Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact the journal
    • Subscriptions
    • Advertising
    • Feedback
Journal Article
The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane
A.S. Sechi, J. Wehland
Journal of Cell Science 2000 113: 3685-3695;
A.S. Sechi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Wehland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The co-ordination of rearrangements of the actin cytoskeleton depends on its tight connection to the plasma membrane. Phosphatidylinositol 4,5-bisphosphate is thought to transmit signals originating at the plasma membrane to the underlying actin cytoskeleton. This lipid binds to, and influences the activity of, several actin-associated proteins in vitro that regulate the architecture of the actin cytoskeleton. Signalling intermediates in this process include focal adhesion molecules such as vinculin and members of two families of proteins, ERM and WASP. These proteins interact with phosphatidylinositol 4,5-bisphosphate and appear to be regulated by interplay between small GTPases and phosphatidylinositol 4,5-bisphosphate metabolism, and thus link the plasma membrane with cytoskeletal remodelling.

  • © 2000 by Company of Biologists

REFERENCES

    1. Achiriloaie, M.,
    2. Barylko, B. and
    3. Albanesi, J. P.
    ( 1999). Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell. Biol 19, 1410– 1415
    OpenUrlAbstract/FREE Full Text
    1. Aktories, K. and
    2. Hall, A.
    ( 1989). Botulinum ADP-ribosyltransferase C3: a new tool to study low molecular weight GTP-binding proteins. Trends Pharmacol. Sci 10, 415– 418
    OpenUrlCrossRefPubMed
    1. Anderson, R. A. and
    2. Marchesi, V. T.
    ( 1985). Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature 318, 295– 298
    OpenUrlCrossRefPubMed
    1. Arpin, M.,
    2. Algrain, M. and
    3. Louvard, D.
    ( 1994). Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr. Opin. Cell Biol 6, 136– 141
    OpenUrlCrossRefPubMedWeb of Science
    1. Bakolitsa, C.,
    2. de Pereda, J. M.,
    3. Bagshaw, C. R.,
    4. Critchley, D. R. and
    5. Liddington, R. C.
    ( 1999). Crystal structure of the vinculin tail suggests a pathway for activation. Cell 99, 603– 613
    OpenUrlCrossRefPubMedWeb of Science
    1. Bear, J. E.,
    2. Loureiro, J. J.,
    3. Libova, I.,
    4. Fassler, R.,
    5. Wehland, J. and
    6. Gertler, F. B.
    ( 2000). Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717– 728
    OpenUrlCrossRefPubMedWeb of Science
    1. Bell, R. M. and
    2. Burns, D. J.
    ( 1991). Lipid activation of protein kinase C. J. Biol. Chem 266, 4661– 4664
    OpenUrlFREE Full Text
    1. Bishop, A. L. and
    2. Hall, A.
    ( 2000). Rho GTPases and their effector proteins. Biochem. J 348, 241– 255
    OpenUrlAbstract/FREE Full Text
    1. Bretscher, A.,
    2. Reczek, D. and
    3. Berryman, M.
    ( 1997). Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J. Cell Sci 110, 3011– 3018
    OpenUrlAbstract/FREE Full Text
    1. Bretscher, A.
    ( 1999). Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr. Opin. Cell Biol 11, 109– 116
    OpenUrlCrossRefPubMedWeb of Science
    1. Burridge., K. and
    2. Chrzanowska-Wodnicka, M.
    ( 1996). Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol 12, 463– 518
    OpenUrlCrossRefPubMedWeb of Science
    1. Cerione, R.
    ( 1998). PIP2: activator… or terminator of small G proteins?. Trends Biochem. Sci 23, 100–.
    OpenUrlPubMedWeb of Science
    1. Chabre, M.,
    2. Antonny, B. and
    3. Paris, S.
    ( 1998). PIP2: activator… or terminator of small G proteins?. Trends Biochem. Sci 23, 98– 99
    OpenUrlCrossRefPubMed
    1. Chaudhary, A.,
    2. Chen, J.,
    3. Gu, Q. M.,
    4. Witke, W.,
    5. Kwiatkowski, D. J. and
    6. Prestwich, G. D.
    ( 1998). Probing the phosphoinositide 4,5-bisphosphate binding site of human profilin I. Chem. Biol 5, 273– 281
    OpenUrlCrossRefPubMedWeb of Science
    1. Chong, L. D.,
    2. Traynor-Kaplan, A.,
    3. Bokoch, G. M. and
    4. Schwartz, M. A.
    ( 1994). The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507– 513
