Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
Rab GTPases coordinate endocytosis
J. Somsel Rodman, A. Wandinger-Ness
Journal of Cell Science 2000 113: 183-192;
J. Somsel Rodman
Department of Pathology, The University of New Mexico Health Sciences Center, School of Medicine, NE, Albuquerque, New Mexico 87131-5301, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Wandinger-Ness
Department of Pathology, The University of New Mexico Health Sciences Center, School of Medicine, NE, Albuquerque, New Mexico 87131-5301, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Endocytosis is characterized by vesicular transport along numerous pathways. Common steps in each pathway include membrane budding to form vesicles, transport to a particular destination, and ultimately docking and fusion with the target membrane. Specificity of vesicle targeting is rendered in part by associated Rab GTPases. This review summarizes current knowledge about Rab GTPase functions in the endocytic pathways and provides insight into the regulation of Rab GTPase activity and mechanisms of Rab protein function. Functional assays have identified some Rab proteins that operate on individual pathways, but Rab proteins in several pathways remain controversial or have not been identified. Control of Rab GTPase activity is exerted through multiple levels of regulation. Significant new information pertaining to Rab protein function in regulating transport has emerged. Remarkably, Rab5 GTPase links budding, cytoskeletal transport and docking/fusion activities. This paradigm will most likely be generally applicable to other Rab GTPase pathways. Together with the cross-talk between different Rab proteins and their effectors, this may provide an integrated system for the general coordination of endocytic pathways to maintain organelle homeostasis.

  • © 2000 by Company of Biologists

REFERENCES

    1. Alexandrov, K.,
    2. Horiuchi, H.,
    3. Steele-Mortimer, O.,
    4. Seabra, M. C. and
    5. Zerial, M.
    (1994). Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 13, 5262–5273
    OpenUrlPubMedWeb of Science
    1. Alvarez-Dominguez, C. and
    2. Stahl, P. D.
    (1998). Interferon-gamma selectively induces Rab5a synthesis and processing in mononuclear cells. J. Biol. Chem 273, 33901–33904
    OpenUrlAbstract/FREE Full Text
    1. Apodaca, G.,
    2. Katz, L. A. and
    3. Mostov, K. E.
    (1994). Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol 125, 67–86
    OpenUrlAbstract/FREE Full Text
    1. Ayad, N.,
    2. Hull, M. and
    3. Mellman, I.
    (1997). Mitotic phosphorylation of rab4 prevents binding to a specific receptor on endosome membranes. EMBO J 16, 4497–4507
    OpenUrlAbstract
    1. Bailly, E.,
    2. McCaffrey, M.,
    3. Touchot, N.,
    4. Zahraoui, A.,
    5. Goud, B. and
    6. Bornens, M.
    (1991). Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2. Nature 350, 715–718
    OpenUrlCrossRefPubMed
    1. Barbieri, M. A.,
    2. Roberts, R. L.,
    3. Mukhopadhyay, A. and
    4. Stahl, P. D.
    (1996). Rab5 regulates the dynamics of early endosome fusion. Biocell 20, 331–338
    OpenUrlPubMed
    1. Barbieri, M. A.,
    2. Kohn, A. D.,
    3. Roth, R. A. and
    4. Stahl, P. D.
    (1998). Protein kinase B/akt and Rab5 mediate Ras activation of endocytosis. J. Biol. Chem 273, 19367–19370
    OpenUrlAbstract/FREE Full Text
    1. Barroso, M.,
    2. Nelson, D. S. and
    3. Sztul, E.
    (1995). Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc. Nat. Acad. Sci. USA 92, 527–531
    OpenUrlAbstract/FREE Full Text
    1. Bean, A. J.,
    2. Seifert, R.,
    3. Chen, Y. A.,
    4. Sacks, R. and
    5. Scheller, R. H.
    (1997). Hrs-2 is an ATPase implicated in calcium-regulated secretion. Nature 385, 826–829
    OpenUrlCrossRefPubMed
    1. Bright, N. A.,
    2. Reaves, B. J.,
    3. Mullock, B. M. and
    4. Luzio, J. P.
    (1997). Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J. Cell Sci 110, 2027–2040
    OpenUrlAbstract/FREE Full Text
    1. Brown, W. J.,
    2. DeWald, D. B.,
    3. Emr, S. D.,
    4. Plutner, H. and
    5. Balch, W. E.
    (1995). Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J. Cell Biol 130, 781–796
