Mech. Dev 85, 3–14
    OpenUrlCrossRefPubMedWeb of Science
    1. Desai, C. J.,
    2. Krueger, N. X.,
    3. Saito, H. and
    4. Zinn, K.
    (1997). Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila. Development 124, 1941–1952
    OpenUrlAbstract
    1. Desai, C. J.,
    2. Sun, Q. and
    3. Zinn, K.
    (1998). Tyrosine phosphorylation and axon guidance: of mice and flies. BioEssays 20, 463–472
    OpenUrlCrossRefPubMedWeb of Science
    1. Desai, D. M.,
    2. Sap, J.,
    3. Schlessinger, J. and
    4. Weiss, A.
    (1993). Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541–554
    OpenUrlCrossRefPubMedWeb of Science
    1. Elchebly, M.,
    2. Payette, P.,
    3. Michaliszyn, E.,
    4. Cromlish, W.,
    5. Collins, S.,
    6. Loy, A. L.,
    7. Normandin, D.,
    8. Cheng, A.,
    9. Himms-Hagen, J.,
    10. Chan, C. C.,
    11. et al.
    (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548
    OpenUrlAbstract/FREE Full Text
    1. Elson, A. and
    2. Leder, P.
    (1995). Identification of a cytoplasmic, phorbol ester-inducible isoform of protein tyrosine phosphatase. Proc. Nat. Acad. Sci. USA 92, 12335–12339
    OpenUrl
    1. Felsch, J. S.,
    2. Cachero, T. G. and
    3. Peralta, E. G.
    (1998). Activation of protein tyrosine kinase PYK2 by the m1 muscarinic acetylcholine receptor. Proc. Nat. Acad. Sci. USA 95, 5051–5056
    OpenUrlAbstract/FREE Full Text
    1. Feng, G. S.
    (1999). Shp-2 tyrosine phosphatase: signaling one cell or many. Exp. Cell Res 253, 47–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Fialkow, L.,
    2. Chan, C. K. and
    3. Downey, G. P.
    (1997). Inhibition of CD45 during neutrophil activation. J. Immunol 158, 5409–5417
    OpenUrlAbstract
    1. Fischer, E. H.
    (1999). Cell signaling by protein tyrosine phosphorylation. Advan. Enzyme Regul 39, 359–369
    OpenUrlCrossRefPubMedWeb of Science
    1. Fuchs, M.,
    2. Muller, T.,
    3. Lerch, M. M. and
    4. Ullrich, A.
    (1996). Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J. Biol. Chem 271, 16712–16719
    OpenUrlAbstract/FREE Full Text
    1. Furukawa, T.,
    2. Itoh, M.,
    3. Krueger, N. X.,
    4. Streuli, M. and
    5. Saito, H.
    (1994). Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc. Nat. Acad. Sci. USA 91, 10928–10932
    OpenUrlAbstract/FREE Full Text
    1. Garton, A. J. and
    2. Tonks, N. K.
    (1999). Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. J. Biol. Chem 274, 3811–3818
    OpenUrlAbstract/FREE Full Text
    1. Gebbink, M. F. B. G.,
    2. Zondag, G. C. M.,
    3. Wubbolts, R. W.,
    4. Beijersbergen, R. L.,
    5. van Etten, I. and
    6. Moolenaar, W. H.
    (1993). Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J. Biol. Chem 268, 16101–16104
    OpenUrlAbstract/FREE Full Text
    1. Gershon, T. R.,
    2. Baker, M. W.,
    3. Nitabach, M. and
    4. Macagno, E. R.
    (1998). The leech receptor protein tyrosine phosphatase HmLAR2 is concentrated ingrowth cones and is involved in process outgrowth. Development 125, 1183–1190