    OpenUrlCrossRefPubMedWeb of Science
    1. Chuang, T. H.,
    2. Bohl, B. P. and
    3. Bokoch, G. M.
    ( 1993). Biologically active lipids are regulators of Rac. GDI complexation. J. Biol. Chem 268, 26206– 26211
    OpenUrlAbstract/FREE Full Text
    1. Critchley, D. R.
    ( 2000). Focal adhesions—the cytoskeletal connection. Curr. Opin. Cell Biol 12, 133– 139
    OpenUrlCrossRefPubMedWeb of Science
    1. Czech, M. P.
    ( 2000). PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603– 606
    OpenUrlCrossRefPubMedWeb of Science
    1. Derry, J. M.,
    2. Ochs, H. D. and
    3. Francke, U.
    ( 1994). Isolation of a novel gene mutated in Wiskott-Aldrich Syndrome. Cell 78, 635– 644
    OpenUrlCrossRefPubMedWeb of Science
    1. Donaldson, J. G. and
    2. Jackson, C. L.
    ( 2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol 12, 475– 482
    OpenUrlCrossRefPubMedWeb of Science
    1. Eichinger, L. and
    2. Schleicher, M.
    ( 1992). Characterization of actin-and lipid-binding domains in severin, a Ca(2+)-dependent F-actin fragmenting protein. Biochemistry 31, 4779– 4787
    OpenUrlCrossRefPubMed
    1. Fukami, K.,
    2. Furuhashi, K.,
    3. Inagaki, M.,
    4. Endo, T.,
    5. Hatano, S. and
    6. Takenawa, T.
    ( 1992). Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function. Nature 359, 150– 152
    OpenUrlCrossRefPubMed
    1. Fukami, K.,
    2. Sawada, N.,
    3. Endo, T. and
    4. Takenawa, T.
    ( 1996). Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin. J. Biol. Chem 271, 2646– 2650
    OpenUrlAbstract/FREE Full Text
    1. Furuhashi, K.,
    2. Inagaki, M.,
    3. Hatano, S.,
    4. Fukami, K. and
    5. Takenawa, T.
    ( 1992). Inositol phospholipid-induced suppression of F-actin-gelating activity of smooth muscle filamin. Biochem. Biophys. Res. Commun 184, 1261– 1265
    OpenUrlCrossRefPubMedWeb of Science
    1. Gary, R. and
    2. Bretscher, A.
    ( 1995). Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061– 1075
    OpenUrlAbstract/FREE Full Text
    1. Gilmore, A. P. and
    2. Burridge, K.
    ( 1996). Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381, 531– 535
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartwig, J. H. and
    2. Kwiatkowski, D. J.
    ( 1991). Actin-binding proteins. Curr. Opin. Cell Biol 3, 87– 97
    OpenUrlCrossRefPubMed
    1. Hartwig, J. H.,
    2. Bokoch, G. M.,
    3. Carpenter, C. L.,
    4. Janmey, P. A.,
    5. Taylor, L. A.,
    6. Toker, A. and
    7. Stossel, T. P.
    ( 1995). Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 643– 653
    OpenUrlCrossRefPubMedWeb of Science
    1. Haus, U.,
    2. Hartmann, H.,
    3. Trommler, P.,
    4. Noegel, A. A. and
    5. Schleicher, M.
    ( 1991). F-actin capping by cap32/34 requires heterodimeric conformation and can be inhibited with PIP2. Biochem. Biophys. Res. Commun 181, 833– 839
    OpenUrlCrossRefPubMed
    1. Heise, H.,
    2. Bayerl, T.,
    3. Isenberg, G. and
    4. Sackmann, E.
    ( 1991). Human platelet P-235, a talin-like actin binding protein, binds selectively to mixed lipid bilayers. Biochim. Biophys. Acta 1061, 121– 131
    OpenUrlPubMed
    1. Heiska, L.,
    2. Alfthan, K.,
    3. Gronholm, M.,
    4. Vilja, P.,
    5. Vaheri, A. and
    6. Carpen, O.
    ( 1998). Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem 273, 21893– 21900
    OpenUrlAbstract/FREE Full Text
    1. Heiss, S. G. and
    2. Cooper, J. A.
    ( 1991). Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids. Biochemistry 30, 8753– 8758
    OpenUrlCrossRefPubMed
    1. Henry, M. D.,
    2. Gonzalez Agosti, C. and
    3. Solomon, F.
    ( 1995). Molecular dissection of radixin: distinct and interdependent functions of the amino-and carboxy-terminal domains. J. Cell Biol 129, 1007– 1022
    OpenUrlAbstract/FREE Full Text
    1. Hirao, M.,
    2. Sato, N.,
    3. Kondo, T.,
    4. Yonemura, S.,
    5. Monden, M.,
    6. Sasaki, T.,
    7. Takai, Y.,
    8. Tsukita, S. and
    9. Tsukita, S.
    ( 1996). Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol 135, 37– 51
    OpenUrlAbstract/FREE Full Text