    OpenUrlAbstract/FREE Full Text
    1. Bucci, C.,
    2. Parton, R. G.,
    3. Mather, I. H.,
    4. Stunnenberg, H.,
    5. Simons, K.,
    6. Hoflack, B. and
    7. Zerial, M.
    (1992). The small GTPase Rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728
    OpenUrlCrossRefPubMedWeb of Science
    1. Bucci, C.,
    2. Wandinger-Ness, A.,
    3. Lutcke, A.,
    4. Chiariello, M.,
    5. Bruni, C. B. and
    6. Zerial, M.
    (1994). Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Nat. Acad. Sci. USA 91, 5061–5065
    OpenUrlAbstract/FREE Full Text
    1. Burd, C. G. and
    2. Emr, S. D.
    (1998). Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162
    OpenUrlCrossRefPubMedWeb of Science
    1. Calhoun, B. C.,
    2. Lapierre, L. A.,
    3. Chew, C. S. and
    4. Goldenring, J. R.
    (1998). Rab11a redistributes to apical secretory canaliculus during stimulation of gastric parietal cells. Am. J. Physiol 275, 163–170
    OpenUrl
    1. Casanova, J. E.,
    2. Wang, X.,
    3. Kumar, R.,
    4. Bhartur, S. G.,
    5. Navarre, J.,
    6. Woodrum, J. E.,
    7. Altschuler, Y.,
    8. Ray, G. S. and
    9. Goldenring, J. R.
    (1999). Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47–61
    OpenUrlAbstract/FREE Full Text
    1. Chavrier, P.,
    2. van der Sluijs, P.,
    3. Mishal, Z.,
    4. Nagelkerken, B. and
    5. Gorvel, J. P.
    (1997). Early endosome membrane dynamics characterized by flow cytometry. Cytometry 29, 41–49
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen, W.,
    2. Feng, Y.,
    3. Chen, D. and
    4. Wandinger-Ness, A.
    (1998). Rab11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol. Biol. Cell 9, 3241–3257
    OpenUrlAbstract/FREE Full Text
    1. Chiariello, M.,
    2. Bruni, C. B. and
    3. Bucci, C.
    (1999). The small GTPases Rab5a, Rab5b and Rab5c are differentially phosphorylated in vitro. FEBS Lett 453, 20–24
    OpenUrlCrossRefPubMedWeb of Science
    1. Christoforidis, S.,
    2. McBride, H. M.,
    3. Burgoyne, R. D. and
    4. Zerial, M.
    (1999). The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625
    OpenUrlCrossRefPubMedWeb of Science
    1. Coimbra, T. M.,
    2. Furtado, M. R.,
    3. Lachat, J. J. and
    4. de Carvalho, I. F.
    ) (1983). Effects of administration of cationic and native homologous albumin on the kidney. Nephron 33, 208–215
    OpenUrlCrossRefPubMedWeb of Science
    1. D'Arrigo, A.,
    2. Bucci, C.,
    3. Toh, B. H. and
    4. Stenmark, H.
    (1997). Microtubules are involved in bafilomycin A1-induced tubulation and Rab5-dependent vacuolation of early endosomes. Eur. J. Cell Biol 72, 95–103
    OpenUrlPubMed
    1. Daro, E.,
    2. van der Sluijs, P.,
    3. Galli, T. and
    4. Mellman, I.
    (1996). Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc. Nat. Acad. Sci. USA 93, 9559–9564
    OpenUrlAbstract/FREE Full Text
    1. Davidson, H. W.
    (1995). Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes. J. Cell Biol 130, 797–805
    OpenUrlAbstract/FREE Full Text
    1. Diaz, E. and
    2. Pfeffer, S. R.
    (1998). TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93, 433–443
    OpenUrlCrossRefPubMedWeb of Science
    1. Dirac-Svejstrup, A. B.,
    2. Sumizawa, T. and
    3. Pfeffer, S. R.
    (1997). Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16, 465–472
    OpenUrlAbstract
    1. Duman, J. G.,
    2. Tyagarajan, K.,
    3. Kolsi, M. S.,
    4. Moore, H. P. and
    5. Forte, J. G.
    (1999). Expression of rab11a N124I in gastric parietal cells inhibits stimulatory recruitment of the H+-K+-ATPase. Am. J. Physiol 277, 361–.