    OpenUrlAbstract
    1. Giancotti, F. G. and
    2. Ruoslahti, E.
    (1999). Integrin signaling. Science 285, 1028–1032
    OpenUrlAbstract/FREE Full Text
    1. Gjorloff-Wingren, A.,
    2. Saxena, M.,
    3. Williams, S.,
    4. Hammi, D. and
    5. Mustelin, T.
    (1999). Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur. J. Immunol 29, 3845–3854
    OpenUrlCrossRefPubMedWeb of Science
    1. Goldstein, B. J.,
    2. Ahmad, F.,
    3. Ding, W.,
    4. Li, P. M. and
    5. Zhang, W. R.
    (1998). Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol. Cell. Biochem 182, 91–99
    OpenUrlCrossRefPubMedWeb of Science
    1. Gross, S.,
    2. Knebel, A.,
    3. Tenev, T.,
    4. Neininger, A.,
    5. Gaestel, M.,
    6. Herrlich, P. and
    7. Bohmer, F. D.
    (1999). Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J. Biol. Chem 274, 26378–26386
    OpenUrlAbstract/FREE Full Text
    1. Harder, K. W.,
    2. Moller, N. P. H.,
    3. Peacock, J. W. and
    4. Jirik, F. R.
    (1998). Protein-tyrosine phosphatase alpha regulates src family kinases and alters cell-substratum adhesion. J. Biol. Chem 273, 31890–31900
    OpenUrlAbstract/FREE Full Text
    1. Hoffmann, K. M.,
    2. Tonks, N. K. and
    3. Barford, D.
    (1997). The crystal structure of domain 1 of receptor protein-tyrosine phosphatase mu. J. Biol. Chem 272, 27505–27508
    OpenUrlAbstract/FREE Full Text
    1. Hooft van Huijsduijnen, R.
    (1998). Protein tyrosine phosphatases: counting the trees in the forest. Gene 225, 1–8
    OpenUrlCrossRefPubMedWeb of Science
    1. Hubbard, S. R.
    (1999). Src autoinhibition: let us count the ways. Nature Struct. Biol 6, 711–714
    OpenUrlCrossRefPubMedWeb of Science
    1. Jacob, K. K.,
    2. Sap, J. and
    3. Stanley, F. M.
    (1998). Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression. J. Biol. Chem 273, 4800–4809
    OpenUrlAbstract/FREE Full Text
    1. Janes, P. W.,
    2. Ley, S. C. and
    3. Magee, A. I.
    (1999). Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol 147, 447–461
    OpenUrlAbstract/FREE Full Text
    1. Jiang, G. and
    2. Hunter, T.
    (1999). Receptor signaling: when dimerization is not enough. Curr. Biol 9, 568–571
    OpenUrlCrossRef
    1. Jiang, G.,
    2. den Hertog, J.,
    3. Su, J.,
    4. Noel, J.,
    5. Sap, J. and
    6. Hunter, T.
    (1999). Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha. Nature 401, 606–610
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaplan, K. B.,
    2. Swedlow, J. R.,
    3. Morgan, D. O. and
    4. Varmus, H. E.
    (1995). c-Src enhances the spreading of src/ fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev 9, 1505–1517
    OpenUrlAbstract/FREE Full Text
    1. Kashio, N.,
    2. Matsumoto, W.,
    3. Parker, S. and
    4. Rothstein, D. M.
    (1998). The second domain of the CD45 protein tyrosine phosphatase is critical for interleukin-2 secretion and substrate recruitment of TCR-zeta in vivo. J. Biol. Chem 273, 33856–33863
    OpenUrlAbstract/FREE Full Text
    1. Katagiri, T.,
    2. Ogimoto, M.,
    3. Hasegawa, K.,
    4. Arimura, Y.,
    5. Mitomo, K.,
    6. Okada, M.,
    7. Clark, M. R.,
    8. Mizuno, K. and
    9. Yakura, H.
    (1999). CD45 negatively regulates lyn activity by dephosphorylating both positive and negative regulatory tyrosine residues in immature B cells. J. Immunol 163, 1321–1326
    OpenUrlAbstract/FREE Full Text
    1. Kawachi, H.,
    2. Tamura, H.,
    3. Watakabe, I.,
    4. Shintani, T.,
    5. Maeda, N. and
    6. Noda, M.
    (1999). Protein tyrosine phosphatase zeta/RPTPbeta interacts with PSD-95/SAP90 family. Brain Res. Mol. Brain Res 72, 47–54
    OpenUrlCrossRefPubMed
    1. Kishihara, K.,
    2. Penninger, J.,
    3. Wallace, V. A.,
    4. Kundig, T. M.,
    5. Kawai, K.,
    6. Wakeham, A.,
    7. Timms, E.,
    8. Pfeffer, K.,
    9. Ohashi, P. S.,
    10. Thomas, M. L.,
    11. et al.
