Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins
T. Dechat, B. Korbei, O.A. Vaughan, S. Vlcek, C.J. Hutchison, R. Foisner
Journal of Cell Science 2000 113: 3473-3484;
T. Dechat
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Korbei
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O.A. Vaughan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Vlcek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.J. Hutchison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Foisner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The nucleoskeletal protein lamina-associated polypeptide 2(α) (LAP2*) contains a large, unique C terminus and differs significantly from its alternatively spliced, mostly membrane-integrated isoforms, such as LAP2beta. Unlike lamin B-binding LAP2beta, LAP2alpha was found by confocal immunofluorescence microscopy to colocalize preferentially with A-type lamins in the newly formed nuclei assembled after mitosis. While only a subfraction of lamins A and C (lamin A/C) was associated with the predominantly nuclear LAP2alpha in telophase, the majority of lamin A/C colocalized with LAP2alpha in G(1)-phase nuclei. Furthermore, selective disruption of A-type lamin structures by overexpression of lamin mutants in HeLa cells caused a redistribution of LAP2alpha. Coimmunoprecipitation experiments revealed that a fraction of lamin A/C formed a stable, SDS-resistant complex with LAP2alpha in interphase cells and in postmetaphase cell extracts. Blot overlay binding studies revealed a direct binding of LAP2alpha to exclusively A-type lamins and located the interaction domains to the C-terminal 78 amino acids of LAP2alpha and to residues 319–566 in lamin A/C, which include the C terminus of the rod and the entire tail common to lamin A/C. These findings suggest that LAP2alpha and A-type lamins cooperate in the organization of internal nuclear structures.

  • © 2000 by Company of Biologists

REFERENCES

    1. Ashery-Padan, R.,
    2. Weiss, A. M.,
    3. Feinstein, N. and
    4. Gruenbaum, Y.
    (1997). Distinct regions specify the targeting of otefin to the nucleoplasmic side of the nuclear envelope. J. Biol. Chem 272, 2493–2499
    OpenUrlCrossRefPubMed
    1. Baricheva, E. A.,
    2. Berrios, M.,
    3. Bogachev, S. S.,
    4. Borisevich, I. V.,
    5. Lapik, E. R.,
    6. Sharakhov, I. V.,
    7. Stuurman, N. and
    8. Fisher, P. A.
    (1996). DNA from Drosophila melanogaster beta-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ. Gene 171, 171–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Belmont, A. S.,
    2. Zhai, Y. and
    3. Thilenius, A.
    (1993). Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol 123, 1671–1685
    OpenUrlAbstract/FREE Full Text
    1. Berger, R.,
    2. Theodor, L.,
    3. Shoham, J.,
    4. Gokkel, E.,
    5. Brok-Simoni, F.,
    6. Avraham, K. B.,
    7. Copeland, N. G.,
    8. Jenkins, N. A.,
    9. Rechavi, G. and
    10. Simon, A. J.
    (1996). The characterization and localization of the mouse thymopoietin/lamina-associated polypeptide 2 gene and its alternatively spliced products. Genome Res 6, 361–370
    OpenUrlAbstract/FREE Full Text
    1. Bonne, G.,
    2. Di Barletta, M. R.,
    3. Varnous, S.,
    4. Becane, H. M.,
    5. Hammouda, E. H.,
    6. Merlini, L.,
    7. Muntoni, F.,
    8. Greenberg, C. R.,
    9. Gary, F.,
    10. Urtizberea, J. A. and
    11. et al
    . (1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy [In Process Citation]. Nat. Genet 21, 285–288
    OpenUrlCrossRefPubMedWeb of Science
    1. Bridger, J. M.,
    2. Kill, I. R.,
    3. O'Farrell, M. and
    4. Hutchison, C. J.
    (1993). Internal lamin structures within G1nuclei of human dermal fibroblasts. J. Cell Sci 104, 297–306