    OpenUrl
    1. Echard, A.,
    2. Jollivet, F.,
    3. Martinez, O.,
    4. Lacapere, J. J.,
    5. Rousselet, A.,
    6. Janoueix-Lerosey, I. and
    7. Goud, B.
    (1998). Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585
    OpenUrlAbstract/FREE Full Text
    1. Feng, Y.,
    2. Press, B. and
    3. Wandinger-Ness, A.
    (1995). Rab 7: An important regulator of late endocytic membrane traffic. J. Cell Biol 131, 1435–1452
    OpenUrlAbstract/FREE Full Text
    1. Finger, F. P.,
    2. Hughes, T. E. and
    3. Novick, P.
    (1998). Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571
    OpenUrlCrossRefPubMedWeb of Science
    1. Fitzgerald, M. L. and
    2. Reed, G. L.
    (1999). Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: effects on GTP/GDP binding and cellular distribution. Biochem. J 342, 353–360
    OpenUrlAbstract/FREE Full Text
    1. Ghosh, R. N.,
    2. Mallet, W. G.,
    3. Soe, T. T.,
    4. McGraw, T. E. and
    5. Maxfield, F. R.
    (1998). An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol 142, 923–936
    OpenUrlAbstract/FREE Full Text
    1. Goldenring, J. R.,
    2. Smith, J.,
    3. Vaughan, H. D.,
    4. Cameron, P.,
    5. Hawkins, W. and
    6. Navarre, J.
    (1996). Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am. J. Physiol 270, 515–525
    OpenUrl
    1. Gonzalez, L. Jr.. and
    2. Scheller, R. H.
    (1999). Regulation of membrane trafficking: Structural insights from a Rab/effector complex. Cell 96, 755–758
    OpenUrlCrossRefPubMedWeb of Science
    1. Gorvel, J. P.,
    2. Chavrier, P.,
    3. Zerial, M. and
    4. Gruenberg, J.
    (1991). RAB5 controls early endosome fusion in vitro. Cell 64, 915–925
    OpenUrlCrossRefPubMedWeb of Science
    1. Gournier, H.,
    2. Stenmark, H.,
    3. Rybin, V.,
    4. Lippe, R. and
    5. Zerial, M.
    (1998). Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. EMBO J 17, 1930–1940
    OpenUrlAbstract
    1. Gruenberg, J.,
    2. Griffiths, G. and
    3. Howell, K. E.
    (1989). Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol 108, 1301–1316
    OpenUrlAbstract/FREE Full Text
    1. Gruenberg, J. and
    2. Maxfield, F. R.
    (1995). Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol 7, 552–563
    OpenUrlCrossRefPubMedWeb of Science
    1. Guo, W.,
    2. Roth, D.,
    3. Walch-Solimena, C. and
    4. Novick, P.
    (1999). The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18, 1071–1080
    OpenUrlAbstract
    1. Harder, T.,
    2. Kellner, R.,
    3. Parton, R. G. and
    4. Gruenberg, J.
    (1997). Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell 8, 533–545
    OpenUrlAbstract/FREE Full Text
    1. Horiuchi, H.,
    2. Lippe, R.,
    3. McBride, H. M.,
    4. Rubino, M.,
    5. Woodman, P.,
    6. Stenmark, H.,
    7. Rybin, V.,
    8. Wilm, M.,
    9. Ashman, K.,
    10. Mann, M.,
    11. et al.
    (1997). A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159
    OpenUrlCrossRefPubMedWeb of Science
    1. Hunziker, W. and
    2. Peters, P. J.
    (1998). Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem 273, 15734–15741
    OpenUrlAbstract/FREE Full Text
    1. Imamura, H.,
    2. Takaishi, K.,
    3. Nakano, K.,
    4. Kodama, A.,
    5. Oishi, H.,
    6. Shiozaki, H.,
    7. Monden, M.,
    8. Sasaki, T. and
    9. Takai, Y.
    (1998). Rho and Rab small G-proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol. Biol. Cell 9, 2561–2575
    OpenUrlAbstract/FREE Full Text
    1. Itin, C.,
    2. Ulitzur, N.,
    3. Muhlbauer, B. and
    4. Pfeffer, S. R.
    (1999). Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network. Mol. Biol. Cell 10, 2191–2197
    OpenUrlAbstract/FREE Full Text
    1. Jedd, G.,
    2. Mulholland, J. and
    3. Segev, N.
    (1997). Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J. Cell Biol 137, 563–580
    OpenUrlAbstract/FREE Full Text
    1. Jones, S.,
    2. Jedd, G.,
    3. Kahn, R. A.,
    4. Franzusoff, A.,
    5. Bartolini, F. and
    6. Segev, N.
    (1999). Genetic interactions in yeast between Ypt GTPases and ARF guanine nucleotide exchangers. Genetics 152, 1543–1556