    (1993). Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Kozieradzki, I.,
    2. Kundig, T.,
    3. Kishihara, K.,
    4. Ong, C. J.,
    5. Chiu, D.,
    6. Wallace, V. A.,
    7. Kawai, K.,
    8. Timms, E.,
    9. Ionescu, J.,
    10. Ohashi, P.,
    11. et al.
    (1997). T cell development in mice expressing splice variants of the protein tyrosine phosphatase CD45. J. Immunol 158, 3130–3139
    OpenUrlAbstract
    1. Kypta, R. M.,
    2. Su, H. and
    3. Reichardt, L. F.
    (1996). Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J. Cell Biol 134, 1519–1529
    OpenUrlAbstract/FREE Full Text
    1. Lammers, R.,
    2. Lerch, M. M. and
    3. Ullrich, A.
    (2000). The carboxyl-terminal tyrosine residue of protein-tyrosine phosphatase alpha mediates association with focal adhesion plaques. J. Biol. Chem 275, 3391–3396
    OpenUrlAbstract/FREE Full Text
    1. Ledbetter, J. A.,
    2. Tonks, N. K.,
    3. Fischer, E. H. and
    4. Clark, E. A.
    (1988). CD45 regulates signal transduction and lymphocyte activation by specific association with receptor molecules on T or B cells. Proc. Nat. Acad. Sci. USA 85, 8628–8632
    OpenUrlAbstract/FREE Full Text
    1. Ledig, M. M.,
    2. Haj, F.,
    3. Bixby, J. L.,
    4. Stoker, A. W. and
    5. Mueller, B. K.
    (1999). The receptor tyrosine phosphatase CRYPalpha promotes intraretinal axon growth. J. Cell Biol 147, 375–388
    OpenUrlAbstract/FREE Full Text
    1. Leitenberg, D.,
    2. Novak, T. J.,
    3. Farber, D.,
    4. Smith, B. R. and
    5. Bottomly, K.
    (1996). The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J. Exp. Med 183, 249–259
    OpenUrlAbstract/FREE Full Text
    1. Liu, F.,
    2. Sells, M. A. and
    3. Chernoff, J.
    (1998). Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr. Biol 8, 173–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Lorenz, U.,
    2. Ravichandran, K. S.,
    3. Burakoff, S. J. and
    4. Neel, B. G.
    (1996). Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc. Nat. Acad. Sci. USA 93, 9624–9629
    OpenUrlAbstract/FREE Full Text
    1. Lowell, C. A. and
    2. Soriano, P.
    (1996). Knockouts of Src-family kinases: Stiff bones, wimpy T cells, and bad memories. Genes Dev 10, 1845–1857
    OpenUrlFREE Full Text
    1. Maeda, N. and
    2. Noda, M.
    (1998). Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J. Cell Biol 142, 203–216
    OpenUrlAbstract/FREE Full Text
    1. Maeda, N.,
    2. Ichihara-Tanaka, K.,
    3. Kimura, T.,
    4. Kadomatsu, K.,
    5. Muramatsu, T. and
    6. Noda, M.
    (1999). A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J. Biol. Chem 274, 12474–12479
    OpenUrlAbstract/FREE Full Text
    1. Majeti, R.,
    2. Bilwes, A. M.,
    3. Noel, J. P.,
    4. Hunter, T. and
    5. Weiss, A.
    (1998). Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88–91
    OpenUrlAbstract/FREE Full Text
    1. Manes, S.,
    2. Mira, E.,
    3. Gomez-Mouton, C.,
    4. Zhao, Z. J.,
    5. Lacalle, R. A. and
    6. Martinez, A. C.
    (1999). Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cell Biol 19, 3125–3135