    OpenUrlAbstract/FREE Full Text
    1. Broers, J. L.,
    2. Machiels, B. M.,
    3. van Eys, G. J.,
    4. Kuijpers, H. J.,
    5. Manders, E. M.,
    6. van Driel, R. and
    7. Ramaekers, F. C.
    (1999). Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J. Cell Sci 112, 3463–3475
    OpenUrlAbstract/FREE Full Text
    1. Cao, H. and
    2. Hegele, R. A.
    (2000). Nuclear lamin A/C R482Q mutation in canadian kindreds with dunnigan-type familial partial lipodystrophy [In Process Citation]. Hum. Mol. Genet 9, 109–112
    OpenUrlAbstract/FREE Full Text
    1. Dechat, T.,
    2. Gotzmann, J.,
    3. Stockinger, A.,
    4. Harris, C. A.,
    5. Talle, M. A.,
    6. Siekierka, J. J. and
    7. Foisner, R.
    (1998). Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 17, 4887–4902
    OpenUrlAbstract/FREE Full Text
    1. Dechat, T.,
    2. Vlcek, S. and
    3. Foisner, R.
    (2000). Lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. J. Struct. Biol 129, 335–345
    OpenUrlCrossRefPubMedWeb of Science
    1. Dyer, J. A.,
    2. Kill, I. R.,
    3. Pugh, G.,
    4. Quinlan, R. A.,
    5. Lane, E. B. and
    6. Hutchison, C. J.
    (1997). Cell cycle changes in A-type lamin associations detected in human dermal fibroblasts using monoclonal antibodies. Chromosome Res 5, 383–394
    OpenUrlCrossRefPubMedWeb of Science
    1. Ellis, D. J.,
    2. Jenkins, H.,
    3. Whitfield, W. G. and
    4. Hutchison, C. J.
    (1997). GST-lamin fusion proteins act as dominant negative mutants in Xenopus egg extract and reveal the function of the lamina in DNA replication. J. Cell Sci 110, 2507–2518
    OpenUrlAbstract/FREE Full Text
    1. Fatkin, D.,
    2. MacRae, C.,
    3. Sasaki, T.,
    4. Wolff, M. R.,
    5. Porcu, M.,
    6. Frenneaux, M.,
    7. Atherton, J.,
    8. Vidaillet, H. J. Jr..,
    9. Spudich, S.,
    10. De Girolami, U. and
    11. et al
    . (1999). Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease [see comments]. N. Engl. J. Med 341, 1715–1724
    OpenUrlCrossRefPubMedWeb of Science
    1. Foisner, R.
    (1997). Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. BioEssays 19, 297–305
    OpenUrlCrossRefPubMedWeb of Science
    1. Foisner, R. and
    2. Gerace, L.
    (1993). Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73, 1267–1279
    OpenUrlCrossRefPubMedWeb of Science
    1. Foisner, R.,
    2. Leichtfried, F. E.,
    3. Herrmann, H.,
    4. Small, J. V.,
    5. Lawson, D. and
    6. Wiche, G.
    (1988). Cytoskeleton-associated plectin: in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J. Cell Biol 106, 723–733
    OpenUrlAbstract/FREE Full Text
    1. Fricker, M.,
    2. Hollinshead, M.,
    3. White, N. and
    4. Vaux, D.
    (1997). Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J. Cell Biol 136, 531–544
    OpenUrlAbstract/FREE Full Text
    1. Fuchs, E. and
    2. Weber, K.
    (1994). Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem 63, 345–382
    OpenUrlCrossRefPubMedWeb of Science
    1. Furukawa, K.,
    2. Fritze, C. E. and
    3. Gerace, L.
    (1998). The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but is distinct from its chromatin interaction domain. J. Biol. Chem 273, 4213–4219
    OpenUrlAbstract/FREE Full Text
    1. Furukawa, K. and
    2. Kondo, T.
    (1998). Identification of the lamina-associated-polypeptide-2-binding domain of B-type lamin. Eur. J. Biochem 251, 729–733
    OpenUrlPubMedWeb of Science
    1. Furukawa, K.,
    2. Pante, N.,
    3. Aebi, U. and
    4. Gerace, L.
    (1995). Cloning of a cDNA for lamina-associated polypeptide 2 (LAP2) and identification of regions that specify targeting to the nuclear envelope. EMBO J 14, 1626–1636