    OpenUrlAbstract/FREE Full Text
    1. Kato, M.,
    2. Sasaki, T.,
    3. Ohya, T.,
    4. Nakanishi, H.,
    5. Nishioka, H.,
    6. Imamura, M. and
    7. Takai, Y.
    (1996). Physical and functional interaction of rabphilin-3A with alpha-actinin. J. Biol. Chem 271, 31775–31778
    OpenUrlAbstract/FREE Full Text
    1. Knapp, P. E. and
    2. Swanson, J. A.
    (1990). Plasticity of the tubular lysosomal compartment in macrophages. J. Cell Sci 95, 433–439
    OpenUrlAbstract/FREE Full Text
    1. Knight, A.,
    2. Hughson, E.,
    3. Hopkins, C. R. and
    4. Cutler, D. F.
    (1995). Membrane protein trafficking through the common apical endosome compartment of polarized Caco-2 cells. Mol. Biol. Cell 6, 597–610
    OpenUrlAbstract/FREE Full Text
    1. Kurzchalia, T. V.,
    2. Gorvel, J. P.,
    3. Dupree, P.,
    4. Parton, R.,
    5. Kellner, R.,
    6. Houthaeve, T.,
    7. Gruenberg, J. and
    8. Simons, K.
    (1992). Interactions of Rab5 with cytosolic proteins. J. Biol. Chem 267, 18419–18423
    OpenUrlAbstract/FREE Full Text
    1. Kutateladze, T. G.,
    2. Ogburn, K. D.,
    3. Watson, W. T.,
    4. de Beer, T.,
    5. Emr, S. D.,
    6. Burd, C. G. and
    7. Overduin, M.
    (1999). Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol. Cell 3, 805–811
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamaze, C.,
    2. Fujimoto, L. M.,
    3. Yin, H. L. and
    4. Schmid, S. L.
    (1997). The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem 272, 20332–20335
    OpenUrlAbstract/FREE Full Text
    1. Liu, K. and
    2. Li, G.
    (1998). Catalytic domain of the p120 Ras GAP binds to Rab5 and stimulates its GTPase activity. J. Biol. Chem 273, 10087–10090
    OpenUrlAbstract/FREE Full Text
    1. Lombardi, D.,
    2. Soldati, T.,
    3. Riederer, M. A.,
    4. Goda, Y.,
    5. Zerial, M. and
    6. Pfeffer, S. R.
    (1993). Rab9 functions in transport between late endosomes and the trans-Golgi network. EMBO J 12, 677–682
    OpenUrlPubMedWeb of Science
    1. Luan, P.,
    2. Balch, W. E.,
    3. Emr, S. D. and
    4. Burd, C. G.
    (1999). Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo. Rab-independent binding to membranes and role of Rab recycling factors. J. Biol. Chem 274, 14806–14817
    OpenUrlAbstract/FREE Full Text
    1. Lutcke, A.,
    2. Jansson, S.,
    3. Parton, R. G.,
    4. Chavrier, P.,
    5. Valencia, A.,
    6. Huber, L. A.,
    7. Lehtonen, E. and
    8. Zerial, M.
    (1993). Rab17, a novel small GTPase, is specific for epithelial cells and is induced during cell polarization. J. Cell Biol 121, 553–564
    OpenUrlAbstract/FREE Full Text
    1. Lutcke, A.,
    2. Parton, R. G.,
    3. Murphy, C.,
    4. Olkkonen, V. M.,
    5. Dupree, P.,
    6. Valencia, A.,
    7. Simons, K. and
    8. Zerial, M.
    (1994). Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J. Cell Sci 107, 3437–3448
    OpenUrlAbstract/FREE Full Text
    1. Mallard, F.,
    2. Antony, C.,
    3. Tenza, D.,
    4. Salamero, J.,
    5. Goud, B. and
    6. Johannes, L.
    (1998). Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of Shiga toxin B-fragment transport. J. Cell Biol 143, 973–990
    OpenUrlAbstract/FREE Full Text
    1. Mallet, W. G. and
    2. Maxfield, F. R.
    (1999). Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways. J. Cell Biol 146, 345–359
    OpenUrlAbstract/FREE Full Text
    1. Marsh, M. and
    2. McMahon, H. T.
    (1999). The structural era of endocytosis. Science 285, 215–220
    OpenUrlAbstract/FREE Full Text
    1. Mayer, A. and
    2. Wickner, W.
    (1997). Docking of yeast vacuoles is catalyzedby the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol 136, 307–317