    OpenUrlAbstract/FREE Full Text
    1. Matsuda, A.,
    2. Motoya, S.,
    3. Kimura, S.,
    4. McInnis, R.,
    5. Maizel, A. L. and
    6. Takeda, A.
    (1998). Disruption of lymphocyte function and signaling in CD45-associated protein-null mice. J. Exp. Med 187, 1863–1870
    OpenUrlAbstract/FREE Full Text
    1. Mee, P. J.,
    2. Turner, M.,
    3. Basson, M. A.,
    4. Costello, P. S.,
    5. Zamoyska, R. and
    6. Tybulewicz, V. L.
    (1999). Greatly reduced efficiency of both positive and negative selection of thymocytes in CD45 tyrosine phosphatase-deficient mice. Eur. J. Immunol 29, 2923–2933
    OpenUrlCrossRefPubMedWeb of Science
    1. Meng, K.,
    2. Rodriguez-Pena, A.,
    3. Dimitrov, T.,
    4. Chen, W.,
    5. Yamin, M.,
    6. Noda, M. and
    7. Deuel, T. F.
    (2000). Pleiotrophin signals increased tyrosine phosphorylation of beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc. Nat. Acad. Sci. USA 97, 2603–2608
    OpenUrlAbstract/FREE Full Text
    1. Moller, N. P. H.,
    2. Moller, K. B.,
    3. Lammers, R.,
    4. Kharitonenkov, A.,
    5. Sures, I. and
    6. Ullrich, A.
    (1994). Src kinase associates with a member of a distinct subfamily of protein-tyrosine phosphatases containing an ezrin-like domain. Proc. Nat. Acad. Sci. USA 91, 7477–7481
    OpenUrlAbstract/FREE Full Text
    1. Moller, N. P.,
    2. Moller, K. B.,
    3. Lammers, R.,
    4. Kharitonenkov, A.,
    5. Hoppe, E.,
    6. Wiberg, F. C.,
    7. Sures, I. and
    8. Ullrich, A.
    (1995). Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatases alpha and epsilon. J. Biol. Chem 270, 23126–23131
    OpenUrlAbstract/FREE Full Text
    1. Monks, C. R.,
    2. Freiberg, B. A.,
    3. Kupfer, H.,
    4. Sciaky, N. and
    5. Kupfer, A.
    (1998). Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller, T.,
    2. Choidas, A.,
    3. Reichmann, E. and
    4. Ullrich, A.
    (1999). Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J. Biol. Chem 274, 10173–10183
    OpenUrlAbstract/FREE Full Text
    1. Mustelin, T.,
    2. Brockdorff, J.,
    3. Rudbeck, L.,
    4. Gjorloff-Wingren, A.,
    5. Han, S.,
    6. Wang, X.,
    7. Tailor, P. and
    8. Saxena, M.
    (1999). The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Cell Signal 11, 637–650
    OpenUrlCrossRefPubMed
    1. Nam, H. J.,
    2. Poy, F.,
    3. Krueger, N. X.,
    4. Saito, H. and
    5. Frederick, C. A.
    (1999). Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97, 449–457
    OpenUrlCrossRefPubMedWeb of Science
    1. Neel, B. G.
    (1997). Role of phosphatases in lymphocyte activation. Curr. Opin. Immunol 9, 405–420
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Grady, P.,
    2. Thai, T. C. and
    3. Saito, H.
    (1998). The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J. Cell Biol 141, 1675–1684
    OpenUrlAbstract/FREE Full Text
    1. Oh, E.-S.,
    2. Gu, H.,
    3. Saxton, T. M.,
    4. Timms, J. F.,
    5. Hausdorff, S.,
    6. Frevert, E. U.,
    7. Kahn, B. B.,
    8. Pawson, T.,
    9. Neel, B. G. and
    10. Thomas, S. M.
    (1999). Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Mol. Cell. Biol 19, 3205–3215
    OpenUrlAbstract/FREE Full Text
    1. Ono, K.,
    2. Suga, H.,
    3. Iwabe, N.,
    4. Kuma, K. and
    5. Miyata, T.
    (1999). Multiple protein tyrosine phosphatases in sponges and explosive gene duplication in the early evolution of animals before the parazoan-eumetazoan split. J. Mol. Evol 48, 654–662
    OpenUrlCrossRefPubMedWeb of Science
    1. Ostergaard, H. L. and
    2. Trowbridge, I. S.
    (1991). Negative regulation of CD45 protein tyrosine phosphatase activity by ionomycin in T cells. Science 253, 1423–1425