    OpenUrlPubMedWeb of Science
    1. Gant, T. M.,
    2. Harris, C. A. and
    3. Wilson, K. L.
    (1999). Roles of LAP2 proteins in nuclear assembly and DNA replication: Truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J. Cell Biol 144, 1083–1096
    OpenUrlAbstract/FREE Full Text
    1. Gant, T. M. and
    2. Wilson, K. L.
    (1997). Nuclear assembly. Annu. Rev. Cell Dev. Biol 13, 669–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Glass, C. A.,
    2. Glass, J. R.,
    3. Taniura, H.,
    4. Hasel, K. W.,
    5. Blevitt, J. M. and
    6. Gerace, L.
    (1993). The alpha-helical rod domain of human lamin A/C contains a chromatin binding site. EMBO J 12, 4413–4424
    OpenUrlPubMedWeb of Science
    1. Glass, J. R. and
    2. Gerace, L.
    (1990). Lamin A/C bind and assemble at the surface of mitotic chromosomes. J. Cell Biol 111, 1047–1057
    OpenUrlAbstract/FREE Full Text
    1. Goldberg, M.,
    2. Harel, A.,
    3. Brandeis, M.,
    4. Rechsteiner, T.,
    5. Richmond, T. J.,
    6. Weiss, A. M. and
    7. Gruenbaum, Y.
    (1999). The tail domain of lamin Dm0 binds histones H2A and H2B. Proc. Natl. Acad. Sci. USA 96, 2852–2857
    OpenUrlAbstract/FREE Full Text
    1. Goldberg, M.,
    2. Harel, A. and
    3. Gruenbaum, Y.
    (1999). The nuclear lamina: molecular organization and interaction with chromatin. Crit. Rev. Eukaryot. Gene Expr 9, 285–293
    OpenUrlPubMed
    1. Goldberg, M.,
    2. Lu, H.,
    3. Stuurman, N.,
    4. Ashery-Padan, R.,
    5. Weiss, A. M.,
    6. Yu, J.,
    7. Bhattacharyya, D.,
    8. Fisher, P. A.,
    9. Gruenbaum, Y. and
    10. Wolfner, M. F.
    (1998). Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol. Cell. Biol 18, 4315–4323
    OpenUrlAbstract/FREE Full Text
    1. Goldman, A. E.,
    2. Moir, R. D.,
    3. Montag-Lowy, M.,
    4. Stewart, M. and
    5. Goldman, R. D.
    (1992). Pathway of incorporation of microinjected lamin A into the nuclear envelope. J. Cell Biol 119, 725–735
    OpenUrlAbstract/FREE Full Text
    1. Gotzmann, J. and
    2. Foisner, R.
    (1999). Lamins and lamin-binding proteins in functional chromatin organization. Crit. Rev. Eukaryot. Gene Expr 9, 257–265
    OpenUrlPubMedWeb of Science
    1. Gruenbaum, Y.,
    2. Wilson, K. L.,
    3. Harel, A.,
    4. Goldberg, M. and
    5. Cohen, M.
    (2000). Nuclear lamins: Structural proteins with fundamental functions. J. Struct. Biol 129, 313–323
    OpenUrlCrossRefPubMedWeb of Science
    1. Harris, C. A.,
    2. Andryuk, P. J.,
    3. Cline, S.,
    4. Chan, H. K.,
    5. Natarajan, A.,
    6. Siekierka, J. J. and
    7. Goldstein, G.
    (1994). Three distinct human thymopoietins are derived from alternatively spliced mRNAs. Proc. Natl. Acad. Sci. USA 91, 6283–6287
    OpenUrlAbstract/FREE Full Text
    1. Hoger, T. H.,
    2. Krohne, G. and
    3. Kleinschmidt, J. A.
    (1991). Interaction of Xenopus lamins A and LII with chromatin in vitro mediated by a sequence element in the carboxyterminal domain. Exp. Cell Res 197, 280–289
