Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
Journal Articles
Integrin cytoplasmic domain-binding proteins
S. Liu, D.A. Calderwood, M.H. Ginsberg
Journal of Cell Science 2000 113: 3563-3571;
S. Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.A. Calderwood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.H. Ginsberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Integrins are a large family of cell surface receptors that mediate cell adhesion and influence migration, signal transduction, and gene expression. The cytoplasmic domains of integrins play a pivotal role in these integrin-mediated cellular functions. Through interaction with the cytoskeleton, signaling molecules, and other cellular proteins, integrin cytoplasmic domains transduce signals from both the outside and inside of the cell and regulate integrin-mediated biological functions. Identification and functional analyses of integrin cytoplasmic domain-binding proteins have been pursued intensively. In recent years, more cellular proteins have been reported to directly interact with integrin cytoplasmic domains and some of these interactions may play important roles in integrin-mediated biological responses. Integrin (β) chains, for example, interact with actin-binding proteins (e.g. talin and filamin), which form mechanical links to the cytoskeleton. These and other proteins (e.g. FAK, ILK and novel proteins such as TAP20) might also link integrins to signaling mechanisms and, in some cases (e.g. JAB1) mediate integrin-dependent gene regulation.

  • © 2000 by Company of Biologists

REFERENCES

    1. Akiyama, S. K.,
    2. Yamada, S. S.,
    3. Yamada, K. M. and
    4. LaFlamme, S. E.
    (1994). Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J. Biol. Chem 269, 15961–15964
    OpenUrlAbstract/FREE Full Text
    1. Belkin, A. M. and
    2. Retta, S. F.
    (1998). 1D integrin inhibits cell cycle progression in normal myoblasts and fibroblasts. J. Biol. Chem 273, 15234–15240
    OpenUrlAbstract/FREE Full Text
    1. Bianchi, E.,
    2. Denti, S.,
    3. Granata, A.,
    4. Bossi, G.,
    5. Geginat, J.,
    6. Villa, A.,
    7. Rogge, L. and
    8. Pardi, R.
    (2000). Integrin LFA-1 interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity. Nature 404, 617–621
    OpenUrlCrossRefPubMed
    1. Borowsky, M. L. and
    2. Hynes, R. O.
    (1998). Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles. J. Cell Biol 143, 429–442
    OpenUrlAbstract/FREE Full Text
    1. Bouvard, D. and
    2. Block, M. R.
    (1998). Calcium/calmodulin-dependent protein kinase II controls integrin5 1-mediated cell adhesion through the integrin cytoplasmic domain associated protein-1. Biochem. Biophys. Res. Commun 252, 46–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Brancaccio, M.,
    2. Guazzone, S.,
    3. Menini, N.,
    4. Sibona, E.,
    5. Hirsch, E.,
    6. De Andrea, M.,
    7. Rocchi, M.,
    8. Altruda, F.,
    9. Tarone, G. and
    10. Silengo, L.
    (1999). Melusin is a new muscle-specific interactor for1 integrin cytoplasmic domain. J. Biol. Chem 274, 29282–29288
    OpenUrlAbstract/FREE Full Text
    1. Calderwood, D. A.,
    2. Zent, R.,
    3. Grant, R.,
    4. Rees, D. J.,
    5. Hynes, R. O. and
    6. Ginsberg, M. H.
    (1999). The talin head domain binds to integrinsubunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem 274, 28071–28074
    OpenUrlAbstract/FREE Full Text
    1. Cattelino, A.,
    2. Albertinazzi, C.,
    3. Bossi, M.,
