Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
RecQ-like helicases: the DNA replication checkpoint connection
C. Frei, S.M. Gasser
Journal of Cell Science 2000 113: 2641-2646;
C. Frei
Swiss Institute for Experimental Cancer Research (ISREC) Ch. des Boveresses 155, CH-1066 Epalinges/Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.M. Gasser
Swiss Institute for Experimental Cancer Research (ISREC) Ch. des Boveresses 155, CH-1066 Epalinges/Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The eukaryotic homologues of the Escherichia coli RecQ DNA helicase play conserved roles in the maintenance of genome stability. Results obtained in yeast and mammalian systems are beginning to form a coherent picture about what these helicases do to ensure normal cell division and why humans who lack these enzymes are cancer prone. Recent data suggest that the yeast enzyme Sgs1p, as well as two human homologues, which are encoded by the Bloom's and Werner's syndrome genes, function during DNA replication and possibly in a replication checkpoint specific to S phase.

  • © 2000 by Company of Biologists

REFERENCES

    1. Aparicio, O. M.,
    2. Weinstein, D. M. and
    3. Bell, S. P.
    (1997). Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69
    OpenUrlCrossRefPubMedWeb of Science
    1. Bell, D. W.,
    2. Varley, J. M.,
    3. Szydlo, T. E.,
    4. Kang, D. H.,
    5. Wahrer, D. C.,
    6. Shannon, K. E.,
    7. Lubratovich, M.,
    8. Verselis, S. J.,
    9. Isselbacher, K. J.,
    10. Fraumeni, J. F.,
    11. Birch, J. M.,
    12. Li, F. P.,
    13. Garber, J. E. and
    14. Haber, D. A.
    (1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531
    OpenUrlAbstract/FREE Full Text
    1. Blander, G.,
    2. Kipnis, J.,
    3. Leal, J. F.,
    4. Yu, C. E.,
    5. Schellenberg, G. D. and
    6. Oren, M.
    (1999). Physical and functional interaction between p53 and the Werner's syndrome protein. J. Biol. Chem 274, 29463–29469
    OpenUrlAbstract/FREE Full Text
    1. Brosh, R. M. Jr..,
    2. Orren, D. K.,
    3. Nehlin, J. O.,
    4. Ravn, P. H.,
    5. Kenny, M. K.,
    6. Machwe, A. and
    7. Bohr, V. A.
    (1999). Functional and physical interaction between WRN helicase and human replication protein A. J. Biol. Chem 274, 18341–18350
    OpenUrlAbstract/FREE Full Text
    1. Budd, M. E. and
    2. Campbell, J. L.
    (1997). A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol. Cell. Biol 17, 2136–2142
    OpenUrlAbstract/FREE Full Text
    1. Chakraverty, R. K. and
    2. Hickson, I. D.
    (1999). Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. BioEssays 21, 286–294
