Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Journal of Cell Science
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Journal of Cell Science

  • Log in
Advanced search

RSS   Twitter  Facebook   YouTube  

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Cell Scientists to Watch
    • First Person
    • Sign up for alerts
  • About us
    • About JCS
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Fast-track manuscripts
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • JCS Prize
    • Manuscript transfer network
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contact JCS
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
Journal Article
The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation
J. Chen, T. Nakata, Z. Zhang, N. Hirokawa
Journal of Cell Science 2000 113: 3861-3869;
J. Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Nakata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Hirokawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In order to study the role of NF-H in a neurofilament network formation in neurons, we coexpressed NF-H with neurofilament protein-L (NF-L) in Sf9 cells using the baculovirus expression system. Electron microscopy observations revealed that parallel arrays of 10 nm filaments with frequent crossbridges between adjacent filaments were formed in the cytoplasm of Sf9 cells infected with the recombinant virus that co-expressed NF-L and NF-H. To explore the function of the C-terminal tail domain of NF-H, various deletion mutants lacking portions of the tail domain were constructed, and each of them was coexpressed with NF-L. The results show that the tail domain of NF-H is a structural component of crossbridges and is involved in parallel bundle formation of neurofilaments, as core filaments of the axon. The last 191 amino acids of the C-terminal tail domain of NF-H play a key role in crossbridge formation.