    4. Critchley, D. R. and
    5. de Curtis, I.
    (1999). A cell-free system to study regulation of focal adhesions and of the connected actin cytoskeleton. Mol. Biol. Cell 10, 391–.
    OpenUrl
    1. Chan, B. M. C.,
    2. Kassner, P. D.,
    3. Schiro, J. A.,
    4. Byers, H. R.,
    5. Kupper, T. S. and
    6. Hemler, M. E.
    (1992). Distinct cellular functions mediated by different VLA integrinsubunit cytoplasmic domains. Cell 68, 1051–1060
    OpenUrlCrossRefPubMedWeb of Science
    1. Chang, D. D.,
    2. Wong, C.,
    3. Smith, H. and
    4. Liu, J.
    (1997). ICAP-1, a novel1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of 1integrin. J. Cell Biol 138, 1149–1157
    OpenUrlAbstract/FREE Full Text
    1. Chen, L. M.,
    2. Bailay, D. and
    3. Fernandez-Valle, C.
    (2000). Association of1 integrin with focal adhesion kinase and paxillin in differentiating schwann cells. J. Neurosci 20, 3776–3784
    OpenUrlAbstract/FREE Full Text
    1. Chen, Y.,
    2. O'Toole, T. E.,
    3. Ylanne, J.,
    4. Rosa, J. and
    5. Ginsberg, M. H.
    (1994). A point mutation in the integrin3 cytoplasmic domain (S752-P) impairs bidirectional signaling through IIb3 (platelet glycoprotein IIb-IIIa). Blood 84, 1857–1865
    OpenUrlAbstract/FREE Full Text
    1. Coppolino, M.,
    2. Leung-Hagesteijn, C.,
    3. Dedhar, S. and
    4. Wilkins, J.
    (1995). Inducible interaction of integrin2 1with calreticulin. J. Biol. Chem 270, 23132–23138
    OpenUrlAbstract/FREE Full Text
    1. Coppolino, M. G.,
    2. Woodside, M. J.,
    3. Demaurex, N.,
    4. Grinstein, S.,
    5. St-Arnaud, R. and
    6. Dedhar, S.
    (1997). Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386, 843–847
    OpenUrlCrossRefPubMedWeb of Science
    1. Critchley, D. R.
    (2000). Focal adhesions-the cytoskeletal connection. Curr. Opin. Cell Biol 12, 133–139
    OpenUrlCrossRefPubMedWeb of Science
    1. Cunningham, C. C.,
    2. Gorlin, J. B.,
    3. Kwiatkowski, D. J.,
    4. Hartwig, J. H.,
    5. Janmey, P. A.,
    6. Byers, H. R. and
    7. Stossel, T. P.
    (1992). Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327
    OpenUrlAbstract/FREE Full Text
    1. David, F. S.,
    2. Zage, P. E. and
    3. Marcantonio, E. E.
    (1999). Integrins interact with focal adhesions through multiple distinct pathways. J. Cell Physiol 181, 74–82
    OpenUrlCrossRefPubMedWeb of Science
    1. Dedhar, S. and
    2. Hannigan, G. E.
    (1996). Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr. Opin. Cell Biol 8, 657–669
    OpenUrlCrossRefPubMedWeb of Science
    1. Dedhar, S.
    (2000). Cell-substrate interactions and signaling through ILK. Curr. Opin. Cell Biol 12, 250–256
    OpenUrlCrossRefPubMedWeb of Science
    1. Eigenthaler, M.,
    2. Hofferer, L.,
    3. Shattil, S. J. and
    4. Ginsberg, M. H.
    (1997). A conserved sequence motif in the integrin3cytoplasmic domain is required for its specific interaction with 3-endonexin. J. Biol. Chem 272, 7693–7698
    OpenUrlAbstract/FREE Full Text
    1. Ezzell, R. M.,
    2. Goldmann, W. H.,
    3. Wang, N.,
    4. Parasharama, N. and
    5. Ingber, D. E.
    (1997). Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp. Cell Res 231, 14–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Fenczik, C. A.,
    2. Sethi, T.,
    3. Ramos, J. W.,
    4. Hughes, P. E. and
    5. Ginsberg, M. H.
    (1997). Complementation of dominant suppression implicates CD98 in integrin activation. Nature 370, 81–85
    OpenUrl