    OpenUrlCrossRefPubMedWeb of Science
    1. Hozak, P.,
    2. Sasseville, A. M.,
    3. Raymond, Y. and
    4. Cook, P. R.
    (1995). Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci 108, 635–644
    OpenUrlAbstract/FREE Full Text
    1. Jagatheesan, G.,
    2. Thanumalayan, S.,
    3. Muralikrishna, B.,
    4. Rangaraj, N.,
    5. Karande, A. A. and
    6. Parnaik, V. K.
    (1999). Colocalization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci 112, 4651–4661
    OpenUrlAbstract/FREE Full Text
    1. Laemmli, U. K.
    (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685
    OpenUrlCrossRefPubMedWeb of Science
    1. Lang, C.,
    2. Paulin-Levasseur, M.,
    3. Gajewski, A.,
    4. Alsheimer, M.,
    5. Benavente, R. and
    6. Krohne, G.
    (1999). Molecular characterization and developmentally regulated expression of Xenopus lamina-associated polypeptide 2 (XLAP2). J. Cell Sci 112, 749–759
    OpenUrlAbstract/FREE Full Text
    1. Lin, F.,
    2. Blake, D. L.,
    3. Callebaut, I.,
    4. Skerjanc, I. S.,
    5. Holmer, L.,
    6. McBurney, M. W.,
    7. Paulin-Levasseur, M. and
    8. Worman, H. J.
    (2000). MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin [In Process Citation]. J. Biol. Chem 275, 4840–4847
    OpenUrlAbstract/FREE Full Text
    1. Loewinger, L. and
    2. McKeon, F.
    (1988). Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. EMBO J 7, 2301–2309
    OpenUrlPubMedWeb of Science
    1. Luderus, M. E.,
    2. de Graaf, A.,
    3. Mattia, E.,
    4. den Blaauwen, J. L.,
    5. Grande, M. A.,
    6. de Jong, L. and
    7. van Driel, R.
    (1992). Binding of matrix attachment regions to lamin B1. Cell 70, 949–959
    OpenUrlCrossRefPubMedWeb of Science
    1. Lutz, R. J.,
    2. Trujillo, M. A.,
    3. Denham, K. S.,
    4. Wenger, L. and
    5. Sinensky, M.
    (1992). Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina [published erratum appears in Proc. Natl. Acad. Sci. USA 1992 Jun 15;89(12):5699]. Proc. Natl. Acad. Sci. USA 89, 3000–3004
    OpenUrlAbstract/FREE Full Text
    1. Manilal, S.,
    2. thi Man, N.,
    3. Sewry, C. A. and
    4. Morris, G. E.
    (1996). The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum. Mol. Genet 5, 801–808
    OpenUrlAbstract/FREE Full Text
    1. Martin, L.,
    2. Crimaudo, C. and
    3. Gerace, L.
    (1995). cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J. Biol. Chem 270, 8822–8828
    OpenUrlAbstract/FREE Full Text
    1. Meier, J. and
    2. Georgatos, S. D.
    (1994). Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for nuclear reassembly. EMBO J 13, 1888–1898
    OpenUrlPubMedWeb of Science
    1. Moir, R. D.,
    2. Montag-Lowy, M. and
    3. Goldman, R. D.
    (1994). Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J. Cell Biol 125, 1201–1212
    OpenUrlAbstract/FREE Full Text
    1. Moir, R. D.,
    2. Spann, T. P. and
    3. Goldman, R. D.
    (1995). The dynamic properties and possible functions of nuclear lamins. Int. Rev. Cytol 162, 141–182
    OpenUrl
    1. Neri, L. M.,
    2. Raymond, Y.,
    3. Giordano, A.,
    4. Capitani, S. and
    5. Martelli, A. M.
    (1999). Lamin A is part of the internal nucleoskeleton of human erythroleukemia cells. J. Cell. Physiol 178, 284–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Ottaviano, Y. and
    2. Gerace, L.
    (1985). Phosphorylation of the nuclear lamins during interphase and mitosis. J. Biol. Chem 260, 624–632
    OpenUrlAbstract/FREE Full Text
    1. Paulin-Levasseur, M.,
    2. Blake, D. L.,
    3. Julien, M. and
    4. Rouleau, L.
    (1996). The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma 104, 367–379
    OpenUrlCrossRefPubMedWeb of Science
    1. Powell, L. and
    2. Burke, B.
    (1990). Internuclear exchange of an inner nuclear membrane protein (p55) in heterokaryons: in vivo evidence for the interaction of p55 with the nuclear lamina. J. Cell Biol 111, 2225–2234