    1. Hofmann, A.,
    2. Eichinger, L.,
    3. Andre, E.,
    4. Rieger, D. and
    5. Schleicher, M.
    ( 1992). Cap100, a novel phosphatidylinositol 4,5-bisphosphate-regulated protein that caps actin filaments but does not nucleate actin assembly. Cell Motil. Cytoskel 23, 133– 144
    OpenUrlCrossRefPubMedWeb of Science
    1. Honda, A.,
    2. Nogami, M.,
    3. Yokozeki, T.,
    4. Yamazaki, M.,
    5. Nakamura, H.,
    6. Watanabe, H.,
    7. Kawamoto, K.,
    8. Nakayama, K.,
    9. Morris, A. J.,
    10. Frohman, M. A. and
    11. Kanaho, Y.
    ( 1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521– 532
    OpenUrlCrossRefPubMedWeb of Science
    1. Hoover, K. B. and
    2. Bryant, P. J.
    ( 2000). The genetics of the protein 4. 1 family: organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol 12, 229– 234
    OpenUrlCrossRefPubMedWeb of Science
    1. Hsuan, J. J.,
    2. Minogue, S. and
    3. dos Santos, M.
    ( 1998). Phosphoinositide 4-and 5-kinases and the cellular roles of phosphatidylinositol 4,5-bisphosphate. Advan. Cancer Res 74, 167– 216
    OpenUrlCrossRefPubMedWeb of Science
    1. Huttelmaier, S.,
    2. Mayboroda, O.,
    3. Harbeck, B.,
    4. Jarchau, T.,
    5. Jockusch, B. M. and
    6. Rudiger, M.
    ( 1998). The interaction of the cell-contact proteins VASP and vinculin is regulated by phosphatidylinositol-4,5-bisphosphate. Curr. Biol 8, 479– 488
    OpenUrlCrossRefPubMedWeb of Science
    1. Kahn, R. A.
    ( 1998). PIP2: activator…or terminator of small G proteins?. Trends Biochem. Sci 23, 99–.
    OpenUrl
    1. Kam, J. L.,
    2. Miura, K.,
    3. Jackson, T. R.,
    4. Gruschus, J.,
    5. Roller, P.,
    6. Stauffer, S.,
    7. Clark, J.,
    8. Aneja, R. and
    9. Randazzo, P. A.
    ( 2000). Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J. Biol. Chem 275, 9653– 3663
    OpenUrlAbstract/FREE Full Text
    1. Kim, A. S.,
    2. Kakalis, L. T.,
    3. Abdul-Manan, N.,
    4. Liu, G. A. and
    5. Rosen, M. K.
    ( 2000). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151– 158
    OpenUrlCrossRefPubMedWeb of Science
    1. Kolluri, R.,
    2. Tolias, K. F.,
    3. Carpenter, C. L.,
    4. Rosen, F. S. and
    5. Kirchhausen, T.
    ( 1996). Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc. Nat. Acad. Sci. USA 93, 5615– 5618
    OpenUrlAbstract/FREE Full Text
    1. Kozma, R.,
    2. Ahmed, S.,
    3. Best, A. and
    4. Lim, L.
    ( 1995). The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol. Cell. Biol 15, 1942– 1952
    OpenUrlAbstract/FREE Full Text
    1. Krause, M.,
    2. Sechi, A. S.,
    3. Konradt, M.,
    4. Monner, D.,
    5. Gertler, F. B. and
    6. Wehland, J.
    ( 2000). Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol 149, 181– 194
    OpenUrlAbstract/FREE Full Text
    1. Imai, K.,
    2. Nonoyama, S.,
    3. Miki, H.,
    4. Morio, T.,
    5. Fukami, K.,
    6. Zhu, Q.,
    7. Aruffo, A.,
    8. Ochs, H. D.,
    9. Yata, J. and
    10. Takenawa, T.
    ( 1999). The pleckstrin homology domain of the Wiskott-Aldrich syndrome protein is involved in the organization of actin cytoskeleton. Clin. Immunol 92, 128– 137
    OpenUrlCrossRefPubMedWeb of Science
    1. Janmey, P. A. and
    2. Stossel, T. P.
    ( 1987). Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325, 362– 364
    OpenUrlCrossRefPubMedWeb of Science
    1. Janmey, P. A. and
    2. Matsudaira, P. T.
    ( 1988). Functional comparison of villin and gelsolin. Effects of Ca2+, KCl, and polyphosphoinositides. J. Biol. Chem 263, 16738– 16743
    OpenUrlAbstract/FREE Full Text
    1. Janmey, P. A.,
    2. Lamb, J.,
    3. Allen, P. G. and
    4. Matsudaira, P. T.
    ( 1992). Phosphoinositide-binding peptides derived from the sequences of gelsolin and villin. J. Biol. Chem 267, 11818– 11823
    OpenUrlAbstract/FREE Full Text
    1. Jenkins, G. H.,
    2. Fisette, P. L. and
    3. Anderson, R. A.
    ( 1994). Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem 269, 11547– 11554
    OpenUrlAbstract/FREE Full Text
    1. Johnson, R. P. and
    2. Craig, S. W.