    1. Fox, J. W.,
    2. Lamperti, E. D.,
    3. Eksioglu, Y. Z.,
    4. Hong, S. E.,
    5. Feng, Y.,
    6. Graham, D. A.,
    7. Scheffer, I. E.,
    8. Dobyns, W. B.,
    9. Hirsch, B. A.,
    10. Radtke, R. A.,
    11. Berkovic, S. F.,
    12. Huttenlocher, P. R. and
    13. Walsh, C. A.
    (1998). Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325
    OpenUrlCrossRefPubMedWeb of Science
    1. Geiger, C.,
    2. Nagel, W.,
    3. Boehm, T.,
    4. van Kooyk, Y.,
    5. Figdor, C. G.,
    6. Kremmer, E.,
    7. Hogg, N.,
    8. Zeitlmann, L.,
    9. Dierks, H.,
    10. Weber, K. S. C. and
    11. Kolanus, W.
    (2000). Cytohesin-1 regulates-2 integrin-mediated adhesion through both ARF-GEF function and interaction with LFA-1. EMBO J 19, 2525–2536
    OpenUrlAbstract
    1. Glogauer, M.,
    2. Arora, P.,
    3. Chou, D.,
    4. Janmey, P. A.,
    5. Downey, G. P. and
    6. McCulloch, C. A.
    (1998). The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J. Biol. Chem 273, 1689–1698
    OpenUrlAbstract/FREE Full Text
    1. Goldmann, W. H.
    (2000). Kinetic determination of focal adhesion protein formation. Biochem. Biophys. Res. Commun 271, 553–557
    OpenUrlCrossRefPubMedWeb of Science
    1. Hayashi, Y.,
    2. Haimovich, B.,
    3. Reszka, A.,
    4. Boettiger, D. and
    5. Horwitz, A.
    (1990). Expression and function of chicken integrin1 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 cells. J. Cell Biol 110, 175–184
    OpenUrlAbstract/FREE Full Text
    1. Hemler, M. E.,
    2. Kassner, P. D. and
    3. Chan, B. M. C.
    (1992). Functional roles for integrinsubunit cytoplasmic domains. Cold Spring Harbor Symp. Quant. Biol 57, 213–220
    OpenUrlAbstract/FREE Full Text
    1. Hemler, M. E.
    (1998). Integrin associated proteins. Curr. Opin. Cell Biol 10, 578–585
    OpenUrlCrossRefPubMedWeb of Science
    1. Hmama, Z.,
    2. Knutson, K. L.,
    3. Herrera-Velit, P.,
    4. Nandan, D. and
    5. Reiner, N. E.
    (1999). Monocyte adherence induced by lipopolysaccharide involves CD14, LFA-1, and cytohesin-1. Regulation by Rho and phosphatidylinositol 3-kinase. J. Biol. Chem 274, 1050–1057
    OpenUrlAbstract/FREE Full Text
    1. Horwitz, A.,
    2. Duggan, K.,
    3. Buck, C. A.,
    4. Beckerle, M. C. and
    5. Burridge, K.
    (1986). Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 320, 531–533
    OpenUrlCrossRefPubMedWeb of Science
    1. Hynes, R. O.
    (1992). Integrins: Versatility, modulation, and signalling in cell adhesion. Cell 69, 11–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Jenkins, A. L.,
    2. Nannizzi-Alalmo, L.,
    3. Silver, D.,
    4. Sellers, J. R.,
    5. Ginsberg, M. H.,
    6. Law, D. A. and
    7. Phillips, D. R.
    (1998). Tyrosine phosphorylation of the3 cytoplasmic domain mediates integrin-cytoskeletal interactions. J. Biol. Chem 273, 13878–13885
    OpenUrlAbstract/FREE Full Text
    1. Kaapa, A.,
    2. Peter, K. and
    3. Ylanne, J.
    (1999). Effects of mutations in the cytoplasmic domain of integrin1 to talin binding and cell spreading. Exp. Cell Res 250, 534–.
    OpenUrl
    1. Kashiwagi, H.,
    2. Schwartz, M. A.,
    3. Eigenthaler, M.,
    4. Davis, K. A.,
    5. Ginsberg, M. H. and
    6. Shattil, S. J.
    (1997). Affinity modulation of platelet integrinIIb 3by3-endonexin, a selective binding partner of the 3integrin cytoplasmic tail. J. Cell Biol 137, 1433–1443
    OpenUrlAbstract/FREE Full Text
    1. Kassner, P. D.,
    2. Alon, R.,
    3. Springer, T. A. and