  • © 2000 by Company of Biologists

REFERENCES

    1. Aizawa, H.,
    2. Sekine, Y.,
    3. Takemura, R.,
    4. Zhang, Z.,
    5. Nangaku, M. and
    6. Hirokawa, N.
    ( 1992). Kinesin family in murine central nervous system. J. Cell Biol 119, 1287– 1296
    OpenUrlAbstract/FREE Full Text
    1. Balin, J. B.,
    2. Clark, E. A.,
    3. Trojanowski, J. Q. and
    4. Lee, V. M.-Y.
    ( 1991). Neurofilament reassembly in vitro: biochemical, morphological and immuno-electron microscopic studies employing monoclonal antibodies to defined epitopes. Brain Res 556, 181– 195
    OpenUrlCrossRefPubMed
    1. Chin, S. S. M. and
    2. Liem, R. K. H.
    ( 1989). Expression of rat neurofilament proteins NF-L and NF-M in transfected non-neuronal cells. Eur. J. Cell Biol 50, 475– 490
    OpenUrlPubMedWeb of Science
    1. Chin, S. S. M. and
    2. Liem, R. K. H.
    ( 1990). Transfected rat high-molecularweight neurofilament (NF-H) coassembles with vimentin in a predominantly nonphosphorylated form. J. Neurosci 10, 3714– 3726
    OpenUrlAbstract
    1. Ching, G. Y. and
    2. Liem, R. K. H.
    ( 1993). Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell Biol 122, 1323– 1335
    OpenUrlAbstract/FREE Full Text
    1. de Waegh, S. M.,
    2. Lee, V. M.-Y. and
    3. Brady, S. T.
    ( 1992). Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451– 463
    OpenUrlCrossRefPubMedWeb of Science
    1. Elder, G. A.,
    2. Friendrich, V. L. Jr..,
    3. Bosco, P.,
    4. Kang, C.,
    5. Gourov, A.,
    6. Tu, P.-H.,
    7. Lee, V. M.-Y. and
    8. Lazzarini, R. A.
    ( 1998). Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J. Cell Biol 141, 727– 739
    OpenUrlAbstract/FREE Full Text
    1. Elder, G. A.,
    2. Friedrich, V. L.,
    3. Kang, C. Jr..,
    4. Bosco, P.,
    5. Gourov, A.,
    6. Zhang, P.-H.,
    7. Tu, B.,
    8. Lee, V. M.-Y. and
    9. Lazzarini, R. A.
    ( 1998). Requirement of heavy neurofilament subunit in the development of axons with large calibers. J. Cell Biol 143, 195– 205
    OpenUrlAbstract/FREE Full Text
    1. Eyer, J. and
    2. Peterson, A.
    ( 1994). Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12, 389– 405
    OpenUrlCrossRefPubMedWeb of Science
    1. Friede, R. L. and
    2. Samorajski, T.
    ( 1970). Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec 167, 379– 388
    OpenUrlCrossRefPubMedWeb of Science
    1. Geisler, N. and
    2. Weber., K.
    ( 1981). Self-assembly in vitro of the 68000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate sized filaments. J. Mol. Biol 151, 565– 571
    OpenUrlCrossRefPubMedWeb of Science
    1. Glicksman, M. A.,
    2. Soppert, D. and
    3. Willard, M. B.
    ( 1987). Posttranslational modification of neurofilament polypeptides in rabbit retina. J. Neurobiol 18, 167– 196
    OpenUrlCrossRefPubMedWeb of Science
    1. Guidato, S.,
    2. Tsai, L. H.,
    3. Woodgett, J. and
    4. Miller, C. C.
    ( 1996). Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. J. Neurochem 66, 1698– 1706
    OpenUrlPubMedWeb of Science
    1. Hirokawa, N.
    ( 1982). Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol 94, 129– 142
    OpenUrlAbstract/FREE Full Text
    1. Hirokawa, N.,
    2. Glicksman, M. A. and
    3. Willard, M. B.
    ( 1984). Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J. Cell Biol 98, 1523– 1536
    OpenUrlAbstract/FREE Full Text
    1. Hirokawa, N. and
    2. Takeda, S.
    ( 1998). Gene targeting studies begin to reveal the function of neurofilament proteins. J. Cell Biol 143, 1– 4
    OpenUrlFREE Full Text
    1. Hisanaga, S. and
    2. Hirokawa, N.
    ( 1988). Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J. Mol. Biol 202, 297– 305
    OpenUrlCrossRefPubMedWeb of Science
    1. Hisanaga, S.,
    2. Yasugawa, S.,
    3. Yamakawa, T.,
    4. Miyamoto, E.,
    5. Ikebe, M.,
    6. Uchiyama, M. and
    7. Kishimoto, T.
    ( 1993). Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases. J. Biochem 113, 705– 709
    OpenUrlAbstract/FREE Full Text
    1. Hoffman, P. N.,
    2. Cleveland, D. W.,
    3. Griffin, J. W.,
    4. Landes, P. W.,
    5. Cowan, N. J. and
    6. Price, D. L.
    ( 1987). Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA 84, 3472– 3476
    OpenUrlAbstract/FREE Full Text
    1. Lee, M. K. and
    2. Cleveland, D. W.
    ( 1994). Neurofilaments function and dysfunction: involvement in axonal growth and neuronal disease. Curr. Opin. Cell Biol 6, 34– 40
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee, M. K. and
    2. Cleveland, D. W.
    ( 1996). Neuronal intermediate filaments. Annu. Rev. Neurosci 19, 187– 217
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee, V. M. Y.,
    2. Otvos, L.,
    3. Carden, M. J. Jr..,
    4. Hollosi, M.,
    5. Dietzschold, B. and
    6. Lazzarini, R.A.
    ) ( 1988). Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc. Natl. Acad. Sci. USA 85, 1998– 2002
    OpenUrlAbstract/FREE Full Text
    1. Lee, M. K.,
    2. Xu, Z.,
    3. Wong, P. C. and
    4. Cleveland, D. W.
    ( 1993). Neurofilaments are obligate heteropolymers in vivo. J. Cell Biol 122, 1337– 1350
    OpenUrlAbstract/FREE Full Text
    1. Levy, E.,
    2. Liem, R. K. H.,
    3. D'Eustachio, P. and
    4. Cowan, N. J.
    ( 1987). Structure and revolutionary origin of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein. Eur. J. Biochem 166, 71– 77
    OpenUrlPubMedWeb of Science
    1. Lew, J.,
    2. Winkfein, R. J.,
    3. Paudel, H. K. and
    4. Wang, J. H.
    ( 1992). Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J. Biol. Chem 267, 25922– 25926
    OpenUrlAbstract/FREE Full Text
    1. Lewis, S.A. and
    2. Cowan, N. J.
    ( 1986). Anomalous placement of introns in a member of the intermediate filament multigene family: an evolutionary conundrum. Mol. Cell. Biol 6, 1529– 1534
    OpenUrlAbstract/FREE Full Text
    1. Liem, R. K. and
    2. Hutchison, S. B.
    ( 1982). Purification of individual components of the neurofilament triplet: filament assembly from the 70 000-dalton subunit. Biochemistry 21, 3221– 3226
    OpenUrlCrossRefPubMed
    1. Monterio, M. J. and
    2. Cleveland, D. W.
    ( 1989). Expression of NF-L and MF-M in fibroblasts reveals coassembly of neurofilament and vimentin subunits. J. Cell Biol 108, 579– 593