    ( 1995). F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373, 261– 264
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson, R. P.,
    2. Niggli, V.,
    3. Durrer, P. and
    4. Craig, S. W.
    ( 1998). A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry 37, 10211– 10222
    OpenUrlCrossRefPubMed
    1. Johnson, R. P. and
    2. Craig, S. W.
    ( 2000). Actin activates a cryptic dimerization potential of the vinculin tail domain. J. Biol. Chem 275, 95– 105
    OpenUrlAbstract/FREE Full Text
    1. Jost, M.,
    2. Simpson, F.,
    3. Kavran, J. M.,
    4. Lemmon, M. A. and
    5. Schmid, S. L.
    ( 1998). Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol 8, 1399– 402
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassing, I. and
    2. Lindberg, U.
    ( 1985). Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314, 472– 474
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassing, I. and
    2. Lindberg, U.
    ( 1988). Specificity of the interaction between phosphatidylinositol 4,5-bisphosphate and the profilin:actin complex. J. Cell Biochem 37, 255– 267
    OpenUrlCrossRefPubMedWeb of Science
    1. Lassing, I. and
    2. Lindberg, U.
    ( 1988). Evidence that the phosphatidylinositol cycle is linked to cell motility. Exp. Cell Res 174, 1– 15
    OpenUrlCrossRefPubMed
    1. Lassing, I.,
    2. Lindberg, U.,
    3. Matsui, T.,
    4. Yonemura, S.,
    5. Tsukita, S. and
    6. Tsukita, S.
    ( 1999). Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol 9, 1259– 1262
    OpenUrlCrossRefPubMedWeb of Science
    1. Laurent, V.,
    2. Loisel, T. P.,
    3. Harbeck, B.,
    4. Wehman, A.,
    5. Gröbe, L.,
    6. Jockusch, B. M.,
    7. Wehland, J.,
    8. Gertler, F. B. and
    9. Carlier, M.-F.
    ( 1999). Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol 144, 1245– 1258
    OpenUrlAbstract/FREE Full Text
    1. Laux, T.,
    2. Fukami, K.,
    3. Thelen, M.,
    4. Golub, T.,
    5. Frey, D. and
    6. Caroni, P.
    ( 2000). GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol 149, 1455– 1472
    OpenUrlAbstract/FREE Full Text
    1. Lee, A.,
    2. Frank, D. W.,
    3. Marks, M. S. and
    4. Lemmon, M. A.
    ( 1999). Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol 9, 261– 264
    OpenUrlCrossRefPubMedWeb of Science
    1. Legg, J. W. and
    2. Isacke, C. M.
    ( 1998). Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol 8, 705– 708
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma, L.,
    2. Cantley, L. C.,
    3. Janmey, P. A. and
    4. Kirschner, M. W.
    ( 1998). Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol 140, 1125– 1136
    OpenUrlAbstract/FREE Full Text
    1. Machesky, L. M. and
    2. Insall, R. H.
    ( 1998). Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol 8, 1347– 1356
    OpenUrlCrossRefPubMedWeb of Science
    1. Machesky, L. M.,
    2. Mullins, R. D.,
    3. Higgs, H. N.,
    4. Kaiser, D. A.,
    5. Blanchoin, L.,
    6. May, R. C.,
    7. Hall, M. E. and
    8. Pollard, T. D.
    ( 1999). Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Nat. Acad. Sci 96, 3739– 3744
    OpenUrlAbstract/FREE Full Text
    1. Mackay, D. J.,
    2. Esch, F.,
    3. Furthmayr, H. and
    4. Hall, A.
    ( 1997). Rho-and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol 138, 927– 938
    OpenUrlAbstract/FREE Full Text
    1. Majerus, P. W.,
    2. Ross, T. S.,
    3. Cunningham, T. W.,
    4. Caldwell, K. K.,
    5. Jefferson, A. B. and
    6. Bansal, V. S.
    ( 1990). Recent insights in phosphatidylinositol signaling. Cell 63, 459– 465
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsui, T.,
    2. Maeda, M.,
    3. Doi, Y.,
    4. Yonemura, S.,
    5. Amano, M.,
    6. Kaibuchi, K.,
    7. Tsukita, S. and
    8. Tsukita, S.
    ( 1998). Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol 140, 647– 657
    OpenUrlAbstract/FREE Full Text
    1. Matsui, T.,
    2. Yonemura, S.,
    3. Tsukita, S. and
    4. Tsukita, S.
    ( 1999). Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol 9, 1259– 1262
    OpenUrlCrossRefPubMedWeb of Science
    1. McGough, A.