    OpenUrlAbstract/FREE Full Text
    1. McBride, H. M.,
    2. Rybin, V.,
    3. Murphy, C.,
    4. Giner, A.,
    5. Teasdale, R. and
    6. Zerial, M.
    (1999). Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386
    OpenUrlCrossRefPubMedWeb of Science
    1. McLauchlan, H.,
    2. Newell, J.,
    3. Morrice, N.,
    4. Osborne, A.,
    5. West, M. and
    6. Smythe, E.
    (1998). A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr. Biol 8, 34–45
    OpenUrlCrossRefPubMedWeb of Science
    1. McMurtrie, E. B.,
    2. Barbosa, M. D.,
    3. Zerial, M. and
    4. Kingsmore, S. F.
    (1997). Rab17 and rab18, small GTPases with specificity for polarized epithelial cells: genetic mapping in the mouse. Genomics 45, 623–625
    OpenUrlCrossRefPubMed
    1. Mellman, I.
    (1996). Endocytosis and molecular sorting. Annu. Rev. Cell. Dev. Biol 12, 575–625
    OpenUrlCrossRefPubMedWeb of Science
    1. Meresse, S.,
    2. Gorvel, J. P. and
    3. Chavrier, P.
    (1995). The Rab7 GTPase resides on a vesicular compartment connected to lysosomes. J. Cell Sci 108, 3349–3358
    OpenUrlAbstract/FREE Full Text
    1. Millar, C. A.,
    2. Powell, K. A.,
    3. Hickson, G. R.,
    4. Bader, M. F. and
    5. Gould, G. W.
    (1999). Evidence for a role for ADP-ribosylation factor 6 in insulin-stimulated glucose transporter-4 (GLUT4) trafficking in 3T3-L1 adipocytes [In Process Citation]. J. Biol. Chem 274, 17619–17625
    OpenUrlAbstract/FREE Full Text
    1. Mohrmann, K. and
    2. van der Sluijs, P.
    (1999). Regulation of membrane transport through the endocytic pathway by rabGTPases. Mol. Membr. Biol 16, 81–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Mukherjee, S.,
    2. Ghosh, R. N. and
    3. Maxfield, F. R.
    (1997). Endocytosis. Physiol. Rev. 77, 759–803
    OpenUrlAbstract/FREE Full Text
    1. Mukhopadhyay, A.,
    2. Funato, K. and
    3. Stahl, P. D.
    (1997). Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes. J. Biol. Chem 272, 13055–13059
    OpenUrlAbstract/FREE Full Text
    1. Mullock, B. M.,
    2. Perez, J. H.,
    3. Kuwana, T.,
    4. Gray, S. R. and
    5. Luzio, J. P.
    (1994). Lysosomes can fuse with a late endosomal compartment in a cell-free system from rat liver. J. Cell Biol 126, 1173–1182
    OpenUrlAbstract/FREE Full Text
    1. Mullock, B. M.,
    2. Bright, N. A.,
    3. Fearon, C. W.,
    4. Gray, S. R. and
    5. Luzio, J. P.
    (1998). Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J. Cell Biol 140, 591–601
    OpenUrlAbstract/FREE Full Text
    1. Murphy, C.,
    2. Saffrich, R.,
    3. Grummt, M.,
    4. Gournier, H.,
    5. Rybin, V.,
    6. Rubino, M.,
    7. Auvinen, P.,
    8. Lutcke, A.,
    9. Parton, R. G. and
    10. Zerial, M.
    (1996). Endosome dynamics regulated by a Rho protein. Nature 384, 427–432
    OpenUrlCrossRefPubMed
    1. Nakajima, Y. and
    2. Pfeffer, S. R.
    (1997). Phosphatidylinositol 3-kinase is not required for recycling of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. Mol. Biol. Cell 8, 577–582
    OpenUrlAbstract/FREE Full Text
    1. Numata, S.,
    2. Shirataki, H.,
    3. Hagi, S.,
    4. Yamamoto, T. and
    5. Takai, Y.
    (1994). Phosphorylation of Rabphilin-3A, a putative target protein for Rab3A, by cyclic AMP-dependent protein kinase. Biochem. Biophys. Res. Commun 203, 1927–1934
    OpenUrlCrossRefPubMed
    1. Nuoffer, C.,
    2. Davidson, H. W.,
    3. Matteson, J.,
    4. Meinkoth, J. and
    5. Balch, W. E.
    (1994). A GDP-bound of Rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J. Cell Biol 125, 225–237
    OpenUrlAbstract/FREE Full Text
    1. Ohnishi, H.,
    2. Mine, T.,
    3. Shibata, H.,
    4. Ueda, N.,
    5. Tsuchida, T. and
    6. Fujita, T.
    (1999). Involvement of Rab4 in regulated exocytosis of rat pancreatic acini. Gastroenterology 116, 943–952