    OpenUrlCrossRefPubMedWeb of Science
    1. Chaturvedi, P.,
    2. Eng, W. K.,
    3. Zhu, Y.,
    4. Mattern, M. R.,
    5. Mishra, R.,
    6. Hurle, M. R.,
    7. Zhang, X.,
    8. Annan, R. S.,
    9. Lu, Q.,
    10. Faucette, L. F.,
    11. Scott, G. F.,
    12. Li, X.,
    13. Carr, S. A.,
    14. Johnson, R. K.,
    15. Winkler, J. D. and
    16. Zhou, B. B.
    (1999). Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047–4054
    OpenUrlCrossRefPubMedWeb of Science
    1. Chester, N.,
    2. Kuo, F.,
    3. Kozak, C.,
    4. CD, O. H. and
    5. Leder, P.
    (1998). Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev 12, 3382–3393
    OpenUrlAbstract/FREE Full Text
    1. Cho, R. J.,
    2. Campbell, M. J.,
    3. Winzeler, E. A.,
    4. Steinmetz, L.,
    5. Conway, A.,
    6. Wodicka, L.,
    7. Wolfsberg, T. G.,
    8. Gabrielian, A. E.,
    9. Landsman, D.,
    10. Lockhart, D. J. and
    11. Davis, R. W.
    (1998). A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73
    OpenUrlCrossRefPubMedWeb of Science
    1. Cox, M. M.,
    2. Goodman, M. F.,
    3. Kreuzer, K. N.,
    4. Sherratt, D. J.,
    5. Sandler, S. J. and
    6. Marians, K. J.
    (2000). The importance of repairing stalled replication forks. Nature 404, 37–41
    OpenUrlCrossRefPubMedWeb of Science
    1. Dasika, G. K.,
    2. Lin, S. C.,
    3. Zhao, S.,
    4. Sung, P.,
    5. Tomkinson, A. and
    6. Lee, E. Y.
    (1999). DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18, 7883–7899
    OpenUrlCrossRefPubMedWeb of Science
    1. Davey, S.,
    2. Han, C. S.,
    3. Ramer, S. A.,
    4. Klassen, J. C.,
    5. Jacobson, A.,
    6. Eisenberger, A.,
    7. Hopkins, K. M.,
    8. Lieberman, H. B. and
    9. Freyer, G. A.
    (1998). Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol. Cell. Biol 18, 2721–2728
    OpenUrlAbstract/FREE Full Text
    1. Donaldson, A. D. and
    2. Blow, J. J.
    (1999). The regulation of replication origin activation. Curr. Opin. Genet. Dev 9, 62–68
    OpenUrlCrossRefPubMedWeb of Science
    1. Ellis, N. A.,
    2. Groden, J.,
    3. Ye, T. Z.,
    4. Straughen, J.,
    5. Lennon, D. J.,
    6. Ciocci, S.,
    7. Proytcheva, M. and
    8. German, J.
    (1995). The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666
    OpenUrlCrossRefPubMedWeb of Science
    1. Epstein, C. J.,
    2. Martin, G. M.,
    3. Schultz, A. L. and
    4. Motulsky, A. G.
    (1966). Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177–221
    OpenUrlPubMedWeb of Science
    1. Frei, C. and
    2. Gasser, S. M.
    (2000). The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev 14, 81–96
    OpenUrlAbstract/FREE Full Text
    1. Gangloff, S.,
    2. McDonald, J. P.,
    3. Bendixen, C.,
    4. Arthur, L. and
    5. Rothstein, R.
    (1994). The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol 14, 8391–8398
    OpenUrlAbstract/FREE Full Text
    1. German, J.
    (1993). Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine 72, 393–406
    OpenUrlPubMedWeb of Science
    1. Hand, R. and
    2. German, J.
    (1975). A retarded rate of DNA chain growth in Bloom's syndrome. Proc. Nat. Acad. Sci. USA 72, 758–762