    ( 1998). F-actin-binding proteins. Curr. Opin. Struct. Biol 8, 166– 176
    OpenUrlCrossRefPubMedWeb of Science
    1. McNamee, H. P.,
    2. Ingber, D. E. and
    3. Schwartz, M. A.
    ( 1993). Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell Biol 121, 673– 678
    OpenUrlAbstract/FREE Full Text
    1. McNamee, H. P.,
    2. Liley, H. G. and
    3. Ingber, D. E.
    ( 1996). Integrin-dependent control of inositol lipid synthesis in vascular endothelial cells and smooth muscle cells. Exp. Cell Res 224, 116– 122
    OpenUrlCrossRefPubMedWeb of Science
    1. Miki, H.,
    2. Miura, K. and
    3. Takenawa, T.
    ( 1996). N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15, 5326– 5335
    OpenUrlPubMedWeb of Science
    1. Miki, H.,
    2. Sasaki, T.,
    3. Takai, Y. and
    4. Takenawa, T.
    ( 1998). Induction offilopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93– 96
    OpenUrlCrossRefPubMed
    1. Missy, K.,
    2. Van Poucke, V.,
    3. Raynal, P.,
    4. Viala, C.,
    5. Mauco, G.,
    6. Plantavid, M.,
    7. Chap, H. and
    8. Payrastre, B.
    ( 1998). Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation. J. Biol. Chem 273, 30279– 30286
    OpenUrlAbstract/FREE Full Text
    1. Niebuhr, K.,
    2. Ebel, F.,
    3. Frank, R.,
    4. Reinhard, M.,
    5. Domann, E.,
    6. Carl, U. D.,
    7. Walter, U.,
    8. Gertler, F. B.,
    9. Wehland, J. and
    10. Chakraborty, T.
    ( 1997). A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16, 5433– 5444
    OpenUrlAbstract
    1. Niggli, V.,
    2. Andreoli, C.,
    3. Roy, C. and
    4. Mangeat, P.
    ( 1995). Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett 376, 172– 176
    OpenUrlCrossRefPubMedWeb of Science
    1. Nobes, C. D. and
    2. Hall, A.
    ( 1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol 144, 1235– 1244
    OpenUrlAbstract/FREE Full Text
    1. Ochs, H. D.,
    2. Slichter, S. J.,
    3. Harker, L. A.,
    4. Von Behrens, W. E.,
    5. Clark, R. A. and
    6. Wedgwood, R. J.
    ( 1980). The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood 55, 243– 252
    OpenUrlFREE Full Text
    1. Oude Weernink, P. A.,
    2. Schulte, P.,
    3. Guo, Y.,
    4. Wetzel, J.,
    5. Amano, M.,
    6. Kaibuchi, K.,
    7. Haverland, S.,
    8. Voss, M.,
    9. Schmidt, M.,
    10. Mayr, G. W. and
    11. Jakobs, K. H.
    ( 2000). Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase. J. Biol. Chem 275, 10168– 10174
    OpenUrlAbstract/FREE Full Text
    1. Pearson, M. A.,
    2. Reczek, D.,
    3. Bretscher, A. and
    4. Karplus, P. A.
    ( 2000). Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Pestonjamasp, K.,
    2. Amieva, M. R.,
    3. Strassel, C. P.,
    4. Nauseef, W. M.,
    5. Furthmayr, H. and
    6. Luna, E. J.
    ( 1995). Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes. Mol. Biol. Cell 6, 247– 259
    OpenUrlAbstract/FREE Full Text
    1. Raucher, D.,
    2. Stauffer, T.,
    3. Chen, W.,
    4. Shen, K.,
    5. Guo, S.,
    6. York, J. D.,
    7. Sheetz, M. P. and
    8. Meyer, T.
    ( 2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221– 228
    OpenUrlCrossRefPubMedWeb of Science
    1. Rebecchi, M. J. and
    2. Scarlata, S.
    ( 1998). Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct 27, 503– 528
    OpenUrlCrossRefPubMedWeb of Science
    1. Remold-O'Donnell, E.,
    2. Rosen, F. S. and
    3. Kenney, D. M.
    ( 1996). Defects in Wiskott-Aldrich syndrome blood cells. Blood 87, 2621– 2631
    OpenUrlFREE Full Text
    1. Ren, X. D.,
    2. Bokoch, G. M.,
    3. Traynor-Kaplan, A.,
    4. Jenkins, G. H.,
    5. Anderson, R. A. and
    6. Schwartz, M. A.
    ( 1996). Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Mol. Biol. Cell 7, 435– 442
    OpenUrlAbstract/FREE Full Text
    1. Ridley, A. J. and
    2. Hall, A.
    ( 1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389– 399
    OpenUrlCrossRefPubMedWeb of Science
    1. Ridley, A. J.,
    2. Paterson, H. F.,
    3. Johnston, C. L.,
    4. Diekmann, D. and
    5. Hall, A.
    ( 1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401– 410