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohya, T.,
    2. Sasaki, T.,
    3. Kato, M. and
    4. Takai, Y.
    (1998). Involvement of Rabphilin3 in endocytosis through interaction with Rabaptin5. J. Biol. Chem 273, 613–617
    OpenUrlAbstract/FREE Full Text
    1. Olkkonen, V. M.,
    2. Dupree, P.,
    3. Killisch, I.,
    4. Lutcke, A.,
    5. Zerial, M. and
    6. Simons, K.
    (1993). Molecular cloning and subcellular localization of three GTP-binding proteins of the Rab subfamily. J. Cell Sci 106, 1249–1261
    OpenUrlAbstract/FREE Full Text
    1. Parton, R. G.,
    2. Schrotz, P.,
    3. Bucci, C. and
    4. Gruenberg, J.
    (1992). Plasticity of early endosomes. J. Cell Sci 103, 335–348
    OpenUrlAbstract/FREE Full Text
    1. Patki, V.,
    2. Virbasius, J.,
    3. Lane, W. S.,
    4. Toh, B. H.,
    5. Shpetner, H. S. and
    6. Corvera, S.
    (1997). Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc. Nat. Acad. Sci. USA 94, 7326–7330
    OpenUrlAbstract/FREE Full Text
    1. Peränen, J.,
    2. Auvinen, P.,
    3. Virta, H.,
    4. Wepf, R. and
    5. Simons, K.
    (1996). Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol 135, 153–167
    OpenUrlAbstract/FREE Full Text
    1. Peterson, M. R.,
    2. Burd, C. G. and
    3. Emr, S. D.
    (1999). Vac1p coordinates Raband phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol 9, 159–162
    OpenUrlCrossRefPubMedWeb of Science
    1. Pfeffer, S. R.,
    2. Dirac-Svejstrup, A. B. and
    3. Soldati, T.
    (1995). Rab GDP dissociation inhibitor: putting rab GTPases in the right place. J. Biol. Chem 270, 17057–17059
    OpenUrlFREE Full Text
    1. Pierre, P.,
    2. Scheel, J.,
    3. Rickard, J. E. and
    4. Kreis, T. E.
    (1992). CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900
    OpenUrlCrossRefPubMedWeb of Science
    1. Raposo, G.,
    2. Cordonnier, M. N.,
    3. Tenza, D.,
    4. Menichi, B.,
    5. Durrbach, A.,
    6. Louvard, D. and
    7. Coudrier, E.
    (1999). Association of myosin I alpha with endosomes and lysosomes in mammalian cells. Mol. Biol. Cell 10, 1477–1494
    OpenUrlAbstract/FREE Full Text
    1. Reaves, B. J.,
    2. Bright, N. A.,
    3. Mullock, B. M. and
    4. Luzio, J. P.
    (1996). The effect of wortmannin on the localisation of lysosomal type I integral membrane glycoproteins suggests a role for phosphoinositide 3-kinase activity in regulating membrane traffic late in the endocytic pathway. J. Cell Sci 109, 749–762
    OpenUrlAbstract/FREE Full Text
    1. Ren, M.,
    2. Zeng, J.,
    3. De Lemos-Chiarandini, C.,
    4. Rosenfeld, M.,
    5. Adesnik, M. and
    6. Sabatini, D. D.
    (1996). In its active form, the GTP-binding protein Rab8 interacts with a stress-activated protein kinase. Proc. Nat. Acad. Sci. USA 93, 5151–5155
    OpenUrlAbstract/FREE Full Text
    1. Ren, M.,
    2. Xu, G.,
    3. Zeng, J.,
    4. De Lemos-Chiarandini, C.,
    5. Adesnik, M. and
    6. Sabatini, D. D.
    (1998). Hydrolysis of GTP on Rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc. Nat. Acad. Sci. USA 95, 6187–6192
    OpenUrlAbstract/FREE Full Text
    1. Riederer, M. A.,
    2. Soldati, T.,
    3. Shapiro, A. D.,
    4. Lin, J. and
    5. Pfeffer, S. R.
    (1994). Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J. Cell Biol 125, 573–582
    OpenUrlAbstract/FREE Full Text
    1. Riezman, H.,
    2. Munn, A.,
    3. Geli, M. I. and
    4. Hicke, L.
    (1996). Actin-, myosin-and ubiquitin-dependent endocytosis. Experientia 52, 1033–1041
    OpenUrlCrossRefPubMed
    1. Santama, N.,
    2. Krijnse-Locker, J.,
    3. Griffiths, G.,
    4. Noda, Y.,
    5. Hirokawa, N. and
    6. Dotti, C. G.
    (1998). KIF2beta, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation. EMBO J 17, 5855–5867