    OpenUrlAbstract/FREE Full Text
    1. Harmon, F. G. and
    2. Kowalczykowski, S. C.
    (1998). RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev 12, 1134–1144
    OpenUrlAbstract/FREE Full Text
    1. Hirao, A.,
    2. Kong, Y. Y.,
    3. Matsuoka, S.,
    4. Wakeham, A.,
    5. Ruland, J.,
    6. Yoshida, H.,
    7. Liu, D.,
    8. Elledge, S. J. and
    9. Mak, T. W.
    (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827
    OpenUrlAbstract/FREE Full Text
    1. Houwing, R. H.,
    2. Oosterkamp, R. F.,
    3. Berghuis, M.,
    4. Beemer, F. A. and
    5. Van Vloten, W. A.
    (1991). Rothmund-Thomson syndrome. Br. J. Dermatol 125, 279–280
    OpenUrlCrossRefPubMed
    1. Imbert, A.,
    2. Chaffanet, M.,
    3. Essioux, L.,
    4. Noguchi, T.,
    5. Adelaide, J.,
    6. Kerangueven, F.,
    7. Le Paslier, D.,
    8. Bonaiti-Pellie, C.,
    9. Sobol, H.,
    10. Birnbaum, D. and
    11. Pebusque, M. J.
    (1996). Integrated map of the chromosome 8p12-p21 region, a region involved in human cancers and Werner syndrome. Genomics 32, 29–38
    OpenUrlCrossRefPubMed
    1. Kamath-Loeb, A. S.,
    2. Johansson, E.,
    3. Burgers, P. M. J. and
    4. Loeb, L. A.
    (2000). Functional interaction between the Werner Syndrome protein and DNA polymerase. Proc. Nat. Acad. Sci. USA 97, 4603–4608
    OpenUrlAbstract/FREE Full Text
    1. Kim, S. T.,
    2. Lim, D. S.,
    3. Canman, C. E. and
    4. Kastan, M. B.
    (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem 274, 37538–37543
    OpenUrlAbstract/FREE Full Text
    1. Kitao, S.,
    2. Shimamoto, A.,
    3. Goto, M.,
    4. Miller, R. W.,
    5. Smithson, W. A.,
    6. Lindor, N. M. and
    7. Furuichi, Y.
    (1999). Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet 22, 82–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Kitao, S.,
    2. Lindor, N. M.,
    3. Shiratori, M.,
    4. Furuichi, Y. and
    5. Shimamoto, A.
    (1999). Rothmund-Thomson syndrome responsible gene, RECQL4: genomic structure and products. Genomics 61, 268–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Larner, J. M.,
    2. Lee, H. and
    3. Hamlin, J. L.
    (1994). Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol. Cell. Biol 14, 1901–1908
    OpenUrlAbstract/FREE Full Text
    1. Lavin, M. F. and
    2. Khanna, K. K.
    (1999). ATM: the protein encoded by the gene mutated in the radiosensitive syndrome ataxia-telangiectasia. Int. J. Rad. Biol 75, 1201–1214
    OpenUrlCrossRefPubMedWeb of Science
    1. Lebel, M. and
    2. Leder, P.
    (1998). A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Nat. Acad. Sci. USA 95, 13097–13102
    OpenUrlAbstract/FREE Full Text
    1. Lebel, M.,
    2. Spillare, E. A.,
    3. Harris, C. C. and
    4. Leder, P.
    (1999). The Werner syndrome gene product Co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J. Biol. Chem 274, 37795–37799
    OpenUrlAbstract/FREE Full Text
    1. Lee, S. K.,
    2. Johnson, R. E.,
    3. Yu, S. L.,
    4. Prakash, L. and
    5. Prakash, S.
    (1999). Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339–2342
    OpenUrlAbstract/FREE Full Text
    1. Lonn, U.,
    2. Lonn, S.,
    3. Nylen, U.,
    4. Winblad, G. and
    5. German, J.
    (1990). An abnormal profile of DNA replication intermediates in Bloom's syndrome. Cancer Res 50, 3141–3145
    OpenUrlAbstract/FREE Full Text
    1. Lu, J. A.,
    2. Mullen, J. R.,
    3. Brill, S. J.,
    4. Kleff, S.,
    5. Romeo, A. M. and
    6. Sternglanz, R.
    (1996). Human homologues of yeast helicase. Nature 383, 678–679
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsuoka, S.,
    2. Huang, M. and
    3. Elledge, S. J.
    (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897
    OpenUrlAbstract/FREE Full Text
    1. Morozov, V.,
    2. Mushegian, A. R.,
    3. Koonin, E. V. and
    4. Bork, P.
    (1997). A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases. Trends Biochem. Sci 22, 417–418