    OpenUrlCrossRefPubMedWeb of Science
    1. Rohatgi, R.,
    2. Ma, L.,
    3. Miki, H.,
    4. Lopez, M.,
    5. Kirchhausen, T.,
    6. Takenawa, T. and
    7. Kirschner, M. W.
    ( 1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221– 231
    OpenUrlCrossRefPubMedWeb of Science
    1. Roy, C.,
    2. Martin, M. and
    3. Mangeat, P.
    ( 1997). A dual involvement of the amino-terminal domain of ezrin in F-and G-actin binding. J. Biol. Chem 272, 20088– 20095
    OpenUrlAbstract/FREE Full Text
    1. Rozelle, A. L.,
    2. Machesky, L. M.,
    3. Yamamoto, M.,
    4. Driessens, M. H.,
    5. Insall, R. H.,
    6. Roth, M. G.,
    7. Luby-Phelps, K.,
    8. Marriott, G.,
    9. Hall, A. and
    10. Yin, H. L.
    ( 2000). Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol 10, 311– 320
    OpenUrlCrossRefPubMedWeb of Science
    1. Sakisaka, T.,
    2. Itoh, T.,
    3. Miura, K. and
    4. Takenawa, T.
    ( 1997). Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol. Cell Biol 17, 3841– 3849
    OpenUrlAbstract/FREE Full Text
    1. Sakurai, T.,
    2. Kurokawa, H. and
    3. Nonomura, Y.
    ( 1991). The Ca2(+)-dependent actin filament-severing activity of 74-kDa protein (adseverin) resides in its NH2-terminal half. J. Biol. Chem 266, 4581– 4585
    OpenUrlAbstract/FREE Full Text
    1. Schmidt, A. and
    2. Hall, M. N.
    ( 1998). Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol 14, 305– 38
    OpenUrlCrossRefPubMedWeb of Science
    1. Serrador, J. M.,
    2. Alonso-Lebrero, J. L.,
    3. del Pozo, M. A.,
    4. Furthmayr, H.,
    5. Schwartz-Albiez, R.,
    6. Calvo, J.,
    7. Lozano, F. and
    8. Sanchez-Madrid, F.
    ( 1997). Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J. Cell Biol 138, 1409– 1423
    OpenUrlAbstract/FREE Full Text
    1. Shaw, R. J.,
    2. Henry, M.,
    3. Solomon, F. and
    4. Jacks, T.
    ( 1998). RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403– 419
    OpenUrlAbstract/FREE Full Text
    1. Shibasaki, Y.,
    2. Ishihara, H.,
    3. Kizuki, N.,
    4. Asano, T.,
    5. Oka, Y. and
    6. Yazaki, Y.
    ( 1997). Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J. Biol. Chem 272, 7578– 7581
    OpenUrlAbstract/FREE Full Text
    1. Smith, G. A.,
    2. Theriot, J. A. and
    3. Portnoy, D. A.
    ( 1996). The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of Vasodilator-stimulated Phosphoprotein and profilin. J. Cell Biol 135, 647– 660
    OpenUrlAbstract/FREE Full Text
    1. Sohn, R. H.,
    2. Chen, J.,
    3. Koblan, K. S.,
    4. Bray, P. F. and
    5. Goldschmidt-Clermont, P. J.
    ( 1995). Localization of a binding site for phosphatidylinositol 4,5-bisphosphate on human profilin. J. Biol. Chem 270, 21114– 21120
    OpenUrlAbstract/FREE Full Text
    1. Steimle, P. A.,
    2. Hoffert, J. D.,
    3. Adey, N. B. and
    4. Craig, S. W.
    ( 1999). Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J. Biol. Chem 274, 18414– 18420
    OpenUrlAbstract/FREE Full Text
    1. Stossel, T. P.
    ( 1993). On the crawling of animal cells. Science 260, 1086– 1094
    OpenUrlAbstract/FREE Full Text
    1. Symons, M.,
    2. Derry, J. M. J.,
    3. Karlak, B.,
    4. Jiang, S.,
    5. Lemahieu, V.,
    6. McCormick, F.,
    7. Francke, U. and
    8. Abo, A.
    ( 1996). Wiskott—Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723– 734
    OpenUrlCrossRefPubMedWeb of Science
    1. Takahashi, K.,
    2. Sasaki, T.,
    3. Mammoto, A.,
    4. Takaishi, K.,
    5. Kameyama, T.,
    6. Tsukita, S. and
    7. Takai, Y.
    ( 1997). Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem 272, 23371– 23375
    OpenUrlAbstract/FREE Full Text
    1. Tall, E. G.,
    2. Spector, I.,
    3. Pentyala, S. N.,
    4. Bitter, I. and
    5. Rebecchi, M. J.
    ( 2000). Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr. Biol 10, 743– 746
    OpenUrlCrossRefPubMedWeb of Science
    1. Tempel, M.,
    2. Goldmann, W. H.,
    3. Dietrich, C.,
    4. Niggli, V.,
    5. Weber, T.,
    6. Sackmann, E. and
    7. Isenberg, G.