    OpenUrlAbstract/FREE Full Text
    1. Pawson, T. and
    2. Scott, J. D.
    (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080
    OpenUrlAbstract/FREE Full Text
    1. Peles, E.,
    2. Schlessinger, J. and
    3. Grumet, M.
    (1998). Multi-ligand interactions with receptor-like protein tyrosine phosphatase beta: implications for intercellular signaling. Trends Biochem. Sci 23, 121–124
    OpenUrlCrossRefPubMedWeb of Science
    1. Persson, C.,
    2. Carballeira, N.,
    3. Wolf-Watz, H. and
    4. Fallman, M.
    (1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J 16, 2307–2318
    OpenUrlAbstract
    1. Pingel, S.,
    2. Baker, M.,
    3. Turner, M.,
    4. Holmes, N. and
    5. Alexander, D. R.
    (1999). The CD45 tyrosine phosphatase regulates CD3-induced signal transduction and T cell development in recombinase-deficient mice: restoration of pre-TCR function by active p56(lck). Eur. J. Immunol 29, 2376–2384
    OpenUrlCrossRefPubMedWeb of Science
    1. Ponniah, S.,
    2. Wang, D. Z.,
    3. Lim, K. L. and
    4. Pallen, C. J.
    (1999). Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases src and Fyn. Curr. Biol 9, 535–538
    OpenUrlCrossRefPubMedWeb of Science
    1. Qi, J. H.,
    2. Ito, N. and
    3. Claesson-Welsh, L.
    (1999). Tyrosine phosphatase SHP-2 is involved in regulation of platelet-derived growth factor-induced migration. J. Biol. Chem 274, 14455–14463
    OpenUrlAbstract/FREE Full Text
    1. Roach, T.,
    2. Slater, S.,
    3. Koval, M.,
    4. White, L.,
    5. McFarland, E. C.,
    6. Okumura, M.,
    7. Thomas, M. and
    8. Brown, E.
    (1997). CD45 regulates Src family member kinase activity associated with macrophage integrin-mediated adhesion. Curr. Biol 7, 408–417
    OpenUrlCrossRefPubMedWeb of Science
    1. Roach, T. I.,
    2. Slater, S. E.,
    3. White, L. S.,
    4. Zhang, X.,
    5. Majerus, P. W.,
    6. Brown, E. J. and
    7. Thomas, M. L.
    (1998). The protein tyrosine phosphatase SHP-1 regulates integrin-mediated adhesion of macrophages. Curr. Biol 8, 1035–1038
    OpenUrlCrossRefPubMed
    1. Rodgers, W. and
    2. Rose, J. K.
    (1996). Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J. Cell Biol 135, 1515–1523
    OpenUrlAbstract/FREE Full Text
    1. Sakurai, T.,
    2. Lustig, M.,
    3. Nativ, M.,
    4. Hemperly, J. J.,
    5. Schlessinger, J.,
    6. Peles, E. and
    7. Grumet, M.
    (1997). Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J. Cell Biol 136, 907–918
    OpenUrlAbstract/FREE Full Text
    1. Sap, J.,
    2. Jiang, Y.-P.,
    3. Friedlander, D.,
    4. Grumet, M. and
    5. Schlessinger, J.
    (1994). Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol. Cell. Biol 14, 1–9
    OpenUrlAbstract/FREE Full Text
    1. Schmidt, A.,
    2. Rutledge, S. J.,
    3. Endo, N.,
    4. Opas, E. E.,
    5. Tanaka, H.,
    6. Wesolowski, G.,
    7. Leu, C. T.,
    8. Huang, Z.,
    9. Ramachandaran, C.,
    10. Rodan, S. B.,
    11. et al.