    4. Hemler, M.
    (1995). Specialized functional properties of the integrin4 cytoplasmic domain. Mol. Biol. Cell 6, 661–674
    OpenUrlAbstract/FREE Full Text
    1. Keely, P. J.,
    2. Rusyn, E. V.,
    3. Cox, A. D. and
    4. Parise, L. V.
    (1999). R-Ras signals through specific integrincytoplasmic domains to promote migration and invasion of breast epithelial cells. J. Cell Biol 145, 1077–1088
    OpenUrlAbstract/FREE Full Text
    1. Kieffer, J. D.,
    2. Plopper, G.,
    3. Ingber, D. E.,
    4. Hartwig, J. H. and
    5. Kupper, T. S.
    (1995). Direct binding of F actin to the cytoplasmic domain of the2 integrin chain in vitro. Biochem. Biophys. Res. Comm 217, 466–474
    OpenUrlCrossRefPubMedWeb of Science
    1. Knezevic, I.,
    2. Leisner, T. and
    3. Lam, S.
    (1996). Direct binding of the platelet integrinIIb 3(GPIIb-IIIa) to talin. J. Biol. Chem 271, 16416–16421
    OpenUrlAbstract/FREE Full Text
    1. Kolanus, W.,
    2. Nagel, W.,
    3. Schiller, B.,
    4. Zeitlmann, L.,
    5. Godar, S.,
    6. Stockinger, H. and
    7. Seed, B.
    (1996). L 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86, 233–242
    OpenUrlCrossRefPubMedWeb of Science
    1. Korthauer, U.,
    2. Nagel, W.,
    3. Davis, E. M.,
    4. Le Beau, M. M.,
    5. Menon, R. S. and
    6. Mitchell, E. O.
    (2000). Anergic T lymphocytes selectively express an integrin regulatory protein of the cytohesin family. J. Immunol 164, 308–318
    OpenUrlAbstract/FREE Full Text
    1. LaFlamme, S. E.,
    2. Akiyama, S. K. and
    3. Yamada, K. M.
    (1992). Regulation of fibronectin receptor distribution. J. Cell Biol 117, 437–447
    OpenUrlAbstract/FREE Full Text
    1. Law, D. A.,
    2. Nannizzi-Alalmo, L. and
    3. Phillips, D. R.
    (1996). Outside-in integrin signal transduction:IIb 3-(GPIIb-IIIa) tyrosine phosphorylation induced by platelet aggregation. J. Biol. Chem 271, 10811–10815
    OpenUrlAbstract/FREE Full Text
    1. Law, D. A.,
    2. DeGuzman, F. R.,
    3. Heiser, P.,
    4. Ministri-Madrid, K.,
    5. Killeen, N. and
    6. Phillips, D. R.
    (1999). Integrin cytoplasmic tyrosine motif is required for outside-inIIb 3 signaling and platelet function. Nature 401, 808–811
    OpenUrlCrossRefPubMed
    1. Lee, S. Y. and
    2. Pohajdak, B.
    (2000). N-terminal targeting of guanine nucleotide exchange factor (GEF) for ADP ribosylation factor (ARF) to the Golgi. J. Cell Sci 113, 1883–1889
    OpenUrlAbstract/FREE Full Text
    1. Leung-Hagesteijn, C. Y.,
    2. Milankov, K.,
    3. Michalak, M.,
    4. Wilkins, J. and
    5. Dedhar, S.
    (1994). Cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin-subunit-binding protein. J. Cell Sci 107, 589–600
    OpenUrlAbstract/FREE Full Text
    1. Lewis, J. M. and
    2. Schwartz, M. A.
    (1995). Mapping in vivo associations of cytoplasmic proteins with integrin1 cytoplasmic domain mutants. Mol. Biol. Cell 6, 151–160
    OpenUrlAbstract/FREE Full Text
    1. Li, J.,
    2. Mayne, R. and
    3. Wu, C.
    (1999). A novel muscle-specific beta1 integrin binding protein (MIBP) that modulates myogenic differentiation. J. Cell Biol 147, 1391–1398
    OpenUrlAbstract/FREE Full Text
    1. Liliental, J. and
    2. Chang, D. D.
    (1998). Rack1, a receptor for activated protein kinase C, interacts with integrinsubunit. J. Biol. Chem 273, 2379–2383
    OpenUrlAbstract/FREE Full Text
    1. Liu, S.,
    2. Thomas, S. M.,
    3. Woodside, D. G.,
    4. Rose, D. M.,
    5. Kiosses, W. B.,