    ( 1994). Insertion of filamin into lipid membranes examined by calorimetry, the film balance technique, and lipid photolabeling. Biochemistry 33, 12565– 12572
    OpenUrlCrossRefPubMed
    1. Tempel, M.,
    2. Goldmann, W. H.,
    3. Isenberg, G. and
    4. Sackmann, E.
    ( 1995). Interaction of the 47-kDa talin fragment and the 32-kDa vinculin fragmentwith acidic phospholipids: a computer analysis. Biophys. J 69, 228– 241
    OpenUrlCrossRefPubMedWeb of Science
    1. Terada, N.,
    2. Fujii, Y. and
    3. Ohno, S.
    ( 1996). Three-dimensional ultrastructure of in situ membrane skeletons in human erythrocytes by quick-freezing and deep-etching method. Histol. Histopathol 11, 787– 800
    OpenUrlPubMed
    1. Tolias, K. F.,
    2. Couvillon, A. D.,
    3. Cantley, L. C. and
    4. Carpenter, C. L.
    ( 1998). Characterization of a Rac1-and RhoGDI-associated lipid kinase signaling complex. Mol. Cell. Biol 18, 762– 770
    OpenUrlAbstract/FREE Full Text
    1. Tolias, K. F.,
    2. Hartwig, J. H.,
    3. Ishihara, H.,
    4. Shibasaki, Y.,
    5. Cantley, L. C. and
    6. Carpenter, C. L.
    ( 2000). Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr. Biol 10, 153– 156
    OpenUrlCrossRefPubMedWeb of Science
    1. Turunen, O.,
    2. Wahlstrom, T. and
    3. Vaheri, A.
    ( 1994). Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J. Cell Biol 126, 1445– 1453
    OpenUrlAbstract/FREE Full Text
    1. Vallis, Y.,
    2. Wigge, P.,
    3. Marks, B.,
    4. Evans, P. R. and
    5. McMahon, H. T.
    ( 1999). Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol 9, 257– 260
    OpenUrlCrossRefPubMedWeb of Science
    1. Van Troys, M.,
    2. Vandekerckhove, J. and
    3. Ampe, C.
    ( 1999). Structural modules in actin-binding proteins: towards a new classification. Biochim. Biophys. Acta 1448, 323– 348
    OpenUrlPubMed
    1. Weekes, J.,
    2. Barry, S. T. and
    3. Critchley, D. R.
    ( 1996). Acidic phospholipids inhibit the intramolecular association between the N-and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem. J 314, 827– 832
    OpenUrlAbstract/FREE Full Text
    1. Yonemura, S.,
    2. Hirao, M.,
    3. Doi, Y.,
    4. Takahashi, N.,
    5. Kondo, T.,
    6. Tsukita, S. and
    7. Tsukita, S.
    ( 1998). Ezrin/Radixin/Moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol 140, 885– 895
    OpenUrlAbstract/FREE Full Text
    1. Yonezawa, N.,
    2. Nishida, E.,
    3. Iida, K.,
    4. Yahara, I. and
    5. Sakai, H.
    ( 1990). Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J. Biol. Chem 265, 8382– 8386
    OpenUrlAbstract/FREE Full Text
    1. Yonezawa, N.,
    2. Homma, Y.,
    3. Yahara, I.,
    4. Sakai, H. and
    5. Nishida, E.
    ( 1991). A short sequence responsible for both phosphoinositide binding and actin binding activities of cofilin. J. Biol. Chem 266, 17218– 17221
    OpenUrlAbstract/FREE Full Text
    1. Yu, F. X.,
    2. Johnston, P. A.,
    3. Sudhof, T. C. and
    4. Yin, H. L.
    ( 1990). gCap39, a calcium ion-and polyphosphoinositide-regulated actin capping protein. Science 250, 1413– 1415
    OpenUrlAbstract/FREE Full Text
    1. Yu, F. X.,
    2. Sun, H. Q.,
    3. Janmey, P. A. and
    4. Yin, H. L.
    ( 1992). Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J. Biol. Chem 267, 14616– 14621
    OpenUrlAbstract/FREE Full Text
    1. Zheng, Y.,
    2. Glaven, J. A.,
    3. Wu, W. J. and
    4. Cerione, R. A.
    ( 1996). Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs. J. Biol. Chem 271, 23815– 23819
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
Share
Journal Article
The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane
A.S. Sechi, J. Wehland
Journal of Cell Science 2000 113: 3685-3695;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane
A.S. Sechi, J. Wehland
Journal of Cell Science 2000 113: 3685-3695;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • HEMCAM/CD146 downregulates cell surface expression of (β)1 integrins
  • Prolactin signalling to milk protein secretion but not to gene expression depends on the integrity of the Golgi region
  • The cytoplasmic fate of mRNA
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