    OpenUrlCrossRefPubMedWeb of Science
    1. Murray, J. M.,
    2. Lindsay, H. D.,
    3. Munday, C. A. and
    4. Carr, A. M.
    (1997). Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol 17, 6868–6875
    OpenUrlAbstract/FREE Full Text
    1. Navas, T. A.,
    2. Zhou, Z. and
    3. Elledge, S. J.
    (1995). DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80, 29–39
    OpenUrlCrossRefPubMedWeb of Science
    1. Neff, N. F.,
    2. Ellis, N. A.,
    3. Ye, T. Z.,
    4. Noonan, J.,
    5. Huang, K.,
    6. Sanz, M. and
    7. Proytcheva, M.
    (1999). The DNA helicase activity of BLM is necessary for the correction of the genomic instability of bloom syndrome cells. Mol. Biol. Cell 10, 665–676
    OpenUrlAbstract/FREE Full Text
    1. Painter, R. B. and
    2. Young, B. R.
    (1980). Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Nat. Acad. Sci. USA 77, 7315–7317
    OpenUrlAbstract/FREE Full Text
    1. Paulovich, A. G. and
    2. Hartwell, L. H.
    (1995). A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847
    OpenUrlCrossRefPubMedWeb of Science
    1. Plug, A. W.,
    2. Peters, A. H.,
    3. Xu, Y.,
    4. Keegan, K. S.,
    5. Hoekstra, M. F.,
    6. Baltimore, D.,
    7. de Boer, P. and
    8. Ashley, T.
    (1997). ATM and RPA in meiotic chromosome synapsis and recombination. Nature Genet 17, 457–461
    OpenUrlCrossRefPubMedWeb of Science
    1. Plug, A. W.,
    2. Peters, A. H.,
    3. Keegan, K. S.,
    4. Hoekstra, M. F.,
    5. de Boer, P. and
    6. Ashley, T.
    (1998). Changes in protein composition of meiotic nodules during mammalian meiosis. J. Cell Sci 111, 413–423
    OpenUrlAbstract/FREE Full Text
    1. Poot, M.,
    2. Hoehn, H.,
    3. Runger, T. M. and
    4. Martin, G. M.
    (1992). Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp. Cell Res 202, 267–273
    OpenUrlCrossRefPubMedWeb of Science
    1. Rothstein, R.,
    2. Michel, B. and
    3. Gangloff, S.
    (2000). Replication fork pausing and recombination or ‘gimme a break’. Genes Dev 14, 1–10
    OpenUrlFREE Full Text
    1. Sanchez, Y.,
    2. Bachant, J.,
    3. Wang, H.,
    4. Hu, F.,
    5. Liu, D.,
    6. Tetzlaff, M. and
    7. Elledge, S. J.
    (1999). Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166–1171
    OpenUrlAbstract/FREE Full Text
    1. Shiratori, M.,
    2. Sakamoto, S.,
    3. Suzuki, N.,
    4. Tokutake, Y.,
    5. Kawabe, Y.,
    6. Enomoto, T.,
    7. Sugimoto, M.,
    8. Goto, M.,
    9. Matsumoto, T. and
    10. Furuichi, Y.
    (1999). Detection by epitope-defined monoclonal antibodies of Werner DNA helicases in the nucleoplasm and their upregulation by cell transformation and immortalization. J. Cell Biol 144, 1–9