    6. Pfaff, M. and
    7. Ginsberg, M. H.
    (1999). Binding of paxillin to4 integrins modifies integrin-dependent biological responses. Nature 402, 676–681
    OpenUrlCrossRefPubMed
    1. Liu, S. and
    2. Ginsberg, M. H.
    (2000). Paxillin binding to a conserved sequence motif in the4 integrin cytoplasmic domain. J. Biol. Chem 275, 22736–22742
    OpenUrlAbstract/FREE Full Text
    1. Loo, D. T.,
    2. Kanner, S. B. and
    3. Aruffo, A.
    (1998). Filamin binds to the cytoplasmic domain of the1-integrin. Identification of amino acids responsible for this interaction. J. Biol. Chem 273, 23304–23312
    OpenUrlAbstract/FREE Full Text
    1. Lukashev, M. E.,
    2. Sheppard, D. and
    3. Pytela, R.
    (1994). Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed1 integrin cytoplasmic domain. J. Biol. Chem 269, 18311–18314
    OpenUrlAbstract/FREE Full Text
    1. Marcantonio, E. E.,
    2. Guan, J.-L.,
    3. Trevithick, J. E. and
    4. Hynes, R. O.
    (1990). Mapping of the functional determinants of the integrin 1 cytoplasmic domain by site-directed mutagenesis. CR 1, 597–604
    OpenUrl
    1. Martel, V.,
    2. Vignoud, L.,
    3. Dupe, S.,
    4. Frachet, P.,
    5. Block, M. R. and
    6. Albiges-Rizo, C.
    (2000). Talin controls the exit of the integrin5 1 from an early compartment of the secretory pathway. J. Cell Sci 113, 1951–1961
    OpenUrlAbstract/FREE Full Text
    1. Meyer, S. C.,
    2. Sanan, D. A. and
    3. Fox, J. E.
    (1998). Role of actin-binding protein in insertion of adhesion receptors into the membrane. J. Biol. Chem 273, 3013–3020
    OpenUrlAbstract/FREE Full Text
    1. Naik, U. P.,
    2. Patel, P. M. and
    3. Parise, L. V.
    (1997). Identification of a novel calcium-binding protein that interacts with the integrinIIb cytoplasmic domain. J. Biol. Chem 272, 4651–4654
    OpenUrlAbstract/FREE Full Text
    1. Ogasawara, M.,
    2. Kim, S. C.,
    3. Adamik, R.,
    4. Togawa, A.,
    5. Ferrans, V. J.,
    6. Takeda, K.,
    7. Kirby, M.,
    8. Moss, J. and
    9. Vaughan, M.
    (2000). Similarities in function and gene structure of cytohesin-4 and cytohesin-1, guanine nucleotide-exchange proteins for ADP-ribosylation factors. J. Biol. Chem 275, 3221–3230
    OpenUrlAbstract/FREE Full Text
    1. Ohta, Y.,
    2. Suzuki, N.,
    3. Nakamura, S.,
    4. Hartwig, J. H. and
    5. Stossel, T. P.
    (1999). The small GTPase RalA targets filamin to induce filopodia. Proc. Nat. Acad. Sci. USA 96, 2122–2128
    OpenUrlAbstract/FREE Full Text
    1. Ohtoshi, A.,
    2. Maeda, T.,
    3. Higashi, H.,
    4. Ashizawa, S.,
    5. Yamada, M. and
    6. Hatakeyama, M.
    (2000). Beta3-endonexin as a novel inhibitor of cyclin A-associated kinase. Biochem. Biophys. Res. Commun 267, 947–952
    OpenUrlCrossRefPubMed
    1. Otey, C. A.,
    2. Pavalko, F. M. and
    3. Burridge, K.
    (1990). An interaction between alpha actinin and the1 integrin subunit in vitro. J. Cell Biol 111, 721–729
    OpenUrlAbstract/FREE Full Text
    1. O'Toole, T. E.,
    2. Katagiri, Y.,
    3. Faull, R. J.,
    4. Peter, K.,
    5. Tamura, R. N.,
    6. Quaranta, V.,
    7. Loftus, J. C.,
    8. Shattil, S. J. and
    9. Ginsberg, M. H.
    (1994). Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol 124, 1047–1059
    OpenUrlAbstract/FREE Full Text
    1. Pavalko, F. M.,
    2. Otey, C. A. and
    3. Burridge, K.
    (1989). Identification of a filamin isoform enriched at the ends of stress fibers in chicken embryo fibroblasts. J. Cell Sci 94, 109–118