First Person interviews

Photo collage of Chen Yu, Sushmita Chatterjee, Ruiqi Wang and Lotte Vanheer.

Have you seen our First Person interviews with the early-career first authors of our papers? The authors talk about their work in and out of the lab, the journeys that led them to where they are now and the scientists who inspired them along the way. Recently, we caught up with first authors Maitreyi Rathod, Sushmita Chatterjee, Lotte Vanheer, Rachel Furlong, Pamela Adami, Ruiqi Wang and Chen Yu.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


preLights – Meet the preLighters: an interview with Maiko Kitaoka

Maiko Kitaoka

Maiko Kitaoka is a graduate student in the lab of Rebecca Heald at the University of California, Berkeley. Here she studies the cause of chromosome mis-segregation defects in Xenopus hybrids. We caught up with Maiko to discuss her research, science communication, ballet, preprints and more.


Journal Meeting – Cell Dynamics: Host-Pathogen Interface

Registration is now open for the third instalment of the highly successful Cellular Dynamics Meeting Series, and will focus on ‘Host-Pathogen Interface’. The meeting will take place 17-20 May 2020, and further information is available here.


Cell Science at a Glance – Adaptor protein complexes and disease at a glance

A new poster from the Robinson lab summarises what is known about the five adaptor protein complexes and discuss how this helps to explain the clinical features of different genetic disorders.


JCS joins the Review Commons initiative

Journal of Cell Science is pleased to be a part of the new and exciting Review Commons initiative, launched by EMBO and ASAPbio. Streamlining the publishing process, Review Commons enables high-quality peer review to take place before journal submission. Papers submitted to Review Commons will be assessed independently of any journal, focusing solely on the paper’s scientific rigor and merit.


Articles of interest in our sister journals

Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae
Chang-Ru Tsai, Michael J. Galko
Development

Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis
Elizabeth Vargas, Karen P. McNally, Daniel B. Cortes, Michelle T. Panzica, Brennan M. Danlasky, Qianyan Li, Amy Shaub Maddox, Francis J. McNally
Development

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Journal of Cell Science
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992