    OpenUrlAbstract/FREE Full Text
    1. Precious, B.,
    2. Young, D. F.,
    3. Bermingham, A.,
    4. Fearns, R.,
    5. Ryan, M. and
    6. Randall, R. E.
    (1995). Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions. J. Virol 69, 8001–8010
    OpenUrlAbstract/FREE Full Text
    1. Pugh, G. E.,
    2. Coates, P. J.,
    3. Lane, E. B.,
    4. Raymond, Y. and
    5. Quinlan, R. A.
    (1997). Distinct nuclear assembly pathways for lamin A/C lead to their increase during quiescence in Swiss 3T3 cells. J. Cell Sci 110, 2483–2493
    OpenUrlAbstract/FREE Full Text
    1. Quinlan, R.,
    2. Hutchison, C. and
    3. Lane, B.
    (1995). Intermediate filament proteins. Protein Profile 2, 795–952
    OpenUrlPubMed
    1. Rzepecki, R.,
    2. Bogachev, S. S.,
    3. Kokoza, E.,
    4. Stuurman, N. and
    5. Fisher, P. A.
    (1998). In vivo association of lamins with nucleic acids in Drosophila melanogaster. J. Cell Sci 111, 121–129
    OpenUrlAbstract/FREE Full Text
    1. Sasseville, A. M.-J. and
    2. Raymond, Y.
    (1995). Lamin A precursor is localized to intranuclear foci. J. Cell Sci 108, 273–285
    OpenUrlAbstract/FREE Full Text
    1. Shackleton, S.,
    2. Lloyd, D. J.,
    3. Jackson, S. N.,
    4. Evans, R.,
    5. Niermeijer, M. F.,
    6. Singh, B. M.,
    7. Schmidt, H.,
    8. Brabant, G.,
    9. Kumar, S.,
    10. Durrington, P. N. and
    11. et al
    . (2000). LMNA, encoding lamin A/C, is mutated in partial lipodystrophy [In Process Citation]. Nat. Genet 24, 153–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Spann, T. P.,
    2. Moir, R. D.,
    3. Goldman, A. E.,
    4. Stick, R. and
    5. Goldman, R. D.
    (1997). Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J. Cell Biol 136, 1201–1212
    OpenUrlAbstract/FREE Full Text
    1. Stuurman, N.,
    2. Heins, S. and
    3. Aebi, U.
    (1998). Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol 122, 42–66
    OpenUrlCrossRefPubMedWeb of Science
    1. Sullivan, T.,
    2. Escalante-Alcalde, D.,
    3. Bhatt, H.,
    4. Anver, M.,
    5. Bhat, N.,
    6. Nagashima, K.,
    7. Stewart, C. L. and
    8. Burke, B.
    (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol 147, 913–920
    OpenUrlAbstract/FREE Full Text
    1. Taniura, H.,
    2. Glass, C. and
    3. Gerace, L.
    (1995). A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol 131, 33–44
    OpenUrlAbstract/FREE Full Text
    1. Vlcek, S.,
    2. Just, H.,
    3. Dechat, T. and
    4. Foisner, R.
    (1999). Functional diversity of LAP2a and LAP2in postmitotic chromosome association is caused by an a-specific nuclear targeting region. EMBO J 18, 6370–6384
    OpenUrlCrossRefPubMed
    1. Worman, H. J.,
    2. Evans, C. D. and
    3. Blobel, G.
    (1990). The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J. Cell Biol 111, 1535–1542
    OpenUrlAbstract/FREE Full Text
    1. Worman, H. J.,
    2. Yuan, J.,
    3. Blobel, G. and
    4. Georgatos, S. D.
    (1988). A lamin B receptor in the nuclear envelope. Proc. Natl. Acad. Sci. USA 85, 8531–8534
    OpenUrlAbstract/FREE Full Text
    1. Yang, L.,
    2. Guan, T. and
    3. Gerace, L.
    (1997). Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J. Cell Biol 139, 1077–1087
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins
T. Dechat, B. Korbei, O.A. Vaughan, S. Vlcek, C.J. Hutchison, R. Foisner
Journal of Cell Science 2000 113: 3473-3484;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins
T. Dechat, B. Korbei, O.A. Vaughan, S. Vlcek, C.J. Hutchison, R. Foisner
Journal of Cell Science 2000 113: 3473-3484;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • The cytoplasmic fate of mRNA
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992