    OpenUrlAbstract/FREE Full Text
    1. Pavalko, F. M. and
    2. Burridge, K.
    (1991). Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of-actinin. J. Cell Biol 114, 481–491
    OpenUrlAbstract/FREE Full Text
    1. Pavalko, F. M.,
    2. Chen, N. X.,
    3. Turner, C. H.,
    4. Burr, D. B. A. S.,
    5. Hsieh, Y. F.,
    6. Qiu, J. and
    7. Duncan, R. L.
    (1998). Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol 275, 1591–1601
    OpenUrl
    1. Pfaff, M.,
    2. Liu, S.,
    3. Erle, D. J. and
    4. Ginsberg, M. H.
    (1998). Integrincytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem 273, 6104–6109
    OpenUrlAbstract/FREE Full Text
    1. Priddle, H.,
    2. Hemmings, L.,
    3. Monkley, S.,
    4. Woods, A.,
    5. Patel, B.,
    6. Sutton, D.,
    7. Dunn, G. A.,
    8. Zicha, D. and
    9. Critchley, D. R.
    (1998). Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol 142, 1121–1133
    OpenUrlAbstract/FREE Full Text
    1. Reddy, K. B.,
    2. Gascard, P.,
    3. Price, M. G.,
    4. Negrescu, E. V. and
    5. Fox, J. E. B.
    (1998). Identification of an interaction between the M-band protein skelemin and integrin subunits. Colocolization of a skelemin-like protein with1 and 3 integrins in non-muscle cells. J. Biol. Chem 273, 35039–35047
    OpenUrlAbstract/FREE Full Text
    1. Reszka, A. A.,
    2. Hayashi, Y. and
    3. Horwitz, A. F.
    (1992). Identification of amino acid sequences in the integrin1 cytoplasmic domain implicated in cytoskeletal association. J. Cell Biol 117, 1321–1330
    OpenUrlAbstract/FREE Full Text
    1. Retta, S. F.,
    2. Balzac, F.,
    3. Ferraris, P.,
    4. Belkin, A. M.,
    5. Fassler, R.,
    6. Humphries, M. J.,
    7. De Leo, G.,
    8. Silengo, L. and
    9. Tarone, G.
    (1998). 1-integrin cytoplasmic subdomains involved in dominant negative function. Mol. Biol. Cell 9, 715–731
    OpenUrlAbstract/FREE Full Text
    1. Rietzler, M.,
    2. Bittner, M.,
    3. Kolanus, W.,
    4. Schuster, A. and
    5. Holzmann, B.
    (1998). The human WD repeat protein WAIT-1 specifically interacts with the cytoplasmic tails of7-integrins. J. Biol. Chem 273, 27459–27466
    OpenUrlAbstract/FREE Full Text
    1. Rojiani, M. V.,
    2. Finlay, B. B.,
    3. Gray, V. and
    4. Dedhar, S.
    (1991). In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrinsubunits. Biochemistry 30, 9859–9866
    OpenUrlCrossRefPubMed
    1. Sastry, S. K. and
    2. Horwitz, A. F.
    (1993). Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Curr. Opin. Cell Biol 5, 819–831
    OpenUrlCrossRefPubMed
    1. Sastry, S. K.,
    2. Lakonishok, M.,
    3. Wu, S.,
    4. Truong, T. Q.,
    5. Huttenlocher, A.,
    6. Turner, C. E. and
    7. Horwitz, A. F.
    (1999). Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J. Cell Biol 144, 1295–1309
    OpenUrlAbstract/FREE Full Text
    1. Schaller, M. D.,
    2. Otey, C. A.,
    3. Hildebrand, J. D. and
    4. Parsons, J. T.
    (1995). Focal adhesion kinase and paxillin bind to peptides mimickingintegrin cytoplasmic domains. J. Cell Biol 130, 1181–1187
    OpenUrlAbstract/FREE Full Text
    1. Schwartz, M. A.,
    2. Schaller, M. D. and
    3. Ginsberg, M. H.
    (1995). Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol 11, 549–599
    OpenUrlCrossRefPubMedWeb of Science
    1. Shattil, S. J.,
    2. O'Toole, T. E.,
    3. Eigenthaler, M.,
    4. Thon, V.,
    5. Williams, M. J.,
    6. Babior, B. and
    7. Ginsberg, M. H.