    (1996). Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc. Nat. Acad. Sci. USA 93, 3068–3073
    OpenUrlAbstract/FREE Full Text
    1. Seavitt, J. R.,
    2. White, L. S.,
    3. Murphy, K. M.,
    4. Loh, D. Y.,
    5. Perlmutter, R. M. and
    6. Thomas, M. L.
    (1999). Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol. Cell Biol 19, 4200–4208
    OpenUrlAbstract/FREE Full Text
    1. Serra-Pages, C.,
    2. Kedersha, N. L.,
    3. Fazikas, L.,
    4. Medley, Q.,
    5. Debant, A. and
    6. Streuli, M.
    (1995). The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J 14, 2827–2838
    OpenUrlPubMedWeb of Science
    1. Shen, Y.,
    2. Lyons, P.,
    3. Cooley, M.,
    4. Davidson, D.,
    5. Veillette, A.,
    6. Salgia, R.,
    7. Griffin, J. D. and
    8. Schaller, M. D.
    (2000). The noncatalytic domain of protein-tyrosine phosphatase-PEST targets paxillin for dephosphorylation in vivo. J. Biol. Chem 275, 1405–1413
    OpenUrlAbstract/FREE Full Text
    1. Shenoi, H.,
    2. Seavitt, J.,
    3. Zheleznyak, A.,
    4. Thomas, M. L. and
    5. Brown, E. J.
    (1999). Regulation of integrin-mediated T cell adhesion by the transmembrane protein tyrosine phosphatase CD45. J. Immunol 162, 7120–7127
    OpenUrlAbstract/FREE Full Text
    1. Shi, L.,
    2. Potts, M. and
    3. Kennelly, P. J.
    (1998). The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol. Rev. 22, 229–253
    OpenUrlAbstract/FREE Full Text
    1. Somani, A. K.,
    2. Bignon, J. S.,
    3. Mills, G. B.,
    4. Siminovitch, K. A. and
    5. Branch, D. R.
    (1997). Src kinase activity is regulated by the SHP-1 protein-tyrosine phosphatase. J. Biol. Chem 272, 21113–21119
    OpenUrlAbstract/FREE Full Text
    1. Stoker, A. and
    2. Dutta, R.
    (1998). Protein tyrosine phosphatases and neural development. BioEssays 20, 463–472
    OpenUrlCrossRefPubMedWeb of Science
    1. Stone, J. D.,
    2. Conroy, L. A.,
    3. Byth, K. F.,
    4. Hederer, R. A.,
    5. Howlett, S.,
    6. Takemoto, Y.,
    7. Holmes, N. and
    8. Alexander, D. R.
    (1997). Aberrant TCR-mediated signaling in CD45-null thymocytes involves dysfunctional regulation of Lck, Fyn, TCR-zeta, and ZAP-70. J. Immunol 158, 5773–5782
    OpenUrlAbstract
    1. Su, J.,
    2. Batzer, A. and
    3. Sap, J.
    (1994). Receptor tyrosine phosphatase R-PTP-alpha is tyrosine phosphorylated and associated with the adaptor protein Grb2. J. Biol. Chem 269, 18731–18734
    OpenUrlAbstract/FREE Full Text
    1. Su, J.,
    2. Yang, L.-T. and
    3. Sap, J.
    (1996). Association between receptor protein-tyrosine phosphatase RPTPand the Grb2 adaptor: dual Src homology (SH)2. SH3 domain requirement and functional consequences. J. Biol. Chem 271, 28026–28096
    OpenUrl
    1. Su, J.,
    2. Muranjan, M. and
    3. Sap, J.
    (1999). Receptor protein tyrosine phosphatase(RPTP) activates Src family kinases, and controls integrin-mediated responses in fibroblasts. Curr. Biol 9, 505–511
    OpenUrlCrossRefPubMedWeb of Science
    1. Tamura, M.,
    2. Gu, J.,
    3. Tran, H. and
    4. Yamada, K. M.
    (1999). PTEN gene and integrin signaling in cancer. J. Nat. Cancer Inst 91, 1820–1828
    OpenUrlAbstract/FREE Full Text
    1. Thomas, M. L.
    (1999). The regulation of antigen-receptor signaling by protein tyrosine phosphatases: a hole in the story. Curr. Opin. Immunol 11, 270–276
    OpenUrlCrossRefPubMed
    1. Thomas, M. L. and
    2. Brown, E. J.
    (1999). Positive and negative regulation of Src-family membrane kinases by CD45. Immunol. Today 20, 406–411