    OpenUrlAbstract/FREE Full Text
    1. Sinclair, D. A.,
    2. Mills, K. and
    3. Guarente, L.
    (1997). Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313–1316
    OpenUrlAbstract/FREE Full Text
    1. Sinclair, D.,
    2. Mills, K. and
    3. Guarente, L.
    (1998). Aging in Saccharomyces cerevisiae. Annu. Rev. Microbiol 52, 533–560
    OpenUrlCrossRefPubMedWeb of Science
    1. Spillare, E. A.,
    2. Robles, A. I.,
    3. Wang, X. W.,
    4. Shen, J. C.,
    5. Yu, C. E.,
    6. Schellenberg, G. D. and
    7. Harris, C. C.
    (1999). p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 13, 1355–1360
    OpenUrlAbstract/FREE Full Text
    1. Stewart, E.,
    2. Chapman, C. R.,
    3. Al-Khodairy, F.,
    4. Carr, A. M. and
    5. Enoch, T.
    (1997). rqh1+, a fission yeast gene related to the Bloom's and Werner'ssyndrome genes, is required for reversible S phase arrest. EMBO J 16, 2682–2692
    OpenUrlAbstract
    1. Tanaka, T.,
    2. Knapp, D. and
    3. Nasmyth, K.
    (1997). Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90, 649–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Walpita, D.,
    2. Plug, A. W.,
    3. Neff, N. F.,
    4. German, J. and
    5. Ashley, T.
    (1999). Bloom's syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc. Nat. Acad. Sci. USA 96, 5622–5627
    OpenUrlAbstract/FREE Full Text
    1. Wang, Y.,
    2. Cortez, D.,
    3. Yazdi, P.,
    4. Neff, N.,
    5. Elledge, S. J. and
    6. Qin, J.
    (2000). BASC, a super complex of BRCA-1 associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14, 927–936
    OpenUrlAbstract/FREE Full Text
    1. Watt, P. M.,
    2. Louis, E. J.,
    3. Borts, R. H. and
    4. Hickson, I. D.
    (1995). SGS1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81, 253–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Watt, P. M.,
    2. Hickson, I. D.,
    3. Borts, R. H. and
    4. Louis, E. J.
    (1996). SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945
    OpenUrlAbstract/FREE Full Text
    1. Weinert, T.
    (1998). DNA damage checkpoints update: getting molecular. Curr. Opin. Genet. Dev 8, 185–193
    OpenUrlCrossRefPubMedWeb of Science
    1. Wu, L.,
    2. Karow, J. K. and
    3. Hickson, I. D.
    (1999). Genetic recombination: Helicases and topoisomerases link up. Curr. Biol 9, 518–520
    OpenUrlCrossRef
    1. Wu, L.,
    2. Davies, S. L.,
    3. North, P. S.,
    4. Goulaouic, H.,
    5. Riou, J. F.,
    6. Turley, H.,
    7. Gatter, K. C. and
    8. Hickson, I. D.
    (2000). The Bloom's syndrome gene product interacts with topoisomerase III. J. Biol. Chem 275, 9636–9644
    OpenUrlAbstract/FREE Full Text
    1. Yamagata, K.,
    2. Kato, J.,
    3. Shimamoto, A.,
    4. Goto, M.,
    5. Furuichi, Y. and
    6. Ikeda, H.
    (1998). Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Nat. Acad. Sci. USA 95, 8733–8738
    OpenUrlAbstract/FREE Full Text
    1. Yamabe, Y.,
    2. Shimamoto, A.,
    3. Goto, M.,
    4. Yokota, J.,
    5. Sugawara, M. and
    6. Furuichi, Y.
    (1998). Sp1-mediated transcription of the Werner helicase gene is modulated by Rb and p53. Mol. Cell. Biol 18, 6191–6200
    OpenUrlAbstract/FREE Full Text
    1. Yu, C. E.,
    2. Oshima, J.,
    3. Fu, Y. H.,
    4. Wijsman, E. M.,
    5. Hisama, F.,
    6. Alisch, R.,
    7. Matthews, S.,
    8. Nakura, J.,
    9. Miki, T.,
    10. Ouais, S.,
    11. Martin, G. M.,
    12. Mulligan, J. and
    13. Schellenberg, G. D.
    (1996). Positional cloning of the Werner's syndrome gene. Science 272, 258–262
    OpenUrlAbstract
    1. Yu, Z.,
    2. Komamura, Y. and
    3. Ishimi, Y.
    (1999). Biochemical function analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol. Cell. Biol 19, 8003–8015
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
RecQ-like helicases: the DNA replication checkpoint connection
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
RecQ-like helicases: the DNA replication checkpoint connection
C. Frei, S.M. Gasser
Journal of Cell Science 2000 113: 2641-2646;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
RecQ-like helicases: the DNA replication checkpoint connection
C. Frei, S.M. Gasser
Journal of Cell Science 2000 113: 2641-2646;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992