    OpenUrlAbstract/FREE Full Text
    1. Monterio, M. J.,
    2. Hoffman, P. N.,
    3. Gearhart, J. D. and
    4. Cleveland, D. W.
    ( 1990). Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axon without affecting caliber. J. Cell Biol 111, 1543– 1557
    OpenUrlAbstract/FREE Full Text
    1. Mulligan, L.,
    2. Balin, B. J.,
    3. Lee, V. M.-Y. and
    4. Ip, W.
    ( 1991). Antibody labelling of bovine neurofilament: implications on the structure of neurofilament sidearms. J. Struct. Biol 106, 1445– 1460
    OpenUrl
    1. Myers, M. W.,
    2. Lazzarini, R. A.,
    3. Schlalpfer, V. M. and
    4. Nelson, D. L.
    ( 1987). The human mid-sized neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J 6, 1617– 1626
    OpenUrlPubMedWeb of Science
    1. Nakagawa, T.,
    2. Chen, J.,
    3. Zhang, Z.,
    4. Kanai, Y. and
    5. Hirokawa, N.
    ( 1995). Two distinc functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: Cross-bridge formation and longitudinal elongation of filaments. J. Cell Biol 129, 411– 429
    OpenUrlAbstract/FREE Full Text
    1. Nixon, R. A.,
    2. Paskevich, P. A.,
    3. Sihag, R. K. and
    4. Thayer, C. Y.
    ( 1994). Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J. Cell Biol 126, 1031– 1046
    OpenUrlAbstract/FREE Full Text
    1. Ohara, O.,
    2. Gahara, Y.,
    3. Miyake, T.,
    4. Teraoka, H. and
    5. Itamura, T. K.
    ( 1993). Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol 121, 387– 395
    OpenUrlAbstract/FREE Full Text
    1. Rao, M. V.,
    2. Houseweart, M. K.,
    3. Williamson, T. L.,
    4. Crawford, T. O.,
    5. Folmer, J. and
    6. Cleveland, D. W.
    ( 1998). Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments do not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J. Cell Biol 143, 171– 181
    OpenUrlAbstract/FREE Full Text
    1. Steinert, P. M. and
    2. Roop, D. R.
    ( 1988). Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem 57, 593– 625
    OpenUrlCrossRefPubMedWeb of Science
    1. Sun, D.,
    2. Leung, C. L. and
    3. Lirm, R. K. H.
    ( 1996). Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p35. J. Biol. Chem 271, 14245– 14251
    OpenUrlAbstract/FREE Full Text
    1. Veeranna, K.,
    2. Shetty, T.,
    3. Link, W. T.,
    4. Jaffe, H.,
    5. Wang, J. and
    6. Pant, H. C.
    ( 1995). Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. J. Neurochem 64, 2681– 2690
    OpenUrlCrossRefPubMedWeb of Science
    1. Veeranna, K.,
    2. Shetty, T.,
    3. Amin, N.,
    4. Grant, P.,
    5. Albers, R. W. and
    6. Pant, H. C.
    ( 1996). Inhibition of neuronal cyclin-dependent kinase-5 by staurosporine and purine analogs is independent of activation by Munc-18. Neurochem. Res 21, 629– 636
    OpenUrlPubMedWeb of Science
    1. Wong, P. C.,
    2. Marszalek, J.,
    3. Crowford, T. O.,
    4. Xu, Z.,
    5. Hsieh, S.-T.,
    6. Griffin, J. W. and
    7. Cleveland, D. W.
    ( 1995). Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons. J. Cell Biol 130, 1413– 1422
    OpenUrlAbstract/FREE Full Text
    1. Xu, Z.-S.,
    2. Cork, L.,
    3. Griffin, J. W. and
    4. Cleveland, D. W.
    ( 1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23– 33
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamasaki, H.,
    2. Itakura, C. and
    3. Mizutani, M.
    ( 1991). Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol 82, 427– 434
    OpenUrlCrossRefPubMed
    1. Zhu, Q.,
    2. Couillard-Despres, S. and
    3. Julien, J.-P.
    ) ( 1997). Delayed maturation of regeneration myelinated axons in mice lacking neurofilaments. Exp. Neurol 148, 299– 316
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhu, Q.,
    2. Lindenbaum, M.,
    3. Levavasseur, F.,
    4. Jacomy, H. and
    5. Julien, J.-P.
    ) ( 1998). Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta, beta'-iminodipropionitrile. J. Cell Biol 143, 183– 193
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Journal of Cell Science.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation
(Your Name) has sent you a message from Journal of Cell Science
(Your Name) thought you would like to see the Journal of Cell Science web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Journal Article
The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation
J. Chen, T. Nakata, Z. Zhang, N. Hirokawa
Journal of Cell Science 2000 113: 3861-3869;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Journal Article
The C-terminal tail domain of neurofilament protein-H (NF-H) forms the crossbridges and regulates neurofilament bundle formation
J. Chen, T. Nakata, Z. Zhang, N. Hirokawa
Journal of Cell Science 2000 113: 3861-3869;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis
  • End13p/Vps4p is required for efficient transport from early to late endosomes in Saccharomyces cerevisiae
  • Association of the telomere-telomere-binding protein complex of hypotrichous ciliates with the nuclear matrix and dissociation during replication
Show more Journal Articles

Similar articles

Other journals from The Company of Biologists

Development

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Cell scientist to watch: Janet Iwasa

Read our interview with molecular animator Janet Iwasa, where she talks about her transition from the wet lab, explains how animation can facilitate research and discusses the challenges of the field.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Mole – The Corona files

“Despite everything, it's just incredible that we get to do science.”

Mole continues to offer his wise words to researchers on how to manage during the COVID-19 pandemic.


JCS and COVID-19

For more information on measures Journal of Cell Science is taking to support the community during the COVID-19 pandemic, please see here.

If you have any questions or concerns, please do not hestiate to contact the Editorial Office.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About Journal of Cell Science
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Fast-track manuscripts
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • JCS Prize
  • Manuscript transfer network
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contacts

  • Contact JCS
  • Subscriptions
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992