    OpenUrlCrossRefPubMedWeb of Science
    1. Toledano-Katchalski, H. and
    2. Elson, A.
    (1999). The transmembranal and cytoplasmic forms of protein tyrosine phosphatase epsilon physically associate with the adaptor molecule Grb2. Oncogene 18, 5024–5031
    OpenUrlCrossRefPubMedWeb of Science
    1. Tracy, S.,
    2. Van der Geer, P. and
    3. Hunter, T.
    (1995). The receptor-like protein-tyrosine phosphatase, RPTPalpha, is phosphorylated by protein kinase C on two serines close to the inner face of the plasma membrane. J. Biol. Chem 270, 10587–10594
    OpenUrlAbstract/FREE Full Text
    1. Trowbridge, I. S. and
    2. Thomas, M. L.
    (1994). CD45: An emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol 12, 85–116
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsai, W.,
    2. Morielli, A. D.,
    3. Cachero, T. G. and
    4. Peralta, E. G.
    (1999). Receptor protein tyrosine phosphatase alpha participates in the m1 muscarinic acetylcholine receptor-dependent regulation of Kv1. 2 channel activity. EMBO J 18, 109–118
    OpenUrlAbstract/FREE Full Text
    1. Tsuda, M.,
    2. Matozaki, T.,
    3. Fukunaga, K.,
    4. Fujioka, Y.,
    5. Imamoto, A.,
    6. Noguchi, T.,
    7. Takada, T.,
    8. Yamao, T.,
    9. Takeda, H.,
    10. Ochi, F.,
    11. et al.
    (1998). Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J. Biol. Chem 273, 13223–13229
    OpenUrlAbstract/FREE Full Text
    1. Van Vactor, D.,
    2. O'Reilly, A. M. and
    3. Neel, B. G.
    (1998). Genetic analysis of protein tyrosine phosphatases. Curr. Opin. Genet. Dev 8, 112–126
    OpenUrlCrossRefPubMedWeb of Science
    1. Volarevic, S.,
    2. Niklinska, B. B.,
    3. Burns, C. M.,
    4. Yamada, H.,
    5. June, C. H.,
    6. Dumont, F. J. and
    7. Ashwell, J. D.
    (1992). The CD45 tyrosine phosphatase regulates phosphotyrosine homeostasis and its loss reveals a novel pattern of late T cell receptor-induced Ca2+ oscillations. J. Exp. Med 176, 835–844
    OpenUrlAbstract/FREE Full Text
    1. Wallace, M. J.,
    2. Fladd, C.,
    3. Batt, J. and
    4. Rotin, D.
    (1998). The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol. Cell Biol 18, 2608–2616
    OpenUrlAbstract/FREE Full Text
    1. Walter, A. O.,
    2. Peng, Z. Y. and
    3. Cartwright, C. A.
    (1999). The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Oncogene 18, 1911–1920
    OpenUrlCrossRefPubMedWeb of Science
    1. Weiss, A. and
    2. Schlessinger, J.
    (1998). Switching signals on or off by receptor dimerization. Cell 94, 277–280
    OpenUrlCrossRefPubMedWeb of Science
    1. Yu, D.-H.,
    2. Qu, C.-K.,
    3. Henegariu, O.,
    4. Lu, X. and
    5. Feng, G.-S.
    ) (1998). Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem 273, 21125–21131
    OpenUrlAbstract/FREE Full Text
    1. Zeng, L.,
    2. D'Alessandri, L.,
    3. Kalousek, M. B.,
    4. Vaughan, L. and
    5. Pallen, C. J.
    (1999). Protein tyrosine phosphatase alpha (PTPalpha) and contactin form a novel neuronal receptor complex linked to the intracellular tyrosine kinase fyn. J. Cell Biol 147, 707–714
    OpenUrlAbstract/FREE Full Text
    1. Zheng, X. M.,
    2. Wang, Y. and
    3. Pallen, C. J.
    (1992). Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359, 336–339
    OpenUrlCrossRefPubMedWeb of Science
    1. Zheng, X. M.,
    2. Resnick, R. J. and
    3. Shalloway, D.
    (2000). A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J 19, 964–978
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?
A. Petrone, J. Sap
Journal of Cell Science 2000 113: 2345-2354;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?
A. Petrone, J. Sap
Journal of Cell Science 2000 113: 2345-2354;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • The cytoplasmic fate of mRNA
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992