    OpenUrlAbstract
    1. Sapperstein, S. K.,
    2. Lupashin, V. V.,
    3. Schmitt, H. D. and
    4. Waters, M. G.
    (1996). Assembly of the ER to Golgi SNARE complex requires Uso1p. J. Cell Biol 132, 755–767
    OpenUrlAbstract/FREE Full Text
    1. Sasaki, T.,
    2. Shirataki, H.,
    3. Nakanishi, H. and
    4. Takai, Y.
    (1997). Rab3A-rabphilin-3A system in neurotransmitter release. Advan. Second Messenger Phosphoprotein Res 31, 279–294
    OpenUrlCrossRefPubMed
    1. Sato, K. and
    2. Wickner, W.
    (1998). Functional reconstitution of Ypt7p GTPase and a purified vacuole SNARE complex. Science 281, 700–702
    OpenUrlAbstract/FREE Full Text
    1. Schimmöller, F.,
    2. Simon, I. and
    3. Pfeffer, S. R.
    (1998). Rab GTPases, directors of vesicle docking. J. Biol. Chem 273, 22161–22164
    OpenUrlFREE Full Text
    1. Sheetz, M. P.
    (1999). Motor and cargo interactions. Eur. J. Biochem 262, 19–25
    OpenUrlPubMedWeb of Science
    1. Sheff, D. R.,
    2. Daro, E. A.,
    3. Hull, M. and
    4. Mellman, I.
    (1999). The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol 145, 123–139
    OpenUrlAbstract/FREE Full Text
    1. Shirataki, H.,
    2. Kaibuchi, K.,
    3. Sakoda, T.,
    4. Kishida, S.,
    5. Yamaguchi, T.,
    6. Wada, K.,
    7. Miyazaki, M. and
    8. Takai, Y.
    (1993). Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell Biol 13, 2061–2068
    OpenUrlAbstract/FREE Full Text
    1. Shpetner, H.,
    2. Joly, M.,
    3. Hartley, D. and
    4. Corvera, S.
    (1996). Potential sites of PI-3 kinase function in the endocytic pathway revealed by the PI-3 kinase inhibitor, wortmannin. J. Cell Biol 132, 595–605
    OpenUrlAbstract/FREE Full Text
    1. Siddhanta, U.,
    2. McIlroy, J.,
    3. Shah, A.,
    4. Zhang, Y. and
    5. Backer, J. M.
    (1998). Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J. Cell Biol 143, 1647–1659
    OpenUrlAbstract/FREE Full Text
    1. Simon, V. R. and
    2. Pon, L. A.
    (1996). Actin-based organelle movement. Experientia 52, 1117–1122
    OpenUrlCrossRefPubMedWeb of Science
    1. Simonsen, A.,
    2. Lippe, R.,
    3. Christoforidis, S.,
    4. Gaullier, J. M.,
    5. Brech, A.,
    6. Callaghan, J.,
    7. Toh, B. H.,
    8. Murphy, C.,
    9. Zerial, M. and
    10. Stenmark, H.
    (1998). EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498
    OpenUrlCrossRefPubMedWeb of Science
    1. Soldati, T.,
    2. Shapiro, A. D.,
    3. Svejstrup, A. B. and
    4. Pfeffer, S. R.
    (1994). Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature 369, 76–78
    OpenUrlCrossRefPubMed
    1. Sönnichsen, B. and
    2. Zerial, M.
    (1998). Membrane dynamics of the perinuclear recycling endosome monitored with Rab11-GFP. Mol. Biol. Cell 9, 464–.
    OpenUrl
    1. Stenmark, H.,
    2. Valencia, A.,
    3. Martinez, O.,
    4. Ullrich, O.,
    5. Goud, B. and
    6. Zerial, M.
    (1994). Distinct structural elements of Rab5 define its functional specificity. EMBO J 13, 575–583
    OpenUrlPubMedWeb of Science
    1. Stenmark, H.,
    2. Vitale, G.,
    3. Ullrich, O. and
    4. Zerial, M.
    (1995). Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432
    OpenUrlCrossRefPubMedWeb of Science
    1. Stenmark, H. and
    2. Aasland, R.
    (1999). FYVE-finger proteins: effectors of an inositol lipid. J. Cell Sci.