    (1995). 3endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin 3subunit. J. Cell Biol 131, 807–816
    OpenUrlAbstract/FREE Full Text
    1. Shaw, L. M.,
    2. Turner, C. E. and
    3. Mercurio, A. M.
    (1995). The6A 1 and6B 1 integrin variants signal differences in the tyrosine phosphorylation of paxillin and other proteins. J. Biol. Chem 270, 23648–23652
    OpenUrlAbstract/FREE Full Text
    1. Shock, D. D.,
    2. Naik, U. P.,
    3. Brittain, J. E.,
    4. Alahari, S. K.,
    5. Sondek, J. and
    6. Parise, L. V.
    (1999). Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem. J 342, 729–735
    OpenUrlAbstract/FREE Full Text
    1. Solowska, J.,
    2. Guan, J.-L.,
    3. Marcantonio, E. E.,
    4. Trevithick, J. E.,
    5. Buck, C. A. and
    6. Hynes, R. O.
    (1989). Expression of normal and mutant avian integrin subunits in rodent cells. J. Cell Biol 109, 853–861
    OpenUrlAbstract/FREE Full Text
    1. Steiner, F.,
    2. Weber, K. and
    3. Furst, D. O.
    (1999). M band proteins myomesin and skelemin are encoded by the same gene: analysis of its organization and expression. Genomics 56, 78–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Tahiliani, P. D.,
    2. Singh, L.,
    3. Auer, K. L. and
    4. LaFlamme, S. E.
    (1997). The role of conserved amino acid motifs within the integrin b3 cytoplasmic domain in triggering focal adhesion kinase phosphorylation. J. Biol. Chem 272, 7892–7898
    OpenUrlAbstract/FREE Full Text
    1. Tang, S.,
    2. Gao, Y. and
    3. Ware, J. A.
    (1999). Enhancement of endothelial cell migation and in vitro tube formation by TAP20, a novel5 integrin-modulating, PKCo-dependent protein. J. Cell Biol 147, 1073–1084
    OpenUrlAbstract/FREE Full Text
    1. Tapley, P.,
    2. Horwitz, A.,
    3. Buck, C. A.,
    4. Duggan, K. and
    5. Rohrschneider, L.
    (1989). Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts. Oncogene 4, 325–333
    OpenUrlPubMedWeb of Science
    1. Turner, C. E.
    (1998). Paxillin. Int. J. Biochem. Cell Biol 30, 955–959
    OpenUrlCrossRefPubMedWeb of Science
    1. Turner, C. E.,
    2. Brown, M. C.,
    3. Perrota, J. A.,
    4. Riedy, M. C.,
    5. Nikolopoulos, S. N.,
    6. McDonald, A. R.,
    7. Bagrodia, S.,
    8. Thomas, S. M. and
    9. Leventhal, P. S.
    (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol 145, 851–863
    OpenUrlAbstract/FREE Full Text
    1. Vallar, L.,
    2. Melchior, C.,
    3. Plancon, S.,
    4. Drobecq, H.,
    5. Lippens, G.,
    6. Regnault, V. and
    7. Kieffer, N.
    (1999). Divalent cations differentially regulate integrinIIb cytoplasmic tail binding to 3 and to calcium-and integrin-binding protein. J. Biol. Chem 274, 17257–17266
    OpenUrlAbstract/FREE Full Text
    1. Venkateswarlu, K.,
    2. Gunn-Moore, F.,
    3. Tavare, J. M. and
    4. Cullen, P. G.
    (1999). EGF-and NGF-stimulated translocation of cytohesin-1 to the plasma membrane of PC12 cells requires PI3-kinase activation and a functional cytohesin-1 PH domain. J. Cell Sci 112, 1957–1965
    OpenUrlAbstract/FREE Full Text
    1. Warren, A. P.,
    2. Patel, K.,
    3. Miyamoto, Y.,
    4. Wygant, J. N.,
    5. Woodside, D. G. and
    6. McIntyre, B. W.
    (2000). Convergence between CD98 and integrin-mediated T-lymphcyte co-stimulation. Immunology 99, 62–68
    OpenUrlCrossRefPubMedWeb of Science
    1. Wary, K. K.,
    2. Mariotti, A.,
    3. Zurzolo, C. and
    4. Giancotti, F. G.
    (1998). A requirement for caveolin-a and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634
    OpenUrlCrossRefPubMedWeb of Science
    1. Weber, K. S.,
    2. Klickstein, L. B. and
    3. Weber, C.
    (1999). Specific activation of leukocyte2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the subunit cytoplasmic domains. Mol. Biol. Cell 10, 861–873
    OpenUrlAbstract/FREE Full Text
    1. Wu, C.
    (1999). Integrin-linked kinase and PINCH: partners in regulation of cell-extracellular matrix interaction and signal transduction. J. Cell Sci 112, 4485–4489
    OpenUrlAbstract/FREE Full Text
    1. Ylanne, J.,
    2. Huuskonen, J.,
    3. O'Toole, T. E.,
    4. Ginsberg, M. H.,
    5. Virtanen, I. and
    6. Gahmberg, C. G.
    (1995). Mutation of the Cytoplasmic Domain of the Integrin3Subunit. J. Biol. Chem 270, 9550–9557
    OpenUrlAbstract/FREE Full Text
    1. Zent, R.,
    2. Fenczik, C. A.,
    3. Calderwood, D. A.,
    4. Liu, S.,
    5. Dellos, M. and
    6. Ginsberg, M. H.
    (2000). Class-and splice variant-specific association of CD98 with integrincytoplasmic domains. J. Biol. Chem 275, 5059–5064
    OpenUrlAbstract/FREE Full Text
    1. Zhang, X. A. and
    2. Hemler, M. E.
    (1999). Interaction of the integrin1 cytoplasmic domain with ICAP-1 protein. J. Biol. Chem 274, 11–19
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Integrin cytoplasmic domain-binding proteins
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Articles
Integrin cytoplasmic domain-binding proteins
S. Liu, D.A. Calderwood, M.H. Ginsberg
Journal of Cell Science 2000 113: 3563-3571;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Articles
Integrin cytoplasmic domain-binding proteins
S. Liu, D.A. Calderwood, M.H. Ginsberg
Journal of Cell Science 2000 113: 3563-3571;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

Journal Articles

  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Relationships between EEA1 binding partners and their role in endosome fusion
  • A nuclear tale of two yeasts
Show more Journal Articles

Journal Article

  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
  • Relationships between EEA1 binding partners and their role in endosome fusion
  • A nuclear tale of two yeasts
Show more Journal Article

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

2020 at The Company of Biologists

Despite the challenges of 2020, we were able to bring a number of long-term projects and new ventures to fruition. While we look forward to a new year, join us as we reflect on the triumphs of the last 12 months.


Mole – The Corona Files

"This is not going to go away, 'like a miracle.' We have to do magic. And I know we can."

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


Cell scientist to watch – Christine Faulkner

In an interview, Christine Faulkner talks about where her interest in plant science began, how she found the transition between Australia and the UK, and shares her thoughts on virtual conferences.


Read & Publish participation extends worldwide

“The clear advantages are rapid and efficient exposure and easy access to my article around the world. I believe it is great to have this publishing option in fast-growing fields in biomedical research.”

Dr Jaceques Behmoaras (Imperial College London) shares his experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 60 institutions in 12 countries taking part – find out more and view our full list of participating institutions.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992