    1. Ullrich, O.,
    2. Reinsch, S.,
    3. Urbe, S.,
    4. Zerial, M. and
    5. Parton, R. G.
    (1996). Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol 135, 913–924
    OpenUrlAbstract/FREE Full Text
    1. Ungermann, C.,
    2. Sato, K. and
    3. Wickner, W.
    (1998). Defining the functions of trans-SNARE pairs. Nature 396, 543–548
    OpenUrlCrossRefPubMedWeb of Science
    1. Urbe, S.,
    2. Huber, L. A.,
    3. Zerial, M.,
    4. Tooze, S. A. and
    5. Parton, R. G.
    (1993). Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett 334, 175–182
    OpenUrlCrossRefPubMedWeb of Science
    1. van der Sluijs, P.,
    2. Hull, M.,
    3. Huber, L. A.,
    4. Male, P.,
    5. Goud, B. and
    6. Mellman, I.
    (1992). Reversible phosphorylation—dephosphorylation determines the localization of rab4 during the cell cycle. EMBO J 11, 4379–4389
    OpenUrlPubMedWeb of Science
    1. Vitale, G.,
    2. Rybin, V.,
    3. Christoforidis, S.,
    4. Thornqvist, P.,
    5. McCaffrey, M.,
    6. Stenmark, H. and
    7. Zerial, M.
    (1998). Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J 17, 1941–1951
    OpenUrlAbstract
    1. Vitelli, R.,
    2. Santillo, M.,
    3. Lattero, D.,
    4. Chiariello, M.,
    5. Bifulco, M.,
    6. Bruni, C. B. and
    7. Bucci, C.
    (1997). Role of the small GTPase Rab7 in the late endocytic pathway. J. Biol. Chem 272, 4391–4397
    OpenUrlAbstract/FREE Full Text
    1. Ward, D. M.,
    2. Leslie, J. D. and
    3. Kaplan, J.
    (1997). Homotypic lysosome fusion in macrophages: analysis using an in vitro assay. J. Cell Biol 139, 665–673
    OpenUrlAbstract/FREE Full Text
    1. Witke, W.,
    2. Podtelejnikov, A. V.,
    3. Di Nardo, A.,
    4. Sutherland, J. D.,
    5. Gurniak, C. B.,
    6. Dotti, C. and
    7. Mann, M.
    (1998). In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J 17, 967–976
    OpenUrlAbstract
    1. Wu, S. K.,
    2. Zeng, K.,
    3. Wilson, I. A. and
    4. Balch, W. E.
    (1996). Structural insights into the function of the Rab GDI superfamily. Trends Biochem. Sci 21, 472–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Wurmser, A. E.,
    2. Gary, J. D. and
    3. Emr, S. D.
    (1999). Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem 274, 9129–9132
    OpenUrlFREE Full Text
    1. Xiao, G. H.,
    2. Shøarinejad, F.,
    3. Jin, F.,
    4. Golemis, E. A. and
    5. Yeung, R. S.
    (1997). The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem 272, 6097–6100
    OpenUrlAbstract/FREE Full Text
    1. Xu, X.,
    2. Press, B.,
    3. Wagle, N. M.,
    4. Cho, H.,
    5. Wandinger-Ness, A. and
    6. Pierce, S. K.
    (1996). B cell antigen receptor signaling links biochemical changes in the class II peptide-loading compartment to enhanced processing. Int. Immunol 8, 1867–1876
    OpenUrlAbstract/FREE Full Text
    1. Xu, Z.,
    2. Sato, K. and
    3. Wickner, W.
    (1998). LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93, 1125–1134
    OpenUrlCrossRefPubMedWeb of Science
    1. Zacchi, P.,
    2. Stenmark, H.,
    3. Parton, R. G.,
    4. Orioli, D.,
    5. Lim, F.,
    6. Giner, A.,
    7. Mellman, I.,
    8. Zerial, M. and
    9. Murphy, C.
    (1998). Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol 140, 1039–1053
    OpenUrlAbstract/FREE Full Text
    1. Zeng, J.,
    2. Ren, M.,
    3. Gravotta, D.,
    4. De Lemos-Chiarandini, C.,
    5. Lui, M.,
    6. Erdjument-Bromage, H.,
    7. Tempst, P.,
    8. Xu, G.,
    9. Shen, T. H.,
    10. Morimoto, T.,
    11. Adesnik, M. and
    12. Sabatini, D. D.
    (1999). Identification of a putative effector protein for Rab11 that participates in transferrin recycling. Proc. Nat. Acad. Sci. USA 96, 2840–2845
    OpenUrlAbstract/FREE Full Text
    1. Zuk, P. A. and
    2. Elferink, L. A.
    (1999). Rab15 mediates an early endocytic event in Chinese hamster ovary cells. J. Biol. Chem 274, 22303–22312
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rab GTPases coordinate endocytosis
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
Rab GTPases coordinate endocytosis
J. Somsel Rodman, A. Wandinger-Ness
Journal of Cell Science 2000 113: 183-192;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
Rab GTPases coordinate endocytosis
J. Somsel Rodman, A. Wandinger-Ness
Journal of Cell Science 2000 113: 183-192;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992